Switch to: Citations

Add references

You must login to add references.
  1. The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration.Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel & Suzanna Lewis - 2007 - Nature Biotechnology 25 (11):1251-1255.
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing (...)
    Download  
     
    Export citation  
     
    Bookmark   136 citations  
  • On Classifying Material Entities in Basic Formal Ontology.Barry Smith - 2012 - In Interdisciplinary Ontology: Proceedings of the Third Interdisciplinary Ontology Meeting. Keio University Press. pp. 1-13.
    Basic Formal Ontology was created in 2002 as an upper-level ontology to support the creation of consistent lower-level ontologies, initially in the subdomains of biomedical research, now also in other areas, including defense and security. BFO is currently undergoing revisions in preparation for the release of BFO version 2.0. We summarize some of the proposed revisions in what follows, focusing on BFO’s treatment of material entities, and specifically of the category object.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ontologies as Integrative Tools for Plant Science.Ramona Walls, Balaji Athreya, Laurel Cooper, Justin Elser, Maria A. Gandolfo, Pankaj Jaiswal, Christopher J. Mungall, Justin Preece, Stefan Rensing, Barry Smith & Dennis W. Stevenson - 2012 - American Journal of Botany 99 (8):1263–1275.
    Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the Semantic Web. This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relations in Biomedical Ontologies.Barry Smith, Werner Ceusters, Bert Klagges, Jacob Köhler, Anand Kuma, Jane Lomax, Chris Mungall, , Fabian Neuhaus, Alan Rector & Cornelius Rosse - 2005 - Genome Biology 6 (5):R46.
    To enhance the treatment of relations in biomedical ontologies we advance a methodology for providing consistent and unambiguous formal definitions of the relational expressions used in such ontologies in a way designed to assist developers and users in avoiding errors in coding and annotation. The resulting Relation Ontology can promote interoperability of ontologies and support new types of automated reasoning about the spatial and temporal dimensions of biological and medical phenomena.
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • How to Distinguish Parthood from Location in Bioontologies.Stefan Schulz, Philipp Daumke, Barry Smith & Udo Hahn - 2005 - In Proceedings of the AMIA Symposium. American Medical Informatics Association. pp. 669-673.
    The pivotal role of the relation part-of in the description of living organisms is widely acknowledged. Organisms are open systems, which means that in contradistinction to mechanical artifacts they are characterized by a continuous flow and exchange of matter. A closer analysis of the spatial relations in biological organisms reveals that the decision as to whether a given particular is part-of a second particular or whether it is only contained-in the second particular is often controversial. We here propose a rule-based (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gene Ontology: Tool for the unification of biology.M. Ashburner - 2000 - Nature Genetics 25:25-29.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Biodynamic Ontology: Applying BFO in the Biomedical Domain.Barry Smith, Pierre Grenon & Louis Goldberg - 2004 - Studies in Health and Technology Informatics 102:20–38.
    Current approaches to formal representation in biomedicine are characterized by their focus on either the static or the dynamic aspects of biological reality. We here outline a theory that combines both perspectives and at the same time tackles the by no means trivial issue of their coherent integration. Our position is that a good ontology must be capable of accounting for reality both synchronically (as it exists at a time) and diachronically (as it unfolds through time), but that these are (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations