Switch to: Citations

Add references

You must login to add references.
  1. Quine’s conjecture on many-sorted logic.Thomas William Barrett & Hans Halvorson - 2017 - Synthese 194 (9):3563-3582.
    Quine often argued for a simple, untyped system of logic rather than the typed systems that were championed by Russell and Carnap, among others. He claimed that nothing important would be lost by eliminating sorts, and the result would be additional simplicity and elegance. In support of this claim, Quine conjectured that every many-sorted theory is equivalent to a single-sorted theory. We make this conjecture precise, and prove that it is true, at least according to one reasonable notion of theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Logic and Meaning of Plurals. Part I.Byeong-Uk Yi - 2005 - Journal of Philosophical Logic 34 (5-6):459-506.
    Contemporary accounts of logic and language cannot give proper treatments of plural constructions of natural languages. They assume that plural constructions are redundant devices used to abbreviate singular constructions. This paper and its sequel, "The logic and meaning of plurals, II", aim to develop an account of logic and language that acknowledges limitations of singular constructions and recognizes plural constructions as their peers. To do so, the papers present natural accounts of the logic and meaning of plural constructions that result (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Morita Equivalence.Thomas William Barrett & Hans Halvorson - 2016 - Review of Symbolic Logic 9 (3):556-582.
    Logicians and philosophers of science have proposed various formal criteria for theoretical equivalence. In this paper, we examine two such proposals: definitional equivalence and categorical equivalence. In order to show precisely how these two well-known criteria are related to one another, we investigate an intermediate criterion called Morita equivalence.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Category Mistakes.Ofra Magidor - 2013 - Oxford, GB: Oxford University Press.
    Category mistakes are sentences such as 'Green ideas sleep furiously' or 'Saturday is in bed'. They strike us as highly infelicitous but it is hard to explain precisely why this is so. Ofra Magidor explores four approaches to category mistakes in philosophy of language and linguistics, and develops and defends an original, presuppositional account.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Cumulative Higher-Order Logic as a Foundation for Set Theory.Wolfgang Degen & Jan Johannsen - 2000 - Mathematical Logic Quarterly 46 (2):147-170.
    The systems Kα of transfinite cumulative types up to α are extended to systems K∞α that include a natural infinitary inference rule, the so-called limit rule. For countable α a semantic completeness theorem for K∞α is proved by the method of reduction trees, and it is shown that every model of K∞α is equivalent to a cumulative hierarchy of sets. This is used to show that several axiomatic first-order set theories can be interpreted in K∞α, for suitable α.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Hierarchies Ontological and Ideological.Øystein Linnebo & Agustín Rayo - 2012 - Mind 121 (482):269 - 308.
    Gödel claimed that Zermelo-Fraenkel set theory is 'what becomes of the theory of types if certain superfluous restrictions are removed'. The aim of this paper is to develop a clearer understanding of Gödel's remark, and of the surrounding philosophical terrain. In connection with this, we discuss some technical issues concerning infinitary type theories and the programme of developing the semantics for higher-order languages in other higher-order languages.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Pluralities.Roger Schwarzschild - 1996 - Springer.
    Precursors. 2.1 Introduction Thus far I have presented an approach to the semantics of plurals in the form of two rather similar grammars for a fragment of English. And I have given a few examples of the kinds of things one can say within this ...
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • (1 other version)Mathematical Logic as Based on the Theory of Types.Bertrand Russell - 1908 - American Journal of Mathematics 30 (3):222-262.
    Download  
     
    Export citation  
     
    Bookmark   282 citations  
  • Extensions of first order logic.Maria Manzano - 1996 - New York: Cambridge University Press.
    Classical logic has proved inadequate in various areas of computer science, artificial intelligence, mathematics, philosopy and linguistics. This is an introduction to extensions of first-order logic, based on the principle that many-sorted logic (MSL) provides a unifying framework in which to place, for example, second-order logic, type theory, modal and dynamic logics and MSL itself. The aim is two fold: only one theorem-prover is needed; proofs of the metaproperties of the different existing calculi can be avoided by borrowing them from (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Foundations without foundationalism: a case for second-order logic.Stewart Shapiro - 1991 - New York: Oxford University Press.
    The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed description of higher-order logic, including a comprehensive discussion of its semantics. He goes on to demonstrate the prevalence of second-order concepts in mathematics and the extent to which mathematical ideas can be formulated in higher-order logic. He also shows how first-order languages are often insufficient to codify (...)
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • (3 other versions)Philosophy of mathematics: selected readings.Paul Benacerraf & Hilary Putnam (eds.) - 1983 - New York: Cambridge University Press.
    The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Against Fantology.Barry Smith - 2005 - In Johann C. Marek Maria E. Reicher (ed.), Experience and Analysis. HPT&ÖBV. pp. 153-170.
    The analytical philosophy of the last hundred years has been heavily influenced by a doctrine to the effect that the key to the correct understanding of reality is captured syntactically in the ‘Fa’ (or, in more sophisticated versions, in the ‘Rab’) of standard first order predicate logic. Here ‘F’ stands for what is general in reality and ‘a’ for what is individual. Hence “f(a)ntology”. Because predicate logic has exactly two syntactically different kinds of referring expressions—‘F’, ‘G’, ‘R’, etc., and ‘a’, (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Toward a Theory of Second-Order Consequence.Augustín Rayo & Gabriel Uzquiano - 1999 - Notre Dame Journal of Formal Logic 40 (3):315-325.
    There is little doubt that a second-order axiomatization of Zermelo-Fraenkel set theory plus the axiom of choice (ZFC) is desirable. One advantage of such an axiomatization is that it permits us to express the principles underlying the first-order schemata of separation and replacement. Another is its almost-categoricity: M is a model of second-order ZFC if and only if it is isomorphic to a model of the form Vκ, ∈ ∩ (Vκ × Vκ) , for κ a strongly inaccessible ordinal.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Everything.Timothy Williamson - 2003 - Philosophical Perspectives 17 (1):415–465.
    On reading the last sentence, did you interpret me as saying falsely that everything — everything in the entire universe — was packed into my carry-on baggage? Probably not. In ordinary language, ‘everything’ and other quantifiers (‘something’, ‘nothing’, ‘every dog’, ...) often carry a tacit restriction to a domain of contextually relevant objects, such as the things that I need to take with me on my journey. Thus a sentence of the form ‘Everything Fs’ is true as uttered in a (...)
    Download  
     
    Export citation  
     
    Bookmark   200 citations  
  • The logic and meaning of plurals. Part II.Byeong-uk Yi - 2006 - Journal of Philosophical Logic 35 (3):239-288.
    In this sequel to "The logic and meaning of plurals. Part I", I continue to present an account of logic and language that acknowledges limitations of singular constructions of natural languages and recognizes plural constructions as their peers. To this end, I present a non-reductive account of plural constructions that results from the conception of plurals as devices for talking about the many. In this paper, I give an informal semantics of plurals, formulate a formal characterization of truth for the (...)
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • (1 other version)Unification of universes in set theory.W. V. Quine - 1956 - Journal of Symbolic Logic 21 (3):267-279.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Nominalist platonism.George Boolos - 1985 - Philosophical Review 94 (3):327-344.
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • (1 other version)To be is to be a value of a variable (or to be some values of some variables).George Boolos - 1984 - Journal of Philosophy 81 (8):430-449.
    Download  
     
    Export citation  
     
    Bookmark   280 citations  
  • Sets, properties, and unrestricted quantification.Øystein Linnebo - 2006 - In Agustín Rayo & Gabriel Uzquiano (eds.), Absolute generality. New York: Oxford University Press. pp. 149--178.
    Call a quantifier unrestricted if it ranges over absolutely all things: not just over all physical things or all things relevant to some particular utterance or discourse but over absolutely everything there is. Prima facie, unrestricted quantification seems to be perfectly coherent. For such quantification appears to be involved in a variety of claims that all normal human beings are capable of understanding. For instance, some basic logical and mathematical truths appear to involve unrestricted quantification, such as the truth that (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • A Case For Higher-Order Metaphysics.Andrew Bacon - 2024 - In Peter Fritz & Nicholas K. Jones (eds.), Higher-Order Metaphysics. Oxford University Press.
    Higher-order logic augments first-order logic with devices that let us generalize into grammatical positions other than that of a singular term. Some recent metaphysicians have advocated for using these devices to raise and answer questions that bear on many traditional issues in philosophy. In contrast to these 'higher-order metaphysicians', traditional metaphysics has often focused on parallel, but importantly different, questions concerning special sorts of abstract objects: propositions, properties and relations. The answers to the higher-order and the property-theoretic questions may coincide (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Higher‐order metaphysics.Lukas Skiba - 2021 - Philosophy Compass 16 (10):1-11.
    Subverting a once widely held Quinean paradigm, there is a growing consensus among philosophers of logic that higher-order quantifiers (which bind variables in the syntactic position of predicates and sentences) are a perfectly legitimate and useful instrument in the logico-philosophical toolbox, while neither being reducible to nor fully explicable in terms of first-order quantifiers (which bind variables in singular term position). This article discusses the impact of this quantificational paradigm shift on metaphysics, focussing on theories of properties, propositions, and identity, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Against Cumulative Type Theory.Tim Button & Robert Trueman - 2022 - Review of Symbolic Logic 15 (4):907-49.
    Standard Type Theory, STT, tells us that b^n(a^m) is well-formed iff n=m+1. However, Linnebo and Rayo have advocated the use of Cumulative Type Theory, CTT, has more relaxed type-restrictions: according to CTT, b^β(a^α) is well-formed iff β > α. In this paper, we set ourselves against CTT. We begin our case by arguing against Linnebo and Rayo’s claim that CTT sheds new philosophical light on set theory. We then argue that, while CTT ’s type-restrictions are unjustifiable, the type-restrictions imposed by (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Many and the One: A Philosophical Study of Plural Logic.Salvatore Florio & Øystein Linnebo - 2021 - Oxford, England: Oxford University Press.
    Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis of the relation between (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Properties and Propositions: The Metaphysics of Higher-Order Logic.Robert Trueman - 2020 - Cambridge: Cambridge University Press.
    This book articulates and defends Fregean realism, a theory of properties based on Frege's insight that properties are not objects, but rather the satisfaction conditions of predicates. Robert Trueman argues that this approach is the key not only to dissolving a host of longstanding metaphysical puzzles, such as Bradley's Regress and the Problem of Universals, but also to understanding the relationship between states of affairs, propositions, and the truth conditions of sentences. Fregean realism, Trueman suggests, ultimately leads to a version (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Logic in Philosophy of Science.Hans Halvorson - 2019 - Cambridge and New York: Cambridge University Press.
    Major figures of twentieth-century philosophy were enthralled by the revolution in formal logic, and many of their arguments are based on novel mathematical discoveries. Hilary Putnam claimed that the Löwenheim-Skølem theorem refutes the existence of an objective, observer-independent world; Bas van Fraassen claimed that arguments against empiricism in philosophy of science are ineffective against a semantic approach to scientific theories; W. V. O. Quine claimed that the distinction between analytic and synthetic truths is trivialized by the fact that any theory (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Nominalist Realism.Nicholas K. Jones - 2017 - Noûs 52 (4):808-835.
    This paper explores the impact of quantification into predicate position on the metaphysics of properties, arguing that two familiar debates about properties are fundamentally altered by recasting them in a second-order setting. Two theories of properties are outlined, differing over whether the existence of properties is expressed using first-order or second-order quantifiers. It is argued that the second-order theory: provides good reason to regard debate about the locations of properties as contentless; resolves debate about whether properties are particulars or universals (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)To Be F Is To Be G.Cian Dorr - 2016 - Philosophical Perspectives 30 (1):39-134.
    This paper is an investigation of the general logic of "identifications", claims such as 'To be a vixen is to be a female fox', 'To be human is to be a rational animal', and 'To be just is to help one's friends and harm one's enemies', many of which are of great importance to philosophers. I advocate understanding such claims as expressing higher-order identity, and discuss a variety of different general laws which they might be thought to obey. [New version: (...)
    Download  
     
    Export citation  
     
    Bookmark   186 citations  
  • Philosophy of mathematics, selected readings.Paul Benacerraf & Hilary Putnam - 1966 - Revue Philosophique de la France Et de l'Etranger 156:501-502.
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • A Mathematical Introduction to Logic.Herbert Enderton - 2001 - Bulletin of Symbolic Logic 9 (3):406-407.
    Download  
     
    Export citation  
     
    Bookmark   189 citations  
  • (2 other versions)Notebooks, 1914-1916.Ludwig Wittgenstein, G. H. von Wright & G. E. M. Anscombe - 1964 - Mind 73 (289):132-141.
    Download  
     
    Export citation  
     
    Bookmark   129 citations  
  • Plural Logic: Second Edition, Revised and Enlarged.Alex Oliver & Timothy Smiley - 2016 - Oxford University Press.
    Alex Oliver and Timothy Smiley provide a new account of plural logic. They argue that there is such a thing as genuinely plural denotation in logic, and expound a framework of ideas that includes the distinction between distributive and collective predicates, the theory of plural descriptions, multivalued functions, and lists.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Consistency of The Naive Theory of Properties.Hartry Field - 2004 - Philosophical Quarterly 54 (214):78-104.
    If properties are to play a useful role in semantics, it is hard to avoid assuming the naïve theory of properties: for any predicate Θ(x), there is a property such that an object o has it if and only if Θ(o). Yet this appears to lead to various paradoxes. I show that no paradoxes arise as long as the logic is weakened appropriately; the main difficulty is finding a semantics that can handle a conditional obeying reasonable laws without engendering paradox. (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Plural predication.Thomas McKay - 2006 - New York: Oxford University Press.
    Plural predication is a pervasive part of ordinary language. We can say that some people are fifty in number, are surrounding a building, come from many countries, and are classmates. These predicates can be true of some people without being true of any one of them; they are non-distributive predications. However, the apparatus of modern logic does not allow a place for them. Thomas McKay here explores the enrichment of logic with non-distributive plural predication and quantification. His book will be (...)
    Download  
     
    Export citation  
     
    Bookmark   139 citations  
  • Word and objects.Agustín Rayo - 2002 - Noûs 36 (3):436–464.
    The aim of this essay is to show that the subject-matter of ontology is richer than one might have thought. Our route will be indirect. We will argue that there are circumstances under which standard first-order regimentation is unacceptable, and that more appropriate varieties of regimentation lead to unexpected kinds of ontological commitment.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Unrestricted Quantification and the Structure of Type Theory.Salvatore Florio & Nicholas K. Jones - 2021 - Philosophy and Phenomenological Research 102 (1):44-64.
    Semantic theories based on a hierarchy of types have prominently been used to defend the possibility of unrestricted quantification. However, they also pose a prima facie problem for it: each quantifier ranges over at most one level of the hierarchy and is therefore not unrestricted. It is difficult to evaluate this problem without a principled account of what it is for a quantifier to be unrestricted. Drawing on an insight of Russell’s about the relationship between quantification and the structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Towards a Theory of Part.Kit Fine - 2010 - Journal of Philosophy 107 (11):559-589.
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • (2 other versions)Notebooks, 1914-1916.Ludwig Wittgenstein - 1979 - Chicago: University of Chicago Press. Edited by G. H. von Wright & G. E. M. Anscombe.
    Intellectual diary of a thinker of the school of Logical Positivism showing the day-by-day development of his philosophical ideas.
    Download  
     
    Export citation  
     
    Bookmark   189 citations  
  • Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy.David Corfield - 2020 - Oxford, England: Oxford University Press.
    Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy provides a reasonably gentle introduction to this new logic, thoroughly motivated by intuitive explanations of the need for all of its component parts, and illustrated through innovative applications of the calculus.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dear Carnap, Dear Van: The Quine--Carnap Correspondence and Related Work.W. V. Quine - 1993 - Philosophical Quarterly 43 (170):121.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Classes, why and how.Thomas Schindler - 2019 - Philosophical Studies 176 (2):407-435.
    This paper presents a new approach to the class-theoretic paradoxes. In the first part of the paper, I will distinguish classes from sets, describe the function of class talk, and present several reasons for postulating type-free classes. This involves applications to the problem of unrestricted quantification, reduction of properties, natural language semantics, and the epistemology of mathematics. In the second part of the paper, I will present some axioms for type-free classes. My approach is loosely based on the Gödel–Russell idea (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Semantic values in higher-order semantics.Stephan Krämer - 2014 - Philosophical Studies 168 (3):709-724.
    Recently, some philosophers have argued that we should take quantification of any (finite) order to be a legitimate and irreducible, sui generis kind of quantification. In particular, they hold that a semantic theory for higher-order quantification must itself be couched in higher-order terms. Øystein Linnebo has criticized such views on the grounds that they are committed to general claims about the semantic values of expressions that are by their own lights inexpressible. I show that Linnebo’s objection rests on the assumption (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Does Homotopy Type Theory Provide a Foundation for Mathematics?Stuart Presnell & James Ladyman - 2018 - British Journal for the Philosophy of Science 69 (2):377-420.
    Homotopy Type Theory (HoTT) is a putative new foundation for mathematics grounded in constructive intensional type theory that offers an alternative to the foundations provided by ZFC set theory and category theory. This article explains and motivates an account of how to define, justify, and think about HoTT in a way that is self-contained, and argues that, so construed, it is a candidate for being an autonomous foundation for mathematics. We first consider various questions that a foundation for mathematics might (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Does Homotopy Type Theory Provide a Foundation for Mathematics?James Ladyman & Stuart Presnell - 2016 - British Journal for the Philosophy of Science:axw006.
    Homotopy Type Theory is a putative new foundation for mathematics grounded in constructive intensional type theory that offers an alternative to the foundations provided by ZFC set theory and category theory. This article explains and motivates an account of how to define, justify, and think about HoTT in a way that is self-contained, and argues that, so construed, it is a candidate for being an autonomous foundation for mathematics. We first consider various questions that a foundation for mathematics might be (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Unification of Universes in Set Theory.W. V. Quine - 1957 - Journal of Symbolic Logic 22 (3):294-295.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Nominalist platonism.George Boolos - 1998 - In Richard Jeffrey (ed.), Logic, Logic, and Logic. Harvard University Press. pp. 73-87.
    Download  
     
    Export citation  
     
    Bookmark   124 citations