Related

Contents
34 found
Order:
  1. Tuples all the way down?Simon Hewitt - manuscript
    We can introduce singular terms for ordered pairs by means of an abstraction principle. Doing so proves useful for a number of projects in the philosophy of mathematics. However there is a question whether we can appeal to the abstraction principle in good faith, since a version of the Caesar Problem can be generated, posing the worry that abstraction fails to introduce expressions which refer determinately to the requisite sort of object. In this short paper I will pose the difficulty, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Meaning, Presuppositions, Truth-relevance, Gödel's Sentence and the Liar Paradox.X. Y. Newberry - manuscript
    Section 1 reviews Strawson’s logic of presuppositions. Strawson’s justification is critiqued and a new justification proposed. Section 2 extends the logic of presuppositions to cases when the subject class is necessarily empty, such as (x)((Px & ~Px) → Qx) . The strong similarity of the resulting logic with Richard Diaz’s truth-relevant logic is pointed out. Section 3 further extends the logic of presuppositions to sentences with many variables, and a certain valuation is proposed. It is noted that, given this valuation, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Higher-Order Metaphysics in Frege and Russell.Kevin C. Klement - forthcoming - In Peter Fritz & Nicholas Jones (eds.), Higher-Order Metaphysics. Oxford: Oxford University Press.
    This chapter explores the metaphysical views about higher-order logic held by two individuals responsible for introducing it to philosophy: Gottlob Frege (1848–1925) and Bertrand Russell (1872–1970). Frege understood a function at first as the remainder of the content of a proposition when one component was taken out or seen as replaceable by others, and later as a mapping between objects. His logic employed second-order quantifiers ranging over such functions, and he saw a deep division in nature between objects and functions. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Frege meets Belnap: Basic Law V in a Relevant Logic.Shay Logan & Francesca Boccuni - forthcoming - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer. pp. 381-404.
    Abstractionism in the philosophy of mathematics aims at deriving large fragments of mathematics by combining abstraction principles (i.e. the abstract objects $\S e_1, \S e_2$, are identical if, and only if, an equivalence relation $Eq_\S$ holds between the entities $e_1, e_2$) with logic. Still, as highlighted in work on the semantics for relevant logics, there are different ways theories might be combined. In exactly what ways must logic and abstraction be combined in order to get interesting mathematics? In this paper, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Frege’s Theory of Types.Bruno Bentzen - 2023 - Manuscrito 46 (4):2022-0063.
    It is often claimed that the theory of function levels proposed by Frege in Grundgesetze der Arithmetik anticipates the hierarchy of types that underlies Church’s simple theory of types. This claim roughly states that Frege presupposes a type of functions in the sense of simple type theory in the expository language of Grundgesetze. However, this view makes it hard to accommodate function names of two arguments and view functions as incomplete entities. I propose and defend an alternative interpretation of first-level (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Two-sorted Frege Arithmetic is not Conservative.Stephen Mackereth & Jeremy Avigad - 2022 - Review of Symbolic Logic:1-34.
    Neo-Fregean logicists claim that Hume's Principle (HP) may be taken as an implicit definition of cardinal number, true simply by fiat. A longstanding problem for neo-Fregean logicism is that HP is not deductively conservative over pure axiomatic second-order logic. This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly Heck's Two-sorted Frege Arithmetic (2FA), a variation on HP which has been thought to be deductively conservative over second-order logic. We show that it isn't. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Universal Logic in terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can be interpreted. The (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Frege on Referentiality and Julius Caesar in Grundgesetze Section 10.Bruno Bentzen - 2019 - Notre Dame Journal of Formal Logic 60 (4):617-637.
    This paper aims to answer the question of whether or not Frege's solution limited to value-ranges and truth-values proposed to resolve the "problem of indeterminacy of reference" in section 10 of Grundgesetze is a violation of his principle of complete determination, which states that a predicate must be defined to apply for all objects in general. Closely related to this doubt is the common allegation that Frege was unable to solve a persistent version of the Caesar problem for value-ranges. It (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. "Cała matematyka to właściwie geometria". Poglądy Gottloba Fregego na podstawy matematyki po upadku logicyzmu.Krystian Bogucki - 2019 - Hybris. Internetowy Magazyn Filozoficzny 44:1 - 20.
    Gottlob Frege abandoned his logicist program after Bertrand Russell had discovered that some assumptions of Frege’s system lead to contradiction (so called Russell’s paradox). Nevertheless, he proposed a new attempt for the foundations of mathematics in two last years of his life. According to this new program, the whole of mathematics is based on the geometrical source of knowledge. By the geometrical source of cognition Frege meant intuition which is the source of an infinite number of objects in arithmetic. In (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. The Enhanced Indispensability Argument, the circularity problem, and the interpretability strategy.Jan Heylen & Lars Arthur Tump - 2019 - Synthese 198 (4):3033-3045.
    Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely mathematical, according to Baker (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Russell's Logicism.Kevin C. Klement - 2019 - In Russell Wahl (ed.), The Bloomsbury Companion to Bertrand Russell. London: Bloomsbury Academic. pp. 151-178.
    Bertrand Russell was one of the best-known proponents of logicism: the theory that mathematics reduces to, or is an extension of, logic. Russell argued for this thesis in his 1903 The Principles of Mathematics and attempted to demonstrate it formally in Principia Mathematica (PM 1910–1913; with A. N. Whitehead). Russell later described his work as a further “regressive” step in understanding the foundations of mathematics made possible by the late 19th century “arithmetization” of mathematics and Frege’s logical definitions of arithmetical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Russell’s method of analysis and the axioms of mathematics.Lydia Patton - 2017 - In Sandra Lapointe Christopher Pincock (ed.), Innovations in the History of Analytical Philosophy. London: Palgrave-Macmillan. pp. 105-126.
    In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, and motivations for, Russell’s (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Hale and Wright on the Metaontology of Neo-Fregeanism.Matti Eklund - 2016 - In Marcus Rossberg & Philip A. Ebert (eds.), Abstractionism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   11 citations  
  19. What do I Know With Certainty?Adekanmi Obasa - 2015 - Thoughts on Paper.
    I was faced with a question I thought I could not answer. -/- What do I know, with certainty? -/- I know with absolute certainty that every thought I have is based on my belief system. My beliefs may change and when they do, my thoughts will be directly related to my belief.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  21. Russell: a guide for the perplexed.John Ongley & Rosalind Carey - 2013 - New York: Continuum. Edited by Rosalind Carey.
    Contents: Introduction / Naïve Logicism / Restricted Logicism / Metaphysics (Early, Middle, Late) / Knowledge (Early, Middle, Late) / Language (Early, Middle, Late) / The Infinite.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Neo-Logicism and Russell's Logicism.Kevin C. Klement - 2012 - Russell: The Journal of Bertrand Russell Studies 32 (2):127-159.
    Abstract:Certain advocates of the so-called “neo-logicist” movement in the philosophy of mathematics identify themselves as “neo-Fregeans” (e.g., Hale and Wright), presenting an updated and revised version of Frege’s form of logicism. Russell’s form of logicism is scarcely discussed in this literature and, when it is, often dismissed as not really logicism at all (in light of its assumption of axioms of infinity, reducibility and so on). In this paper I have three aims: firstly, to identify more clearly the primary meta-ontological (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  23. A Logic for Frege's Theorem.Richard Heck - 2011 - In Frege’s Theorem: An Introduction. Oxford University Press.
    It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, say, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  24. Ramified Frege Arithmetic.Richard G. Heck - 2011 - Journal of Philosophical Logic 40 (6):715-735.
    Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege’s definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  25. Russell on Logicism and Coherence.Conor Mayo-Wilson - 2011 - Russell: The Journal of Bertrand Russell Studies 31 (1):63-79.
    Abstract:According to Quine, Charles Parsons, Mark Steiner, and others, Russell’s logicist project is important because, if successful, it would show that mathematical theorems possess desirable epistemic properties often attributed to logical theorems, such as aprioricity, necessity, and certainty. Unfortunately, Russell never attributed such importance to logicism, and such a thesis contradicts Russell’s explicitly stated views on the relationship between logic and mathematics. This raises the question: what did Russell understand to be the philosophical importance of logicism? Building on recent work (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. Wisdom Mathematics.Nicholas Maxwell - 2010 - Friends of Wisdom Newsletter (6):1-6.
    For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could mathematics be knowledge (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Неразрешимост на първата теорема за непълнотата. Гьоделова и Хилбертова математика.Vasil Penchev - 2010 - Philosophical Alternatives 19 (5):104-119.
    Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. That's (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. Bad company and neo-Fregean philosophy.Matti Eklund - 2009 - Synthese 170 (3):393-414.
    A central element in neo-Fregean philosophy of mathematics is the focus on abstraction principles, and the use of abstraction principles to ground various areas of mathematics. But as is well known, not all abstraction principles are in good standing. Various proposals for singling out the acceptable abstraction principles have been presented. Here I investigate what philosophical underpinnings can be provided for these proposals; specifically, underpinnings that fit the neo-Fregean's general outlook. Among the philosophical ideas I consider are: general views on (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  29. subregular tetrahedra.John Corcoran - 2008 - Bulletin of Symbolic Logic 14 (3):411-2.
    This largely expository lecture deals with aspects of traditional solid geometry suitable for applications in logic courses. Polygons are plane or two-dimensional; the simplest are triangles. Polyhedra [or polyhedrons] are solid or three-dimensional; the simplest are tetrahedra [or triangular pyramids, made of four triangles]. -/- A regular polygon has equal sides and equal angles. A polyhedron having congruent faces and congruent [polyhedral] angles is not called regular, as some might expect; rather they are said to be subregular—a word coined for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. Logic, Logicism, and Intuitions in Mathematics.Besim Karakadılar - 2001 - Dissertation, Middle East Technical University
    In this work I study the main tenets of the logicist philosophy of mathematics. I deal, basically, with two problems: (1) To what extent can one dispense with intuition in mathematics? (2) What is the appropriate logic for the purposes of logicism? By means of my considerations I try to determine the pros and cons of logicism. My standpoint favors the logicist line of thought. -/- .
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  31. Die Grundlagen der Arithmetik, 82-3.George Boolos & Richard G. Heck - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today. Clarendon Press.
    A close look at Frege's proof in "Foundations of Arithmetic" that every number has a successor. The examination reveals a surprising gap in the proof, one that Frege would later fill in "Basic Laws of Arithmetic".
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. Logicism and the ontological commitments of arithmetic.Harold T. Hodes - 1984 - Journal of Philosophy 81 (3):123-149.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   115 citations  
  33. Who needs (to assume) Hume's principle?Andrew Boucher - manuscript
    Neo-logicism uses definitions and Hume's Principle to derive arithmetic in second-order logic. This paper investigates how much arithmetic can be derived using definitions alone, without any additional principle such as Hume's.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  34. LF: a Foundational Higher-Order Logic.Zachary Goodsell & Juhani Yli-Vakkuri - manuscript
    This paper presents a new system of logic, LF, that is intended to be used as the foundation of the formalization of science. That is, deductive validity according to LF is to be used as the criterion for assessing what follows from the verdicts, hypotheses, or conjectures of any science. In work currently in progress, we argue for the unique suitability of LF for the formalization of logic, mathematics, syntax, and semantics. The present document specifies the language and rules of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark