View topic on PhilPapers for more information
Related categories

13 found
Order:
More results on PhilPapers
  1. Self-Graphing Equations.Samuel Alexander - manuscript
    Can you find an xy-equation that, when graphed, writes itself on the plane? This idea became internet-famous when a Wikipedia article on Tupper’s self-referential formula went viral in 2012. Under scrutiny, the question has two flaws: it is meaningless (it depends on fonts) and it is trivial. We fix these flaws by formalizing the problem.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. All Science as Rigorous Science: The Principle of Constructive Mathematizability of Any Theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. A Case Study of Misconceptions Students in the Learning of Mathematics; The Concept Limit Function in High School.Widodo Winarso & Toheri Toheri - 2017 - Jurnal Riset Pendidikan Matematika 4 (1): 120-127.
    This study aims to find out how high the level and trends of student misconceptions experienced by high school students in Indonesia. The subject of research that is a class XI student of Natural Science (IPA) SMA Negeri 1 Anjatan with the subject matter limit function. Forms of research used in this study is a qualitative research, with a strategy that is descriptive qualitative research. The data analysis focused on the results of the students' answers on the test essay subject (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution.Oleg Kupervasser - 2016 - Complexity 21 (5):31-42.
    Filtration combustion is described by Laplacian growth without surface tension. These equations have elegant analytical solutions that replace the complex integro-differential motion equations by simple differential equations of pole motion in a complex plane. The main problem with such a solution is the existence of finite time singularities. To prevent such singularities, nonzero surface tension is usually used. However, nonzero surface tension does not exist in filtration combustion, and this destroys the analytical solutions. However, a more elegant approach exists for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. A New Reading and Comparative Interpretation of Gödel’s Completeness (1930) and Incompleteness (1931) Theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Fourteen Arguments in Favour of a Formalist Philosophy of Real Mathematics.Karlis Podnieks - 2015 - Baltic Journal of Modern Computing 3 (1):1-15.
    The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet been used or (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Hilbert's Objectivity.Lydia Patton - 2014 - Historia Mathematica 41 (2):188-203.
    Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Неразрешимост на първата теорема за непълнотата. Гьоделова и Хилбертова математика.Vasil Penchev - 2010 - Philosophical Alternatives 19 (5):104-119.
    Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. That's (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  9. Waismann's Critique of Wittgenstein.Anthony Birch - 2007 - Analysis and Metaphysics 6 (2007):263-272.
    Friedrich Waismann, a little-known mathematician and onetime student of Wittgenstein's, provides answers to problems that vexed Wittgenstein in his attempt to explicate the foundations of mathematics through an analysis of its practice. Waismann argues in favor of mathematical intuition and the reality of infinity with a Wittgensteinian twist. Waismann's arguments lead toward an approach to the foundation of mathematics that takes into consideration the language and practice of experts.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  10. Axiomatics and Problematics as Two Modes of Formalisation: Deleuze's Epistemology of Mathematics'.Daniel W. Smith - 2006 - In Simon B. Duffy (ed.), Virtual Mathematics: The Logic of Difference. Clinamen. pp. 145--168.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1):157-177.
    After sketching the main lines of Hilbert's program, certain well-known and influential interpretations of the program are critically evaluated, and an alternative interpretation is presented. Finally, some recent developments in logic related to Hilbert's program are reviewed.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Numbers and Functions in Hilbert's Finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  13. Consistency Problem and “Unexpected Hanging Paradox” (An Answering to P=NP Problem).Farzad Didehvar - unknown
    Abstract The Theory of Computation in its existed form is based on Church –Turing Thesis. Throughout this paper, we show that the Turing computation model of this theory leads us to a contradiction. In brief, by applying a well-known paradox (Unexpected hanging paradox) we show a contradiction in the Theory when we consider the Turing model as our Computation model.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark