Switch to: References

Add citations

You must login to add citations.
  1. What is Wrong with Cantor's Diagonal Argument?R. T. Brady & P. A. Rush - 2008 - Logique Et Analyse 51 (1):185-219..
    We first consider the entailment logic MC, based on meaning containment, which contains neither the Law of Excluded Middle (LEM) nor the Disjunctive Syllogism (DS). We then argue that the DS may be assumed at least on a similar basis as the assumption of the LEM, which is then justified over a finite domain or for a recursive property over an infinite domain. In the latter case, use is made of Mathematical Induction. We then show that an instance of the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Crisis in the Foundations of Mathematics.J. Ferreiros - 2008 - In T. Gowers (ed.), Princeton Companion to Mathematics. Princeton University Press.
    A general introduction to the celebrated foundational crisis, discussing how the characteristic traits of modern mathematics (acceptance of the notion of an “arbitrary” function proposed by Dirichlet; wholehearted acceptance of infinite sets and the higher infinite; a preference “to put thoughts in the place of calculations” and to concentrate on “structures” characterized axiomatically; a reliance on “purely existential” methods of proof) provoked extensive polemics and alternative approaches. Going beyond exclusive concentration on the paradoxes, it also discusses the role of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Conceptions of the continuum.Solomon Feferman - unknown
    Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Mathematical intuition vs. mathematical monsters.Solomon Feferman - 2000 - Synthese 125 (3):317-332.
    Geometrical and physical intuition, both untutored andcultivated, is ubiquitous in the research, teaching,and development of mathematics. A number ofmathematical ``monsters'', or pathological objects, havebeen produced which – according to somemathematicians – seriously challenge the reliability ofintuition. We examine several famous geometrical,topological and set-theoretical examples of suchmonsters in order to see to what extent, if at all,intuition is undermined in its everyday roles.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Unifying foundations – to be seen in the phenomenon of language.Lars Löfgren - 2004 - Foundations of Science 9 (2):135-189.
    Scientific knowledge develops in an increasingly fragmentary way.A multitude of scientific disciplines branch out. Curiosity for thisdevelopment leads into quests for a unifying understanding. To a certain extent, foundational studies provide such unification. There is a tendency, however, also of a fragmentary growth of foundational studies, like in a multitude of disciplinaryfoundations. We suggest to look at the foundational problem, not primarily as a search for foundations for one discipline in another, as in some reductionist approach, but as a steady (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Knowledge, the Analytic Method, and Naturalism.Fabio Sterpetti - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 268-293.
    This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors tried to naturalize (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Knowledge and Naturalism.Fabio Sterpetti - 2019 - Philosophia 47 (1):225-247.
    How should one conceive of the method of mathematics, if one takes a naturalist stance? Mathematical knowledge is regarded as the paradigm of certain knowledge, since mathematics is based on the axiomatic method. Natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some naturalists try to naturalize mathematics relying on Darwinism. But several difficulties arise when one tries to naturalize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Intuition between the analytic-continental divide: Hermann Weyl's philosophy of the continuum.Janet Folina - 2008 - Philosophia Mathematica 16 (1):25-55.
    Though logical positivism is part of Kant's complex legacy, positivists rejected both Kant's theory of intuition and his classification of mathematical knowledge as synthetic a priori. This paper considers some lingering defenses of intuition in mathematics during the early part of the twentieth century, as logical positivism was born. In particular, it focuses on the difficult and changing views of Hermann Weyl about the proper role of intuition in mathematics. I argue that it was not intuition in general, but his (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical existence.Penelope Maddy - 2005 - Bulletin of Symbolic Logic 11 (3):351-376.
    Despite some discomfort with this grandly philosophical topic, I do in fact hope to address a venerable pair of philosophical chestnuts: mathematical truth and existence. My plan is to set out three possible stands on these issues, for an exercise in compare and contrast.' A word of warning, though, to philosophical purists (and perhaps of comfort to more mathematical readers): I will explore these philosophical positions with an eye to their interconnections with some concrete issues of set theoretic method.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory.Michael Rathjen - 2005 - Synthese 147 (1):81-120.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On arbitrary sets and ZFC.José Ferreirós - 2011 - Bulletin of Symbolic Logic 17 (3):361-393.
    Set theory deals with the most fundamental existence questions in mathematics—questions which affect other areas of mathematics, from the real numbers to structures of all kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually referred to under the labels of quasi-combinatorialism or combinatorial maximality. After explaining what (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Putnam and contemporary fictionalism.Concha Martínez Vidal - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):165-181.
    Putnam rejects having argued in the terms of the argument known in the literature as “the Quine-Putnam indispensability argument”. He considers that mathematics contribution to physics does not have to be interpreted in platonist terms but in his favorite modal variety. The purpose of this paper is to consider Putnam’s acknowledged argument and philosophical position against contemporary so called in the literature ‘fictionalist’ views about applied mathematics. The conclusion will be that the account of the applicability of mathematics that stems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Is the Continuum Hypothesis a definite mathematical problem?Solomon Feferman - manuscript
    The purpose of this article is to explain why I believe that the Continuum Hypothesis (CH) is not a definite mathematical problem. My reason for that is that the concept of arbitrary set essential to its formulation is vague or underdetermined and there is no way to sharpen it without violating what it is supposed to be about. In addition, there is considerable circumstantial evidence to support the view that CH is not definite.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Does mathematics need new axioms.Solomon Feferman, Harvey M. Friedman, Penelope Maddy & John R. Steel - 1999 - Bulletin of Symbolic Logic 6 (4):401-446.
    Part of the ambiguity lies in the various points of view from which this question might be considered. The crudest di erence lies between the point of view of the working mathematician and that of the logician concerned with the foundations of mathematics. Now some of my fellow mathematical logicians might protest this distinction, since they consider themselves to be just more of those \working mathematicians". Certainly, modern logic has established itself as a very respectable branch of mathematics, and there (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Does reductive proof theory have a viable rationale?Solomon Feferman - 2000 - Erkenntnis 53 (1-2):63-96.
    The goals of reduction andreductionism in the natural sciences are mainly explanatoryin character, while those inmathematics are primarily foundational.In contrast to global reductionistprograms which aim to reduce all ofmathematics to one supposedly ``universal'' system or foundational scheme, reductive proof theory pursues local reductions of one formal system to another which is more justified in some sense. In this direction, two specific rationales have been proposed as aims for reductive proof theory, the constructive consistency-proof rationale and the foundational reduction rationale. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On the mathematical and foundational significance of the uncountable.Dag Normann & Sam Sanders - 2019 - Journal of Mathematical Logic 19 (1):1950001.
    We study the logical and computational properties of basic theorems of uncountable mathematics, including the Cousin and Lindelöf lemma published in 1895 and 1903. Historically, these lemmas were among the first formulations of open-cover compactness and the Lindelöf property, respectively. These notions are of great conceptual importance: the former is commonly viewed as a way of treating uncountable sets like e.g. [Formula: see text] as “almost finite”, while the latter allows one to treat uncountable sets like e.g. [Formula: see text] (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Harvard 1940–1941: Tarski, Carnap and Quine on a finitistic language of mathematics for science.Paolo Mancosu - 2005 - History and Philosophy of Logic 26 (4):327-357.
    Tarski, Carnap and Quine spent the academic year 1940?1941 together at Harvard. In their autobiographies, both Carnap and Quine highlight the importance of the conversations that took place among them during the year. These conversations centred around semantical issues related to the analytic/synthetic distinction and on the project of a finitist/nominalist construction of mathematics and science. Carnap's Nachlaß in Pittsburgh contains a set of detailed notes, amounting to more than 80 typescripted pages, taken by Carnap while these discussions were taking (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (2 other versions)Philosophy of mathematics.Jeremy Avigad - manuscript
    The philosophy of mathematics plays an important role in analytic philosophy, both as a subject of inquiry in its own right, and as an important landmark in the broader philosophical landscape. Mathematical knowledge has long been regarded as a paradigm of human knowledge with truths that are both necessary and certain, so giving an account of mathematical knowledge is an important part of epistemology. Mathematical objects like numbers and sets are archetypical examples of abstracta, since we treat such objects in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Gödel, Kant, and the Path of a Science.Srećko Kovač - 2008 - Inquiry: Journal of Philosophy 51 (2):147-169.
    Gödel's philosophical views were to a significant extent influenced by the study not only of Leibniz or Husserl, but also of Kant. Both Gödel and Kant aimed at the secure foundation of philosophy, the certainty of knowledge and the solvability of all meaningful problems in philosophy. In this paper, parallelisms between the foundational crisis of metaphysics in Kant's view and the foundational crisis of mathematics in Gödel's view are elaborated, especially regarding the problem of finding the “secure path of a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Reconnecting Logic with Discovery.Carlo Cellucci - 2017 - Topoi:1-12.
    According to a view going back to Plato, the aim of philosophy is to acquire knowledge and there is a method to acquire knowledge, namely a method of discovery. In the last century, however, this view has been completely abandoned, the attempt to give a rational account of discovery has been given up, and logic has been disconnected from discovery. This paper outlines a way of reconnecting logic with discovery.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On nominalism.Geoffrey Hellman - 2001 - Philosophy and Phenomenological Research 62 (3):691-705.
    Probably there is no position in Goodman’s corpus that has generated greater perplexity and criticism than Goodman’s “nominalism”. As is abundantly clear from Goodman’s writings, it is not “abstract entities” generally that he questions—indeed, he takes sensory qualia as “basic” in his Carnap-inspired constructional system in Structure—but rather just those abstracta that are so crystal clear in their identity conditions, so fundamental to our thought, so prevalent and seemingly unavoidable in our discourse and theorizing that they have come to form (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hegel’s ‘Bad Infinity’ as a Logical Problem.Vojtěch Kolman - 2016 - Hegel Bulletin 37 (2):258-280.
    The paper analyses the concept of ‘bad infinity’ in connection with Hegel’s critique of infinitesimal calculus and with the belittling of Hegel’s mathematical notions by the representatives of modern logic and the foundations of mathematics. The main line of argument draws on the observation that Hegel’s difference is only derivatively a mathematical one and is primarily of a broadly logico-epistemological nature. Because of this, the concept of bad infinity can be fruitfully utilized, by way of inversion, in an analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Richard Tieszen. After Gödel. Platonism and Rationalism in Mathematics and Logic.Dagfinn Føllesdal - 2016 - Philosophia Mathematica 24 (3):405-421.
    Download  
     
    Export citation  
     
    Bookmark   1 citation