Switch to: References

Add citations

You must login to add citations.
  1. On Kinds of Indiscernibility in Logic and Metaphysics.Adam Caulton & Jeremy Butterfield - 2012 - British Journal for the Philosophy of Science 63 (1):27-84.
    Using the Hilbert-Bernays account as a spring-board, we first define four ways in which two objects can be discerned from one another, using the non-logical vocabulary of the language concerned. Because of our use of the Hilbert-Bernays account, these definitions are in terms of the syntax of the language. But we also relate our definitions to the idea of permutations on the domain of quantification, and their being symmetries. These relations turn out to be subtle---some natural conjectures about them are (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Hilberts Logik. Von der Axiomatik zur Beweistheorie.Volker Peckhaus - 1995 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 3 (1):65-86.
    This paper gives a survey of David Hilbert's (1862–1943) changing attitudes towards logic. The logical theory of the Göttingen mathematician is presented as intimately linked to his studies on the foundation of mathematics. Hilbert developed his logical theory in three stages: (1) in his early axiomatic programme until 1903 Hilbert proposed to use the traditional theory of logical inferences to prove the consistency of his set of axioms for arithmetic. (2) After the publication of the logical and set-theoretical paradoxes by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Identity and discernibility in philosophy and logic.James Ladyman, Øystein Linnebo & Richard Pettigrew - 2012 - Review of Symbolic Logic 5 (1):162-186.
    Questions about the relation between identity and discernibility are important both in philosophy and in model theory. We show how a philosophical question about identity and dis- cernibility can be ‘factorized’ into a philosophical question about the adequacy of a formal language to the description of the world, and a mathematical question about discernibility in this language. We provide formal definitions of various notions of discernibility and offer a complete classification of their logical relations. Some new and surprising facts are (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Begründung einer strengen Implikation.Wilhelm Ackermann - 1956 - Journal of Symbolic Logic 21 (2):113-128.
    Die Gründe, die C. I. Lewis [5], [6] bewogen haben, neben der gewöhnlichen Implikation eine strikte Implikation einzuführen, sind bekannt. In der vorliegenden Arbeit wird aus ähnlichen Gründen eine strenge Implikation eingeführt, die jedoch einen engeren Begriff darstellt als die strikte Implikation. Mit einer Arbeit von Arnold Schmidt [7] hat meine nur geringe Berührungspunkte, da der Verfasser sich mit der strikten Implikation beschäftigt. Für diese wird ein relativ einfaches Axiomensystem angegeben und gezeigt, wie man durch geeignete Definitionen von Notwendigkeit und (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Hilbert and set theory.Burton Dreben & Akihiro Kanamori - 1997 - Synthese 110 (1):77-125.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Completeness before Post: Bernays, Hilbert, and the development of propositional logic.Richard Zach - 1999 - Bulletin of Symbolic Logic 5 (3):331-366.
    Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917-1923. The aim of this paper is to describe these results, focussing (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)On the consistency of Quine's new foundations for mathematical logic.Barkley Rosser - 1939 - Journal of Symbolic Logic 4 (1):15-24.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Russell’s Notion of Scope.Saul A. Kripke - 2005 - Mind 114 (456):1005-1037.
    Despite the renown of ‘On Denoting’, much criticism has ignored or misconstrued Russell's treatment of scope, particularly in intensional, but also in extensional contexts. This has been rectified by more recent commentators, yet it remains largely unnoticed that the examples Russell gives of scope distinctions are questionable or inconsistent with his own philosophy. Nevertheless, Russell is right: scope does matter in intensional contexts. In Principia Mathematica, Russell proves a metatheorem to the effect that the scope of a single occurrence of (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • A survey of proof theory.G. Kreisel - 1968 - Journal of Symbolic Logic 33 (3):321-388.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • (1 other version)Transfinite recursive progressions of axiomatic theories.Solomon Feferman - 1962 - Journal of Symbolic Logic 27 (3):259-316.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • (1 other version)Eliminating definitions and Skolem functions in first-order logic.Jeremy Avigad - manuscript
    From proofs in any classical first-order theory that proves the existence of at least two elements, one can eliminate definitions in polynomial time. From proofs in any classical first-order theory strong enough to code finite functions, including sequential theories, one can also eliminate Skolem functions in polynomial time.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What does Gödel's second theorem say?Michael Detlefsen - 2001 - Philosophia Mathematica 9 (1):37-71.
    We consider a seemingly popular justification (we call it the Re-flexivity Defense) for the third derivability condition of the Hilbert-Bernays-Löb generalization of Godel's Second Incompleteness Theorem (G2). We argue that (i) in certain settings (rouglily, those where the representing theory of an arithmetization is allowed to be a proper subtheory of the represented theory), use of the Reflexivity Defense to justify the tliird condition induces a fourth condition, and that (ii) the justification of this fourth condition faces serious obstacles. We (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Artificial and Natural Genetic Information Processing.Guenther Witzany - 2017 - In Mark Burgin & Wolfgang Hoflkirchner (eds.), Information Studies and the Quest for Transdisciplinarity. New York, USA: World Scientific. pp. 523-547.
    Conventional methods of genetic engineering and more recent genome editing techniques focus on identifying genetic target sequences for manipulation. This is a result of historical concept of the gene which was also the main assumption of the ENCODE project designed to identify all functional elements in the human genome sequence. However, the theoretical core concept changed dramatically. The old concept of genetic sequences which can be assembled and manipulated like molecular bricks has problems in explaining the natural genome-editing competences of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert, Duality, and the Geometrical Roots of Model Theory.Günther Eder & Georg Schiemer - 2018 - Review of Symbolic Logic 11 (1):48-86.
    The article investigates one of the key contributions to modern structural mathematics, namely Hilbert’sFoundations of Geometry(1899) and its mathematical roots in nineteenth-century projective geometry. A central innovation of Hilbert’s book was to provide semantically minded independence proofs for various fragments of Euclidean geometry, thereby contributing to the development of the model-theoretic point of view in logical theory. Though it is generally acknowledged that the development of model theory is intimately bound up with innovations in 19th century geometry (in particular, the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Structuralism and the identity of indiscernibles.Jeffrey Ketland - 2006 - Analysis 66 (4):303-315.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Logical Indefinites.Jack Woods - 2014 - Logique Et Analyse -- Special Issue Edited by Julien Murzi and Massimiliano Carrara 227: 277-307.
    I argue that we can and should extend Tarski's model-theoretic criterion of logicality to cover indefinite expressions like Hilbert's ɛ operator, Russell's indefinite description operator η, and abstraction operators like 'the number of'. I draw on this extension to discuss the logical status of both abstraction operators and abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Criteria of Identity: Strong and Wrong.Hannes Leitgeb - 2013 - British Journal for the Philosophy of Science 64 (1):61-68.
    We show that finitely axiomatized first-order theories that involve some criterion of identity for entities of a category C can be reformulated as conjunctions of a non-triviality statement and a criterion of identity for entities of category C again. From this, we draw two conclusions: First, criteria of identity can be very strong deductively. Second, although the criteria of identity that are constructed in the proof of the theorem are not good ones intuitively, it is difficult to say what exactly (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Discerning Fermions.Simon Saunders & F. A. Muller - 2008 - British Journal for the Philosophy of Science 59 (3):499 - 548.
    We demonstrate that the quantum-mechanical description of composite physical systems of an arbitrary number of similar fermions in all their admissible states, mixed or pure, for all finite-dimensional Hilbert spaces, is not in conflict with Leibniz's Principle of the Identity of Indiscernibles (PII). We discern the fermions by means of physically meaningful, permutation-invariant categorical relations, i.e. relations independent of the quantum-mechanical probabilities. If, indeed, probabilistic relations are permitted as well, we argue that similar bosons can also be discerned in all (...)
    Download  
     
    Export citation  
     
    Bookmark   124 citations  
  • A Century Later.Stephen Neale - 2005 - Mind 114 (456):809-871.
    This is the introductory essay to a collection commemorating the 100th anniversary of the publication in Mind of Bertrand Russell’s paper ‘On Denoting’.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Choice principles and constructive logics.David Dedivi - 2004 - Philosophia Mathematica 12 (3):222-243.
    to constructive systems is significant for contemporary metaphysics. However, many are surprised by these results, having learned that the Axiom of Choice (AC) is constructively valid. Indeed, even among specialists there were, until recently, reasons for puzzlement-rival versions of Intuitionistic Type Theory, one where (AC) is valid, another where it implies classical logic. This paper accessibly explains the situation, puts the issues in a broader setting by considering other choice principles, and draws philosophical morals for the understanding of quantification, choice (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Takeuti's proof theory in the context of the Kyoto School.Andrew Arana - 2019 - Jahrbuch Für Philosophie Das Tetsugaku-Ronso 46:1-17.
    Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, he used (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism, constructivity and Hilbert's program.Solomon Feferman - 2008 - Dialectica 62 (2):179-203.
    This is a survey of Gödel's perennial preoccupations with the limits of finitism, its relations to constructivity, and the significance of his incompleteness theorems for Hilbert's program, using his published and unpublished articles and lectures as well as the correspondence between Bernays and Gödel on these matters. There is also an important subtext, namely the shadow of Hilbert that loomed over Gödel from the beginning to the end.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Gödel's Second Theorem for Elementary arithmetic.Lawrence J. Pozsgay - 1968 - Mathematical Logic Quarterly 14 (1-5):67-80.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the interpretation of non-finitist proofs—Part I.G. Kreisel - 1951 - Journal of Symbolic Logic 16 (4):241-267.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Gödel's Third Incompleteness Theorem.Timothy McCarthy - 2016 - Dialectica 70 (1):87-112.
    In a note appended to the translation of “On consistency and completeness” (), Gödel reexamined the problem of the unprovability of consistency. Gödel here focuses on an alternative means of expressing the consistency of a formal system, in terms of what would now be called a ‘reflection principle’, roughly, the assertion that a formula of a certain class is provable in the system only if it is true. Gödel suggests that it is this alternative means of expressing consistency that we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Life is physics and chemistry and communication.Gunther Witzany - 2015 - In Guenther Witzany (ed.), DNA Habitats and Their RNA Inhabitants. pp. 1-9.
    Manfred Eigen extended Erwin Schroedinger’s concept of “life is physics and chemistry” through the introduction of information theory and cybernetic systems theory into “life is physics and chemistry and information.” Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language.However, the basics of scientific knowledge changed dramatically within the second half (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Unfolding finitist arithmetic.Solomon Feferman & Thomas Strahm - 2010 - Review of Symbolic Logic 3 (4):665-689.
    The concept of the (full) unfolding of a schematic system is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted ? The program to determine for various systems of foundational significance was previously carried out for a system of nonfinitist arithmetic, ; it was shown that is proof-theoretically equivalent to predicative analysis. In the present paper we work out the unfolding notions for a basic schematic system (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Definition Inclosed: A Reply to Zhong.Graham Priest - 2012 - Australasian Journal of Philosophy 90 (4):789 - 795.
    In ?Definability and the Structure of Logical Paradoxes? (Australasian Journal of Philosophy, this issue) Haixia Zhong takes issue with an account of the paradoxes of self-reference to be found in Beyond the Limits of Thought [Priest 1995. The point of this note is to explain why the critique does not succeed. The criterion for distinguishing between the set-theoretic and the semantic paradoxes offered does not get the division right; the semantic paradoxes are not given a uniform solution; no reason is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Les mathématiques sont-elles une syntaxe du langage?Kurt Gödel - 1995 - Dialogue 34 (1):3-.
    Nous publions sous ce titre la traduction française de l'essai philosophique de Kurt Gödel intitulé: «Is Mathematics Syntax of Language?» Inédit jusqu'à présent, l'original paraîtra dans le 3e volume des Collected Works de Gödel, dont la publication est imminente. Nous savons par Hao Wang que, le 15 mai 1953, Paul Arthur Schilpp avait invité Gödel à apporter sa contribution au volume consacré à Carnap dans The Library of Living Philosophers. Le manuscrit de Gödel «Carnap and the Ontology of Mathematics», devait (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Symmetries and Paraparticles as a Motivation for Structuralism.Adam Caulton & Jeremy Butterfield - 2012 - British Journal for the Philosophy of Science 63 (2):233-285.
    This article develops an analogy proposed by Stachel between general relativity (GR) and quantum mechanics (QM) as regards permutation invariance. Our main idea is to overcome Pooley's criticism of the analogy by appeal to paraparticles. In GR, the equations are (the solution space is) invariant under diffeomorphisms permuting spacetime points. Similarly, in QM the equations are invariant under particle permutations. Stachel argued that this feature—a theory's ‘not caring which point, or particle, is which’—supported a structuralist ontology. Pooley criticizes this analogy: (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The practice of finitism: Epsilon calculus and consistency proofs in Hilbert's program.Richard Zach - 2003 - Synthese 137 (1-2):211 - 259.
    After a brief flirtation with logicism around 1917, David Hilbertproposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays andWilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for everstronger and more comprehensive areas of mathematics, and finitisticproofs of consistency of these systems. Early advances in these areaswere made by Hilbert (and Bernays) in a series of lecture courses atthe (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Communication as the Main Characteristic of Life.Guenther Witzany - 2019 - In M. Kolb Vera (ed.), Handbook of Astrobiology. CrC Press. pp. 91-105.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Definition in mathematics.Carlo Cellucci - 2018 - European Journal for Philosophy of Science 8 (3):605-629.
    In the past century the received view of definition in mathematics has been the stipulative conception, according to which a definition merely stipulates the meaning of a term in other terms which are supposed to be already well known. The stipulative conception has been so absolutely dominant and accepted as unproblematic that the nature of definition has not been much discussed, yet it is inadequate. This paper examines its shortcomings and proposes an alternative, the heuristic conception.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Russell's Revenge: A Problem for Bivalent Fregean Theories of Descriptions.Jan Heylen - 2017 - Pacific Philosophical Quarterly 98 (4):636-652.
    Fregean theories of descriptions as terms have to deal with improper descriptions. To save bivalence various proposals have been made that involve assigning referents to improper descriptions. While bivalence is indeed saved, there is a price to be paid. Instantiations of the same general scheme, viz. the one and only individual that is F and G is G, are not only allowed but even required to have different truth values.
    Download  
     
    Export citation  
     
    Bookmark  
  • Pragmatic turn in biology: From biological molecules to.Guenther Witzany - 2014 - World Journal of Biological Chemistry 5 (3):279-285.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege’s ‘On the Foundations of Geometry’ and Axiomatic Metatheory.Günther Eder - 2016 - Mind 125 (497):5-40.
    In a series of articles dating from 1903 to 1906, Frege criticizes Hilbert’s methodology of proving the independence and consistency of various fragments of Euclidean geometry in his Foundations of Geometry. In the final part of the last article, Frege makes his own proposal as to how the independence of genuine axioms should be proved. Frege contends that independence proofs require the development of a ‘new science’ with its own basic truths. This paper aims to provide a reconstruction of this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Wilfried Sieg. Hilbert's Programs and Beyond. Oxford: Oxford University Press, 2013. ISBN 978-0-19-537222-9 ; 978-0-19-970715-7 . Pp. xii + 439†. [REVIEW]Oran Magal - 2014 - Philosophia Mathematica 22 (3):417-423.
    Download  
     
    Export citation  
     
    Bookmark  
  • Dynamic Semantics with Choice Functions.J. Peregrin & K. von Heusinger - unknown
    Over the last two decades, semantic theory has been marked by a continuing shift from a static view of meaning to a dynamic one. The increasing interest in extending semantic analysis from isolated sentences to larger units of discourse has fostered the intensive study of anaphora and coreference, and this has engendered a shift from viewing meaning as truth conditions to viewing it as the potential to change the "informational context".
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Hilbert's program sixty years later.Wilfried Sieg - 1988 - Journal of Symbolic Logic 53 (2):338-348.
    On June 4, 1925, Hilbert delivered an address to the Westphalian Mathematical Society in Miinster; that was, as a quick calculation will convince you, almost exactly sixty years ago. The address was published in 1926 under the title Über dasUnendlicheand is perhaps Hilbert's most comprehensive presentation of his ideas concerning the finitist justification of classical mathematics and the role his proof theory was to play in it. But what has become of the ambitious program for securing all of mathematics, once (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Hilbert's program relativized: Proof-theoretical and foundational reductions.Solomon Feferman - 1988 - Journal of Symbolic Logic 53 (2):364-384.
    Download  
     
    Export citation  
     
    Bookmark   64 citations