Switch to: Citations

Add references

You must login to add references.
  1. The directionality of distinctively mathematical explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is remediable in each (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (3 other versions)Tractatus logico-philosophicus.Ludwig Wittgenstein - 1922 - Filosoficky Casopis 52:336-341.
    Download  
     
    Export citation  
     
    Bookmark   1920 citations  
  • The Applicability of Mathematics as a Philosophical Problem.Mark Steiner - 2000 - Mind 109 (434):390-394.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Mathematics—Application and Applicability.Mark Steiner - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press.
    This chapter discusses various senses in which mathematics is applied to the material world. It distinguishes between canonical and noncanonical applications of mathematics, the former being those for which the mathematics was developed to deal with in the first place. It also distinguishes between empirical and nonempirical applications, thus yielding four different kinds of applications. Examples of each are provided, and philosophical problems connected with each are treated.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • On the ‘Indispensable Explanatory Role’ of Mathematics.Juha Saatsi - 2016 - Mind 125 (500):1045-1070.
    The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, others ‘thin’ (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Optimisation and mathematical explanation: doing the Lévy Walk.Sam Baron - 2014 - Synthese 191 (3).
    The indispensability argument seeks to establish the existence of mathematical objects. The success of the indispensability argument turns on finding cases of genuine extra- mathematical explanation. In this paper, I identify a new case of extra- mathematical explanation, involving the search patterns of fully-aquatic marine predators. I go on to use this case to predict the prevalence of extra- mathematical explanation in science.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • What Makes a Scientific Explanation Distinctively Mathematical?Marc Lange - 2013 - British Journal for the Philosophy of Science 64 (3):485-511.
    Certain scientific explanations of physical facts have recently been characterized as distinctively mathematical –that is, as mathematical in a different way from ordinary explanations that employ mathematics. This article identifies what it is that makes some scientific explanations distinctively mathematical and how such explanations work. These explanations are non-causal, but this does not mean that they fail to cite the explanandum’s causes, that they abstract away from detailed causal histories, or that they cite no natural laws. Rather, in these explanations, (...)
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • The explanatory power of phase spaces.Aidan Lyon & Mark Colyvan - 2008 - Philosophia Mathematica 16 (2):227-243.
    David Malament argued that Hartry Field's nominalisation program is unlikely to be able to deal with non-space-time theories such as phase-space theories. We give a specific example of such a phase-space theory and argue that this presentation of the theory delivers explanations that are not available in the classical presentation of the theory. This suggests that even if phase-space theories can be nominalised, the resulting theory will not have the explanatory power of the original. Phase-space theories thus raise problems for (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • Are there genuine mathematical explanations of physical phenomena?Alan Baker - 2005 - Mind 114 (454):223-238.
    Many explanations in science make use of mathematics. But are there cases where the mathematical component of a scientific explanation is explanatory in its own right? This issue of mathematical explanations in science has been for the most part neglected. I argue that there are genuine mathematical explanations in science, and present in some detail an example of such an explanation, taken from evolutionary biology, involving periodical cicadas. I also indicate how the answer to my title question impacts on broader (...)
    Download  
     
    Export citation  
     
    Bookmark   257 citations  
  • Mathematics, explanation, and scientific knowledge.Mark Steiner - 1978 - Noûs 12 (1):17-28.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • On the explanatory role of mathematics in empirical science.Robert W. Batterman - 2010 - British Journal for the Philosophy of Science 61 (1):1-25.
    This paper examines contemporary attempts to explicate the explanatory role of mathematics in the physical sciences. Most such approaches involve developing so-called mapping accounts of the relationships between the physical world and mathematical structures. The paper argues that the use of idealizations in physical theorizing poses serious difficulties for such mapping accounts. A new approach to the applicability of mathematics is proposed.
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Precis of Because Without Cause: Non‐Causal Explanations in Science and Mathematics.Marc Lange - 2019 - Philosophy and Phenomenological Research 99 (3):714-719.
    Philosophy and Phenomenological Research, Volume 99, Issue 3, Page 714-719, November 2019.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Explanatory Information in Mathematical Explanations of Physical Phenomena.Manuel Barrantes - 2020 - Australasian Journal of Philosophy 98 (3):590-603.
    In this paper I defend an intermediate position between the ‘bare mathematical results’ view and the ‘transmission’ view of mathematical explanations of physical phenomena (MEPPs). I argue that, in MEPPs, it is not enough to deduce the explanandum from the generalizations cited in the explanans. Rather, we must add information regarding why those generalizations obtain. However, I also argue that it is not necessary to provide explanatory proofs of the mathematical theorems that represent those generalizations. I illustrate this with the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Of strawberries and energy conservation: Marc Lange: Because without cause: non-causal explanation in science and mathematics. Oxford: Oxford University Press, 2017, xxii+489pp, $74.00 HB.Bradford Skow - 2017 - Metascience 27 (1):11-18.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Explaining Mathematical Explanation.Sam Baron - 2016 - Philosophical Quarterly 66 (264):458-480.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • An Inferential Conception of the Application of Mathematics.Otávio Bueno & Mark Colyvan - 2011 - Noûs 45 (2):345-374.
    A number of people have recently argued for a structural approach to accounting for the applications of mathematics. Such an approach has been called "the mapping account". According to this view, the applicability of mathematics is fully accounted for by appreciating the relevant structural similarities between the empirical system under study and the mathematics used in the investigation ofthat system. This account of applications requires the truth of applied mathematical assertions, but it does not require the existence of mathematical objects. (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • Magicicada, Mathematical Explanation and Mathematical Realism.Davide Rizza - 2011 - Erkenntnis 74 (1):101-114.
    Baker claims to provide an example of mathematical explanation of an empirical phenomenon which leads to ontological commitment to mathematical objects. This is meant to show that the positing of mathematical entities is necessary for satisfactory scientific explanations and thus that the application of mathematics to science can be used, at least in some cases, to support mathematical realism. In this paper I show that the example of explanation Baker considers can actually be given without postulating mathematical objects and thus (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Mathematical Explanation in Science.Alan Baker - 2009 - British Journal for the Philosophy of Science 60 (3):611-633.
    Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the prime-numbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • (1 other version)Mathematical explanation and indispensability arguments.Chris Daly & Simon Langford - 2009 - Philosophical Quarterly 59 (237):641-658.
    We defend Joseph Melia's thesis that the role of mathematics in scientific theory is to 'index' quantities, and that even if mathematics is indispensable to scientific explanations of concrete phenomena, it does not explain any of those phenomena. This thesis is defended against objections by Mark Colyvan and Alan Baker.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Mathematical explanation: Why it matters.Paolo Mancosu - 2008 - In The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 134--149.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Indispensability and Explanation.Sorin Bangu - 2013 - British Journal for the Philosophy of Science 64 (2):255-277.
    The question as to whether there are mathematical explanations of physical phenomena has recently received a great deal of attention in the literature. The answer is potentially relevant for the ontology of mathematics; if affirmative, it would support a new version of the indispensability argument for mathematical realism. In this article, I first review critically a few examples of such explanations and advance a general analysis of the desiderata to be satisfied by them. Second, in an attempt to strengthen the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations