View topic on PhilPapers for more information
Related categories

11 found
Order:
More results on PhilPapers
  1. Apophatic Finitism and Infinitism.Jan Heylen - 2019 - Logique Et Analyse 62 (247):319-337.
    This article is about the ontological dispute between finitists, who claim that only finitely many numbers exist, and infinitists, who claim that infinitely many numbers exist. Van Bendegem set out to solve the 'general problem' for finitism: how can one recast finite fragments of classical mathematics in finitist terms? To solve this problem Van Bendegem comes up with a new brand of finitism, namely so-called 'apophatic finitism'. In this article it will be argued that apophatic finitism is unable to represent (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Remarques sur l'impossibilité l'incomplétude, la paracohérence l'indécision, le hasard, la calculabilité, le paradoxe et l'incertitude - dans Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria da Costa, Godel, Searle, Rodych, Berto Floyd, Moyal-Sharrock et Yanofsky.Michael Richard Starks - 2019 - Las Vegas, NV USA: Reality Press.
    On pense généralement que l'impossibilité, l'incomplétdulité, la paracohérence, l'indécidabilité, le hasard, la calcul, le paradoxe, l'incertitude et les limites de la raison sont des questions scientifiques physiques ou mathématiques disparates ayant peu ou rien dans terrain d'entente. Je suggère qu'ils sont en grande partie des problèmes philosophiques standard (c.-à-d., jeux de langue) qui ont été la plupart du temps résolus par Wittgenstein plus de 80 ans. Je fournis un bref résumé de quelques-unes des principales conclusions de deux des plus éminents (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. Truth and Existence.Jan Heylen & Leon Horsten - 2017 - Thought: A Journal of Philosophy 6 (1):106-114.
    Halbach has argued that Tarski biconditionals are not ontologically conservative over classical logic, but his argument is undermined by the fact that he cannot include a theory of arithmetic, which functions as a theory of syntax. This article is an improvement on Halbach's argument. By adding the Tarski biconditionals to inclusive negative free logic and the universal closure of minimal arithmetic, which is by itself an ontologically neutral combination, one can prove that at least one thing exists. The result can (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. A New Reading and Comparative Interpretation of Gödel’s Completeness (1930) and Incompleteness (1931) Theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Hilbert's Objectivity.Lydia Patton - 2014 - Historia Mathematica 41 (2):188-203.
    Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Отвъд машината на Тюринг: квантовият компютър.Vasil Penchev - 2014 - Sofia: BAS: ISSK (IPS).
    Quantum computer is considered as a generalization of Turing machine. The bits are substituted by qubits. In turn, a "qubit" is the generalization of "bit" referring to infinite sets or series. It extends the consept of calculation from finite processes and algorithms to infinite ones, impossible as to any Turing machines (such as our computers). However, the concept of quantum computer mets all paradoxes of infinity such as Gödel's incompletness theorems (1931), etc. A philosophical reflection on how quantum computer might (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  7. Science, Religion, and Infinity.Graham Oppy - 2012 - In The Blackwell Companion to Science and Christianity. Wiley. pp. 430-440.
    This chapter contains sections titled: * Brief History * How We Talk * Science and Infinity * Religion and Infinity * Concluding Remarks * Notes * References * Further Reading.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Brain, Mind and Limitations of a Scientific Theory of Human Consciousness.Alfred Gierer - 2008 - Bioessays 30 (5):499-505.
    In biological terms, human consciousness appears as a feature associated with the func- tioning of the human brain. The corresponding activities of the neural network occur strictly in accord with physical laws; however, this fact does not necessarily imply that there can be a comprehensive scientific theory of conscious- ness, despite all the progress in neurobiology, neuropsychology and neurocomputation. Pre- dictions of the extent to which such a theory may become possible vary widely in the scien- tific community. There are (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Time, Successive Addition, and Kalam Cosmological Arguments.Graham Oppy - 2001 - Philosophia Christi 3 (1):181-192.
    Craig (1981) presents and defends several different kalam cosmological arguments. The core of each of these arguments is the following ur argument.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Numbers and Functions in Hilbert's Finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  11. The Physical Foundations of Biology and the Problem of Psychophysics.Alfred Gierer - 1970 - Ratio (Misc.) 12:47-64.
    Full applicability of physics to human biology does not necessarily imply that one can uncover a comprehensive, algorithmic correlation between physical brain states and corresponding mental states. The argument takes into account that information processing is finite in principle in a finite world. Presumbly the brain-mind-relation cannot be resolved in all essential aspects, particularly when high degrees of abstraction or self-analytical processes are involved. Our conjecture plausibly unifies the universal validity of physics and a logical limitation of human thought, and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark