Results for 'unstable quantum systems'

938 found
Order:
  1. Mathematical Models for Unstable Quantum Systems and Gamow States.Manuel Gadella, Sebastian Fortin, Juan Pablo Jorge & Marcelo Losada - 2022 - Entropy 24 (6):804.
    We review some results in the theory of non-relativistic quantum unstable systems. We account for the most important definitions of quantum resonances that we identify with unstable quantum systems. Then, we recall the properties and construction of Gamow states as vectors in some extensions of Hilbert spaces, called Rigged Hilbert Spaces. Gamow states account for the purely exponential decaying part of a resonance; the experimental exponential decay for long periods of time physically characterizes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. On a Simple Derivation of the Effect of Repeated Measurements on Quantum Unstable Systems by Using the Regularized Incomplete beta-Function.Elio Conte - 2012 - Advanced Studies in Theoretical Physics 6 (25):1207-1213.
    a simple derivation of the effect induced from repeated measurements on quantum unstable systems is obtained by using the regularized incomplete beta - function .
    Download  
     
    Export citation  
     
    Bookmark  
  3. On the Notions of Rulegenerating & Anticipatory Systems.Niels Ole Finnemann - 1997 - Online Publication on Conference Site - Which Does Not Exist Any More.
    Until the late 19th century scientists almost always assumed that the world could be described as a rule-based and hence deterministic system or as a set of such systems. The assumption is maintained in many 20th century theories although it has also been doubted because of the breakthrough of statistical theories in thermodynamics (Boltzmann and Gibbs) and other fields, unsolved questions in quantum mechanics as well as several theories forwarded within the social sciences. Until recently it has furthermore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Color may be the phenomenal dual aspect of two-state quantum systems in a mixed state.Tal Hendel - manuscript
    Panmicropsychism is the view that the fundamental physical ingredients of our universe are also its fundamental phenomenal ingredients. Since there is only a limited number of fundamental physical ingredients, panmicropsychism seems to imply that there exists only a small set (palette) of basic phenomenal qualities. How does this limited palette of basic phenomenal qualities give rise to our rich set of experiences? This is known as ‘the palette problem’. One class of solutions to this problem, large-palette solutions, simply denies that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. A taxonomy for the mereology of entangled quantum systems.Paul M. Näger & Niko Strobach - manuscript
    The emerging field of quantum mereology considers part-whole relations in quantum systems. Entangled quantum systems pose a peculiar problem in the field, since their total states are not reducible to that of their parts. While there exist several established proposals for modelling entangled systems, like monistic holism or relational holism, there is considerable unclarity, which further positions are available. Using the lambda operator and plural logic as formal tools, we review and develop conceivable models (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Emergence and Computation at the Edge of Classical and Quantum Systems.Ignazio Licata - 2008 - In World Scientific (ed.), Physics of Emergence and Organization.
    The problem of emergence in physical theories makes necessary to build a general theory of the relationships between the observed system and the observing system. It can be shown that there exists a correspondence between classical systems and computational dynamics according to the Shannon-Turing model. A classical system is an informational closed system with respect to the observer; this characterizes the emergent processes in classical physics as phenomenological emergence. In quantum systems, the analysis based on the computation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  7. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Systems with Single Degree of Freedom and the Interpretation of Quantum Mechanics.Mehran Shaghaghi - manuscript
    Physical systems can store information and their informational properties are governed by the laws of information. In particular, the amount of information that a physical system can convey is limited by the number of its degrees of freedom and their distinguishable states. Here we explore the properties of the physical systems with absolutely one degree of freedom. The central point in these systems is the tight limitation on their information capacity. Discussing the implications of this limitation we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9.  73
    An Algebraic Model for Quantum Unstable States.Sebastian Fortin, Manuel Gadella, Federico Holik, Juan Pablo Jorge & Marcelo Losada - 2022 - Mathematics 10 (23).
    In this review, we present a rigorous construction of an algebraic method for quantum unstable states, also called Gamow states. A traditional picture associates these states to vectors states called Gamow vectors. However, this has some difficulties. In particular, there is no consistent definition of mean values of observables on Gamow vectors. In this work, we present Gamow states as functionals on algebras in a consistent way. We show that Gamow states are not pure states, in spite of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Quantum behavior of the systems with a single degree of freedom and the derivation of quantum theory.Mehran Shaghaghi - manuscript
    The number of independent messages a physical system can carry is limited by the number of its adjustable properties. In particular, systems that have only one adjustable property cannot carry more than a single message at a time. We demonstrate this is the case for the single photons in the double-slit experiment, and the root of the fundamental limit on measuring the complementary aspect of the photons. Next, we analyze the other ‘quantal’ behavior of the systems with a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Axiomatic foundations of Quantum Mechanics revisited: the case for systems.S. E. Perez-Bergliaffa, Gustavo E. Romero & H. Vucetich - 1996 - International Journal of Theoretical Phyisics 35:1805-1819.
    We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  12. Manifestation of Quantum Mechanical Properties of a Proprietor’s Consciousness in Slit Measurements of Economic Systems.Sergiy Melnyk & Igor Tuluzov - 2014 - Neuroquantology 12 (3).
    The present paper discusses the problem of quantum-mechanical properties of a subject’s consciousness. The model of generalized economic measurements is used for the analysis. Two types of such measurements are analyzed – transactions and technologies. Algebraic ratios between the technology-type measurements allow making their analogy with slit experiments in physics. It has been shown that the description of results of such measurements is possible both in classical and in quantum formalism of calculation of probabilities. Thus, the quantum-mechanical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Quantum states for primitive ontologists: A case study.Gordon Belot - 2012 - European Journal for Philosophy of Science 2 (1):67-83.
    Under so-called primitive ontology approaches, in fully describing the history of a quantum system, one thereby attributes interesting properties to regions of spacetime. Primitive ontology approaches, which include some varieties of Bohmian mechanics and spontaneous collapse theories, are interesting in part because they hold out the hope that it should not be too difficult to make a connection between models of quantum mechanics and descriptions of histories of ordinary macroscopic bodies. But such approaches are dualistic, positing a (...) state as well as ordinary material degrees of freedom. This paper lays out and compares some options that primitive ontologists have for making sense of the quantum state. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  14. Quantum-like non-separability of concept combinations, emergent associates and abduction.P. Bruza, K. Kitto, B. Ramm, L. Sitbon & D. Song - 2012 - Logic Journal of the IGPL 20 (2):445-457.
    Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  15. Addendum to Quantum Wave Function Collapse of a System Having Three anti Commuting Elements.Elio Conte - unknown
    We indicate a new way in the solution of the problem of the quantum measurement . In past papers we used the well-known formalism of the density matrix using an algebraic approach in a two states quantum spin system S, considering the particular case of three anticommuting elements. We demonstrated that, during the wave collapse, we have a transition from the standard Clifford algebra, structured in its space and metrics, to the new spatial structure of the Clifford dihedral (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  17. (4 other versions)Concatenated quantum gravity papers 1.Paul Merriam & M. A. Z. Habeeb - manuscript
    The first purpose of this series of articles is to introduce case studies on how current AI models can be used in the development of a possible theory of quantum gravity, their limitations, and the role the researcher has in steering the development in the right direction, even highlighting the errors, weaknesses and strengths of the whole process. The second is to introduce the new Presentist Fragmentalist ontology as a framework and use it for developing theories of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Standard Quantum Theory Derived from First Physical Principles.Mehran Shaghaghi - manuscript
    The mathematical formalism of quantum theory has been established for nearly a century, yet its physical foundations remain elusive. In recent decades, connections between quantum theory and information theory have garnered increasing attention. This study presents a physical derivation of the mathematical formalism quantum theory based on information-theoretic considerations in physical systems. We postulate that quantum systems are characterized by single independent adjustable variables. Utilizing this physical postulate along with the conservation of total probability, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  20. The Stochastic-Quantum Theorem.Jacob A. Barandes - manuscript
    This paper introduces several new classes of mathematical structures that have close connections with physics and with the theory of dynamical systems. The most general of these structures, called generalized stochastic systems, collectively encompass many important kinds of stochastic processes, including Markov chains and random dynamical systems. This paper then states and proves a new theorem that establishes a precise correspondence between any generalized stochastic system and a unitarily evolving quantum system. This theorem therefore leads to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. The quantum epoché.Paavo Pylkkänen - 2015 - Progress in Biophysics and Molecular Biology 119:332-340.
    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Quantum Measure from a Philosophical Viewpoint.Vasil Penchev - 2014 - Journal of Siberian Federal University. Humanities and Social Sciences 7 (1):4-19.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. (1 other version)Quantum Occasionalism.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    Both transition and transformation link the ideal and material into a whole. Future is what “causes” the present, and the latter in turn is what “causes” the past. That kind of “reverse causality” needs free choice and free will in the present in order to be able to be realized unlike classical causality. A few properties feature the concept of “quantum occasionalism” as follows. Some hypothetical entity generates successively a series of well-ordered states. That hypothetical entity is called “coherent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. How to spell out the epistemic conception of quantum states.Simon Friederich - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (3):149-157.
    The paper investigates the epistemic conception of quantum states---the view that quantum states are not descriptions of quantum systems but rather reflect the assigning agents' epistemic relations to the systems. This idea, which can be found already in the works of Copenhagen adherents Heisenberg and Peierls, has received increasing attention in recent years because it promises an understanding of quantum theory in which neither the measurement problem nor a conflict between quantum non-locality and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  25. Quantum Theory Beyond the Physical: Information in Context.Kirsty Kitto, Brentyn Ramm, Laurianne Sitbon & Peter Bruza - 2011 - Axiomathes 21 (2):331-345.
    Measures and theories of information abound, but there are few formalised methods for treating the contextuality that can manifest in different information systems. Quantum theory provides one possible formalism for treating information in context. This paper introduces a quantum inspired model of the human mental lexicon. This model is currently being experimentally investigated and we present a preliminary set of pilot data suggesting that concept combinations can indeed behave non-separably.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  26. Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics.Sean M. Carroll & Ashmeet Singh - 2021 - Physical Review A 103 (2):022213.
    We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) and remain (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. On the angular momentum of a system of quantum particles.O. Chavoya-Aceves - manuscript
    The properties of angular momentum and its connection to magnetic momentum are explored, based on a reconsideration of the Stern-Gerlach experiment and gauge invariance. A possible way to solve the so called spin crisis is proposed. The separation of angular momentum of a quantum system of particles into orbital angular momentum plus intrinsic angular momentum is reconsidered, within the limits of the Schr\"odinger theory. A proof is given that, for systems of more than two particles, unless all of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Matteo Morganti & Claudio Calosi - 2021 - British Journal for the Philosophy of Science 72 (3):865-891.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  29. Can (quantum) information be sorted out from quantum mechanics?Michele Caponigro & Stefano Mancini - 2009 - NQ Journal.
    We shall draw an affirmative answer to the question posed in the title. The key point will be a quantum description of physical reality. Once fixed at ontic level two basic elements, namely the laws of physics and the matter, we argue that the underlying physical reality emerges from the interconnection between these two elements. We consider any physical process, including measurement, modeled by unitary evolution. In this context, we will deduce quantum random- ness as a consequence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Quantum Entanglement Undermines Structural Realism.Seungbae Park - 2022 - Metaphysica 23 (1):1-13.
    Quantum entanglement poses a challenge to the traditional metaphysical view that an extrinsic property of an object is determined by its intrinsic properties. So structural realists might be tempted to cite quantum entanglement as evidence for structural realism. I argue, however, that quantum entanglement undermines structural realism. If we classify two entangled electrons as a single system, we can say that their spin properties are intrinsic properties of the system, and that we can have knowledge about these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Quantum Theory, Objectification and Some Memories of Giovanni Morchio.Luca Sciortino - 2023 - In Alessandro Michelangeli & Andrea Cintio (eds.), Trails in Modern Theoretical and Mathematical Physics. Springer. pp. 301-310.
    In this contribution I will retrace the main stages of my research on the objectification problem in quantum mechanics by highlighting some personal memories of my supervisor, the theoretical physicist Giovanni Morchio. The central aim of my MSc thesis was to ask whether the hypothesis of objectification, which is currently added to the formalism, is not, at least in one case, deducible from it and in particular from the dynamics of the temporal evolution. The case study we were looking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Feyerabend on the Quantum Theory of Measurement: A Reassessment.Daniel Kuby & Patrick Fraser - 2022 - International Studies in the Philosophy of Science 35 (1):23-49.
    In 1957, Feyerabend delivered a paper titled ‘On the Quantum-Theory of Measurement’ at the Colston Research Symposium in Bristol to sketch a completion of von Neumann's measurement scheme without collapse, using only unitary quantum dynamics and well-motivated statistical assumptions about macroscopic quantum systems. Feyerabend's paper has been recognised as an early contribution to quantum measurement, anticipating certain aspects of decoherence. Our paper reassesses the physical and philosophical content of Feyerabend's contribution, detailing the technical steps as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. Quantum of Wisdom.Colin Allen & Brett Karlan - 2022 - In Greg Viggiano (ed.), Quantum Computing and AI: Social, Ethical, and Geo-Political Implications. pp. 157-166.
    Practical quantum computing devices and their applications to AI in particular are presently mostly speculative. Nevertheless, questions about whether this future technology, if achieved, presents any special ethical issues are beginning to take shape. As with any novel technology, one can be reasonably confident that the challenges presented by "quantum AI" will be a mixture of something new and something old. Other commentators (Sevilla & Moreno 2019), have emphasized continuity, arguing that quantum computing does not substantially affect (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. From Time Asymmetry to Quantum Entanglement: The Humean Unification.Eddy Keming Chen - 2022 - Noûs 56 (1):227-255.
    Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. I propose a unified 'Humean' solution to the two problems. Humeanism allows us to incorporate the Past Hypothesis and the Statistical Postulate into the best system, which we then use to simplify the quantum state of the universe. This enables us to confer the nomological status to the (...) state in a way that adds no significant complexity to the best system and solves the ''supervenient-kind problem'' facing the original version of the Past Hypothesis. We call the resultant theory the Humean unification. It provides a unified explanation of time asymmetry and quantum entanglement. On this theory, what gives rise to time's arrow is also responsible for quantum phenomena. The new theory has a separable mosaic, a best system that is simple and non-vague, less tension between quantum mechanics and special relativity, and a higher degree of theoretical and dynamical unity. The Humean unification leads to new insights that can be useful to Humeans and non-Humeans alike. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  36. Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Claudio Calosi & Matteo Morganti - 2018 - British Journal for the Philosophy of Science:axy064.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  37. Quantum propensities in the brain cortex and free will.Danko D. Georgiev - 2021 - Biosystems 208:104474.
    Capacity of conscious agents to perform genuine choices among future alternatives is a prerequisite for moral responsibility. Determinism that pervades classical physics, however, forbids free will, undermines the foundations of ethics, and precludes meaningful quantification of personal biases. To resolve that impasse, we utilize the characteristic indeterminism of quantum physics and derive a quantitative measure for the amount of free will manifested by the brain cortical network. The interaction between the central nervous system and the surrounding environment is shown (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. From Quantum Entanglement to Spatiotemporal Distance.Alyssa Ney - 2021 - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime: Implications From Quantum Gravity. Oxford: Oxford University Press.
    Within the field of quantum gravity, there is an influential research program developing the connection between quantum entanglement and spatiotemporal distance. Quantum information theory gives us highly refined tools for quantifying quantum entanglement such as the entanglement entropy. Through a series of well-confirmed results, it has been shown how these facts about the entanglement entropy of component systems may be connected to facts about spatiotemporal distance. Physicists are seeing these results as yielding promising methods for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Quantum Gravity As the Unification of General Relativity & Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-3.
    A nonstandard viewpoint to quantum gravity is discussed. General relativity and quantum mechanics are to be related as two descriptions of the same, e.g. as Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics merged in the contemporary quantum mechanics. From the viewpoint of general relativity one can search for that generalization of relativity implying the in-variance “within – out of” of the same system.
    Download  
     
    Export citation  
     
    Bookmark  
  41. After Qbism, Contextual Quantum Realism (Response to C. Fuchs’s Question).Francois-Igor Pris - 2023 - ФИЛОСОФИЯ НАУКИ 3 (98):143-165.
    In his recent paper, C. Fuchs formulates QBism in the form of eight postulates. We criticise QBism as an anti-realist position and propose an alternative – contextual quantum realism (QCR). 1. A quantum state is not “an agent’s personal judgement” (QBism), nor is it subjective (QBism), but objective (QCR). It describes not the current experience (QBism), but a state of a physical system in context (QCR). 2. A quantum measurement is a (literally) measurement of quantum reality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Wigner’s friend and Relational Quantum Mechanics: A Reply to Laudisa.Nikki Weststeijn - 2021 - Foundations of Physics 51 (4):1-13.
    Relational Quantum Mechanics is an interpretation of quantum mechanics proposed by Carlo Rovelli. Rovelli argues that, in the same spirit as Einstein’s theory of relativity, physical quantities can only have definite values relative to an observer. Relational Quantum Mechanics is hereby able to offer a principled explanation of the problem of nested measurement, also known as Wigner’s friend. Since quantum states are taken to be relative states that depend on both the system and the observer, there (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Quantum theory without measurement or state reduction problems.Alan Macdonald - manuscript
    There is a consistent and simple interpretation of the quantum theory of isolated systems. The interpretation suffers no measurement problem and provides a quantum explanation of state reduction, which is usually postulated. Quantum entanglement plays an essential role in the construction of the interpretation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. On the angular momentum of a system of quantum particles.Oscar Chavoya Aceves - manuscript
    The properties of angular momentum and its connection to magnetic momentum are explored, based on a reconsideration of the Stern-Gerlach experiment and gauge invariance. A possible way to solve the so called spin crisis is proposed. The separation of angular momentum of a quan- tum system of particles into orbital angular momentum plus intrinsic angular momentum is reconsidered, within the limits of the Schrodinger theory. A proof is given that, for systems of more than two particles, un- less all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Better Economics for the Earth: A Lesson from Quantum and Information Theories.Quan-Hoang Vuong & Minh-Hoang Nguyen - 2024 - Hanoi, Vietnam: AISDL.
    To become more useful and efficient in sustaining the Earth's health, economics must undergo a paradigm shift in its thinking. From a humanistic perspective, humans should be the center of everything. However, from the standpoint of physics and the universe, this is not the case. As a species, having a planet among the millions in the universe where humans can survive and thrive is already a great fortune. Through this book, we also try to answer one of our long-standing questions: (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  47. Energy Non-conservation in Quantum Mechanics.Sean M. Carroll & Jackie Lodman - 2021 - Foundations of Physics 51 (4):1-15.
    We study the conservation of energy, or lack thereof, when measurements are performed in quantum mechanics. The expectation value of the Hamiltonian of a system changes when wave functions collapse in accordance with the standard textbook treatment of quantum measurement, but one might imagine that the change in energy is compensated by the measuring apparatus or environment. We show that this is not true; the change in the energy of a state after measurement can be arbitrarily large, independent (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  48. Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology.Biswaranjan Dikshit - 2018 - Neuroquantology 16 (4):26-33.
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. General Relativity and Quantum Gravity in Terms of Quantum Measure: A philosophical comment.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (17):1-37.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to be (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 938