Switch to: References

Citations of:

Philosophy of mathematics: structure and ontology

New York: Oxford University Press (1997)

Add citations

You must login to add citations.
  1. Let a thousand flowers Bloom: A tour of logical pluralism.Roy T. Cook - 2010 - Philosophy Compass 5 (6):492-504.
    Logical pluralism is the view that there is more than one correct logic. In this article, I explore what logical pluralism is, and what it entails, by: (i) distinguishing clearly between relativism about a particular domain and pluralism about that domain; (ii) distinguishing between a number of forms logical pluralism might take; (iii) attempting to distinguish between those versions of pluralism that are clearly true and those that are might be controversial; and (iv) surveying three prominent attempts to argue for (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • The interdependence of structure, objects and dependence.Steven French - 2010 - Synthese 175 (S1):89 - 109.
    According to 'Ontic Structural Realism' (OSR), physical objects—qua metaphysical entities—should be reconceptualised, or, more strongly, eliminated in favour of the relevant structures. In this paper I shall attempt to articulate the relationship between these putative objects and structures in terms of certain accounts of metaphysical dependence currently available. This will allow me to articulate the differences between the different forms of OSR and to argue in favour of the 'eliminativist' version. A useful context is provided by Floridi's account of the (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • How to be a structuralist all the way down.Elaine Landry - 2011 - Synthese 179 (3):435 - 454.
    This paper considers the nature and role of axioms from the point of view of the current debates about the status of category theory and, in particular, in relation to the "algebraic" approach to mathematical structuralism. My aim is to show that category theory has as much to say about an algebraic consideration of meta-mathematical analyses of logical structure as it does about mathematical analyses of mathematical structure, without either requiring an assertory mathematical or meta-mathematical background theory as a "foundation", (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The innateness hypothesis and mathematical concepts.Helen3 De Cruz & Johan De Smedt - 2010 - Topoi 29 (1):3-13.
    In historical claims for nativism, mathematics is a paradigmatic example of innate knowledge. Claims by contemporary developmental psychologists of elementary mathematical skills in human infants are a legacy of this. However, the connection between these skills and more formal mathematical concepts and methods remains unclear. This paper assesses the current debates surrounding nativism and mathematical knowledge by teasing them apart into two distinct claims. First, in what way does the experimental evidence from infants, nonhuman animals and neuropsychology support the nativist (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Epistemological objections to platonism.David Liggins - 2010 - Philosophy Compass 5 (1):67-77.
    Many philosophers posit abstract entities – where something is abstract if it is acausal and lacks spatio-temporal location. Theories, types, characteristics, meanings, values and responsibilities are all good candidates for abstractness. Such things raise an epistemological puzzle: if they are abstract, then how can we have any epistemic access to how they are? If they are invisible, intangible and never make anything happen, then how can we ever discover anything about them? In this article, I critically examine epistemological objections to (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Structuralism and metaphysics.Charles Parsons - 2004 - Philosophical Quarterly 54 (214):56--77.
    I consider different versions of a structuralist view of mathematical objects, according to which characteristic mathematical objects have no more of a 'nature' than is given by the basic relations of a structure in which they reside. My own version of such a view is non-eliminative in the sense that it does not lead to a programme for eliminating reference to mathematical objects. I reply to criticisms of non-eliminative structuralism recently advanced by Keränen and Hellman. In replying to the former, (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Don't throw the baby out with the math water: Why discounting the developmental foundations of early numeracy is premature and unnecessary.Kevin Muldoon, Charlie Lewis & Norman Freeman - 2008 - Behavioral and Brain Sciences 31 (6):663-664.
    We see no grounds for insisting that, because the concept natural number is abstract, its foundations must be innate. It is possible to specify domain general learning processes that feed into more abstract concepts of numerical infinity. By neglecting the messiness of children's slow acquisition of arithmetical concepts, Rips et al. present an idealized, unnecessarily insular, view of number development.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The metaphysics of groups.Nikk Effingham - 2010 - Philosophical Studies 149 (2):251-267.
    If you are a realist about groups there are three main theories of what to identify groups with. I offer reasons for thinking that two of those theories fail to meet important desiderata. The third option is to identify groups with sets, which meets all of the desiderata if only we take care over which sets they are identified with. I then canvass some possible objections to that third theory, and explain how to avoid them.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • The Price of Mathematical Scepticism.Paul Blain Levy - 2022 - Philosophia Mathematica 30 (3):283-305.
    This paper argues that, insofar as we doubt the bivalence of the Continuum Hypothesis or the truth of the Axiom of Choice, we should also doubt the consistency of third-order arithmetic, both the classical and intuitionistic versions. -/- Underlying this argument is the following philosophical view. Mathematical belief springs from certain intuitions, each of which can be either accepted or doubted in its entirety, but not half-accepted. Therefore, our beliefs about reality, bivalence, choice and consistency should all be aligned.
    Download  
     
    Export citation  
     
    Bookmark  
  • The interactivist model.Mark H. Bickhard - 2009 - Synthese 166 (3):547 - 591.
    A shift from a metaphysical framework of substance to one of process enables an integrated account of the emergence of normative phenomena. I show how substance assumptions block genuine ontological emergence, especially the emergence of normativity, and how a process framework permits a thermodynamic-based account of normative emergence. The focus is on two foundational forms of normativity, that of normative function and of representation as emergent in a particular kind of function. This process model of representation, called interactivism, compels changes (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • The Conditions of Realism.Christian Miller - 2007 - Journal of Philosophical Research 32:95-132.
    The concern of this paper is not with the truth of any particular realist or anti-realist view, but rather with determining what it is to be a realist or anti-realist in the first place. While much skepticism has been voiced in recent years about the viability of such a project, my goal is to articulate interesting and informative conditions whereby any view in any domain of experience can count as either a realist or an anti-realist position.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can structuralism solve the ‘access’ problem?Fraser MacBride - 2004 - Analysis 64 (4):309–317.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)The miracle of applied mathematics.Mark Colyvan - 2001 - Synthese 127 (3):265-277.
    Mathematics has a great variety ofapplications in the physical sciences.This simple, undeniable fact, however,gives rise to an interestingphilosophical problem:why should physical scientistsfind that they are unable to evenstate their theories without theresources of abstract mathematicaltheories? Moreover, theformulation of physical theories inthe language of mathematicsoften leads to new physical predictionswhich were quite unexpected onpurely physical grounds. It is thought by somethat the puzzles the applications of mathematicspresent are artefacts of out-dated philosophical theories about thenature of mathematics. In this paper I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Realistic structuralism's identity crisis: A hybrid solution.Tim Button - 2006 - Analysis 66 (3):216–222.
    Keränen (2001) raises an argument against realistic (ante rem) structuralism: where a mathematical structure has a non-trivial automorphism, distinct indiscernible positions within the structure cannot be shown to be non-identical using only the properties and relations of that structure. Ladyman (2005) responds by allowing our identity criterion to include 'irreflexive two-place relations'. I note that this does not solve the problem for structures with indistinguishable positions, i.e. positions that have all the same properties as each other and exactly the same (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Bad company generalized.Gabriel Uzquiano - 2009 - Synthese 170 (3):331 - 347.
    The paper is concerned with the bad company problem as an instance of a more general difficulty in the philosophy of mathematics. The paper focuses on the prospects of stability as a necessary condition on acceptability. However, the conclusion of the paper is largely negative. As a solution to the bad company problem, stability would undermine the prospects of a neo-Fregean foundation for set theory, and, as a solution to the more general difficulty, it would impose an unreasonable constraint on (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Structure, the Whole Structure, and Nothing but the Structure?Stathis Psillos - 2006 - Philosophy of Science 73 (5):560-570.
    This paper is structured around the three elements of the title. Section 2 claims that (a) structures need objects and (b) scientific structuralism should focus on in re structures. Therefore, pure structuralism is undermined. Section 3 discusses whether the world has `excess structure' over the structure of appearances. The main point is that the claim that only structure can be known is false. Finally, Section 4 argues directly against ontic structural realism that it lacks the resources to accommodate causation within (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Spacetime, Ontology, and Structural Realism.Edward Slowik - 2005 - International Studies in the Philosophy of Science 19 (2):147 – 166.
    This essay explores the possibility of constructing a structural realist interpretation of spacetime theories that can resolve the ontological debate between substantivalists and relationists. Drawing on various structuralist approaches in the philosophy of mathematics, as well as on the theoretical complexities of general relativity, our investigation will reveal that a structuralist approach can be beneficial to the spacetime theorist as a means of deflating some of the ontological disputes regarding similarly structured spacetimes.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Is religious education possible? A philosophical investigation - by Michael hand.Jim Mackenzie - 2007 - Educational Philosophy and Theory 39 (7):787–794.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quine, Putnam, and the ‘Quine–Putnam’ Indispensability Argument.David Liggins - 2008 - Erkenntnis 68 (1):113 - 127.
    Much recent discussion in the philosophy of mathematics has concerned the indispensability argument—an argument which aims to establish the existence of abstract mathematical objects through appealing to the role that mathematics plays in empirical science. The indispensability argument is standardly attributed to W. V. Quine and Hilary Putnam. In this paper, I show that this attribution is mistaken. Quine's argument for the existence of abstract mathematical objects differs from the argument which many philosophers of mathematics ascribe to him. Contrary to (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Initial Conditions and the 'Open Systems' Argument against Laws of Nature.Clint Ballinger - 2008 - Metaphysica 9 (1):17-31.
    This article attacks “open systems” arguments that because constant conjunctions are not generally observed in the real world of open systems we should be highly skeptical that universal laws exist. This work differs from other critiques of open system arguments against laws of nature by not focusing on laws themselves, but rather on the inference from open systems. We argue that open system arguments fail for two related reasons; 1) because they cannot account for the “systems” central to their argument (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Abstraction in computer science.Timothy Colburn & Gary Shute - 2007 - Minds and Machines 17 (2):169-184.
    We characterize abstraction in computer science by first comparing the fundamental nature of computer science with that of its cousin mathematics. We consider their primary products, use of formalism, and abstraction objectives, and find that the two disciplines are sharply distinguished. Mathematics, being primarily concerned with developing inference structures, has information neglect as its abstraction objective. Computer science, being primarily concerned with developing interaction patterns, has information hiding as its abstraction objective. We show that abstraction through information hiding is a (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Structuralism as a philosophy of mathematical practice.Jessica Carter - 2008 - Synthese 163 (2):119 - 131.
    This paper compares the statement ‘Mathematics is the study of structure’ with the actual practice of mathematics. We present two examples from contemporary mathematical practice where the notion of structure plays different roles. In the first case a structure is defined over a certain set. It is argued firstly that this set may not be regarded as a structure and secondly that what is important to mathematical practice is the relation that exists between the structure and the set. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Critique of Resnik’s Mathematical Realism.Timothy John Nulty - 2005 - Erkenntnis 62 (3):379 - 393.
    This paper attempts to motivate skepticism about the reality of mathematical objects. The aim of the paper is not to provide a general critique of mathematical realism, but to demonstrate the insufficiency of the arguments advanced by Michael Resnik. I argue that Resnik’s use of the concept of immanent truth is inconsistent with the treatment of mathematical objects as ontologically and epistemically continuous with the objects posited by the natural sciences. In addition, Resnik’s structuralist program, and his denial of relational (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Critique of Resnik’s Mathematical Realism.Timothy John Nulty - 2005 - Erkenntnis 62 (3):379-393.
    This paper attempts to motivate skepticism about the reality of mathematical objects. The aim of the paper is not to provide a general critique of mathematical realism, but to demonstrate the insufficiency of the arguments advanced by Michael Resnik. I argue that Resnik's use of the concept of immanent truth is inconsistent with the treatment of mathematical objects as ontologically and epistemically continuous with the objects posited by the natural sciences. In addition, Resnik's structuralist program, and his denial of relational (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ‘As if’ Reasoning in Vaihinger and Pasch.Stephen Pollard - 2010 - Erkenntnis 73 (1):83 - 95.
    Hans Vaihinger tried to explain how mathematical theories can be useful without being true or even coherent, arguing that mathematicians employ a special kind of fictional or "as if" reasoning that reliably extracts truths from absurdities. Moritz Pasch insisted that Vaihinger was wrong about the incoherence of core mathematical theories, but right about the utility of fictional discourse in mathematics. This essay explores this area of agreement between Pasch and Vaihinger. Pasch's position raises questions about structuralist interpretations of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • ‘As if’ Reasoning in Vaihinger and Pasch.Stephen Pollard - 2010 - Erkenntnis 73 (1):83-95.
    Hans Vaihinger tried to explain how mathematical theories can be useful without being true or even coherent, arguing that mathematicians employ a special kind of fictional or “as if” reasoning that reliably extracts truths from absurdities. Moritz Pasch insisted that Vaihinger was wrong about the incoherence of core mathematical theories, but right about the utility of fictional discourse in mathematics. This essay explores this area of agreement between Pasch and Vaihinger. Pasch’s position raises questions about structuralist interpretations of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • (3 other versions)The intelligibility of the universe.Michael Redhead - 2001 - In Anthony O'Hear (ed.), Philosophy at the New Millennium. Cambridge University Press. pp. 73-90.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Languages and Other Abstract Structures.Ryan Mark Nefdt - 2018 - In Martin Neef & Christina Behme (eds.), Essays on Linguistic Realism. Philadelphia: John Benjamins Publishing Company. pp. 139-184.
    My aim in this chapter is to extend the Realist account of the foundations of linguistics offered by Postal, Katz and others. I first argue against the idea that naive Platonism can capture the necessary requirements on what I call a ‘mixed realist’ view of linguistics, which takes aspects of Platonism, Nominalism and Mentalism into consideration. I then advocate three desiderata for an appropriate ‘mixed realist’ account of linguistic ontology and foundations, namely (1) linguistic creativity and infinity, (2) linguistics as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Observation and Intuition.Justin Clarke-Doane & Avner Ash - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    The motivating question of this paper is: ‘How are our beliefs in the theorems of mathematics justified?’ This is distinguished from the question ‘How are our mathematical beliefs reliably true?’ We examine an influential answer, outlined by Russell, championed by Gödel, and developed by those searching for new axioms to settle undecidables, that our mathematical beliefs are justified by ‘intuitions’, as our scientific beliefs are justified by observations. On this view, axioms are analogous to laws of nature. They are postulated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Building blocks for a cognitive science-led epistemology of arithmetic.Stefan Buijsman - 2021 - Philosophical Studies 179 (5):1-18.
    In recent years philosophers have used results from cognitive science to formulate epistemologies of arithmetic :5–18, 2001). Such epistemologies have, however, been criticised, e.g. by Azzouni, for interpreting the capacities found by cognitive science in an overly numerical way. I offer an alternative framework for the way these psychological processes can be combined, forming the basis for an epistemology for arithmetic. The resulting framework avoids assigning numerical content to the Approximate Number System and Object Tracking System, two systems that have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The iterative conception of function and the iterative conception of set.Tim Button - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    Hilary Putnam once suggested that “the actual existence of sets as ‘intangible objects’ suffers… from a generalization of a problem first pointed out by Paul Benacerraf… are sets a kind of function or are functions a sort of set?” Sadly, he did not elaborate; my aim, here, is to do so on his behalf. There are well-known methods for treating sets as functions and functions as sets. But these do not raise any obvious philosophical or foundational puzzles. For that, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Download  
     
    Export citation  
     
    Bookmark  
  • The structuralist approach to underdetermination.Chanwoo Lee - 2022 - Synthese 200 (2):1-25.
    This paper provides an exposition of the structuralist approach to underdetermination, which aims to resolve the underdetermination of theories by identifying their common theoretical structure. Applications of the structuralist approach can be found in many areas of philosophy. I present a schema of the structuralist approach, which conceptually unifies such applications in different subject matters. It is argued that two classic arguments in the literature, Paul Benacerraf’s argument on natural numbers and W. V. O. Quine’s argument for the indeterminacy of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relationism and the Problem of Order.Michele Paolini Paoletti - 2023 - Acta Analytica 38 (2):245-273.
    Relationism holds that objects entirely depend on relations or that they must be eliminated in favour of the latter. In this article, I raise a problem for relationism. I argue that relationism cannot account for the order in which non-symmetrical relations apply to their relata. In Section 1, I introduce some concepts in the ontology of relations and define relationism. In Section 2, I present the Problem of Order for non-symmetrical relations, after distinguishing it from the Problem of Differential Application. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The mathematical stance.Alan Baker - 2022 - Synthese 200 (1):1-18.
    Defenders of the enhanced indispensability argument argue that the most effective route to platonism is via the explanatory role of mathematical posits in science. Various compelling cases of mathematical explanation in science have been proposed, but a satisfactory general philosophical account of such explanations is lacking. In this paper, I lay out the framework for such an account based on the notion of “the mathematical stance.” This is developed by analogy with Dennett’s well-known concept of “the intentional stance.” Roughly, adopting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reasons explanations (of actions) as structural explanations.Megan Fritts - 2021 - Synthese 199 (5-6):12683-12704.
    Non-causal accounts of action explanation have long been criticized for lacking a positive thesis, relying primarily on negative arguments to undercut the standard Causal Theory of Action The Stanford Encyclopedia of Philosophy, 2016). Additionally, it is commonly thought that non-causal accounts fail to provide an answer to Donald Davidson’s challenge for theories of reasons explanations of actions. According to Davidson’s challenge, a plausible non-causal account of reasons explanations must provide a way of connecting an agent’s reasons, not only to what (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Platonic Relations and Mathematical Explanations.Robert Knowles - 2021 - Philosophical Quarterly 71 (3):623-644.
    Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why Can’t There Be Numbers?David Builes - forthcoming - The Philosophical Quarterly.
    Platonists affirm the existence of abstract mathematical objects, and Nominalists deny the existence of abstract mathematical objects. While there are standard arguments in favor of Nominalism, these arguments fail to account for the necessity of Nominalism. Furthermore, these arguments do nothing to explain why Nominalism is true. They only point to certain theoretical vices that might befall the Platonist. The goal of this paper is to formulate and defend a simple, valid argument for the necessity of Nominalism that seeks to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • XV—On Consistency and Existence in Mathematics.Walter Dean - 2021 - Proceedings of the Aristotelian Society 120 (3):349-393.
    This paper engages the question ‘Does the consistency of a set of axioms entail the existence of a model in which they are satisfied?’ within the frame of the Frege-Hilbert controversy. The question is related historically to the formulation, proof and reception of Gödel’s Completeness Theorem. Tools from mathematical logic are then used to argue that there are precise senses in which Frege was correct to maintain that demonstrating consistency is as difficult as it can be, but also in which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Structural Realism and Generative Grammar.Ryan M. Nefdt - unknown
    Linguistics as a science has rapidly changed during the course of a relatively short period. The mathematical foundations of the science, however, present a different story below the surface. In this paper, I argue that due to the former, the seismic shifts in theory over the past 80 years opens linguistics up to the problem of pessimistic meta-induction or radical theory change. I further argue that, due to the latter, one current solution to this problem in the philosophy of science, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does Dispositionalism Entail Panpsychism?Hedda Hassel Mørch - 2018 - Topoi 39 (5):1073-1088.
    According to recent arguments for panpsychism, all physical properties are dispositional, dispositions require categorical grounds, and the only categorical properties we know are phenomenal properties. Therefore, phenomenal properties can be posited as the categorical grounds of all physical properties—in order to solve the mind–body problem and/or in order avoid noumenalism about the grounds of the physical world. One challenge to this case comes from dispositionalism, which agrees that all physical properties are dispositional, but denies that dispositions require categorical grounds. In (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part B†.Hannes Leitgeb - 2021 - Philosophia Mathematica 29 (1):64-87.
    This is Part B of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A motivated an understanding of unlabeled graphs as structures sui generis and developed a corresponding axiomatic theory of unlabeled graphs. Part B turns to the philosophical interpretation and assessment of the theory: it points out how the theory avoids well-known problems concerning identity, objecthood, and reference that have been attributed to non-eliminative structuralism. The part (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Elaine Landry,* ed. Categories for the Working Philosopher. [REVIEW]Neil Barton - 2020 - Philosophia Mathematica 28 (1):95-108.
    LandryElaine, * ed. Categories for the Working Philosopher. Oxford University Press, 2017. ISBN 978-0-19-874899-1 ; 978-0-19-106582-8. Pp. xiv + 471.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantity and number.James Franklin - 2013 - In Daniel Novotny & Lukáš Novák (eds.), Neo-Aristotelian Perspectives in Metaphysics. London: Routledge. pp. 221-244.
    Quantity is the first category that Aristotle lists after substance. It has extraordinary epistemological clarity: "2+2=4" is the model of a self-evident and universally known truth. Continuous quantities such as the ratio of circumference to diameter of a circle are as clearly known as discrete ones. The theory that mathematics was "the science of quantity" was once the leading philosophy of mathematics. The article looks at puzzles in the classification and epistemology of quantity.
    Download  
     
    Export citation  
     
    Bookmark   2 citations