Switch to: Citations

Add references

You must login to add references.
  1. Infinitesimals are too small for countably infinite fair lotteries.Alexander R. Pruss - 2014 - Synthese 191 (6):1051-1057.
    We show that infinitesimal probabilities are much too small for modeling the individual outcome of a countably infinite fair lottery.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Regularity and Hyperreal Credences.Kenny Easwaran - 2014 - Philosophical Review 123 (1):1-41.
    Many philosophers have become worried about the use of standard real numbers for the probability function that represents an agent's credences. They point out that real numbers can't capture the distinction between certain extremely unlikely events and genuinely impossible ones—they are both represented by credence 0, which violates a principle known as “regularity.” Following Skyrms 1980 and Lewis 1980, they recommend that we should instead use a much richer set of numbers, called the “hyperreals.” This essay argues that this popular (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • What conditional probability could not be.Alan Hájek - 2003 - Synthese 137 (3):273--323.
    Kolmogorov''s axiomatization of probability includes the familiarratio formula for conditional probability: 0).$$ " align="middle" border="0">.
    Download  
     
    Export citation  
     
    Bookmark   310 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   582 citations  
  • How NOT to build an infinite lottery machine.John D. Norton - 2020 - Studies in History and Philosophy of Science Part A 82:1-8.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   327 citations  
  • Infinitesimal Chances.Thomas Hofweber - 2014 - Philosophers' Imprint 14.
    It is natural to think that questions in the metaphysics of chance are independent of the mathematical representation of chance in probability theory. After all, chance is a feature of events that comes in degrees and the mathematical representation of chance concerns these degrees but leaves the nature of chance open. The mathematical representation of chance could thus, un-controversially, be taken to be what it is commonly taken to be: a probability measure satisfying Kolmogorov’s axioms. The metaphysical questions about chance (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Infinity, Causation, and Paradox.Alexander R. Pruss - 2018 - Oxford, England: Oxford University Press.
    Alexander R. Pruss examines a large family of paradoxes to do with infinity - ranging from deterministic supertasks to infinite lotteries and decision theory. Having identified their common structure, Pruss considers at length how these paradoxes can be resolved by embracing causal finitism.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (2 other versions)Saturated Model Theory.Michael Makkai - 1975 - Journal of Symbolic Logic 40 (4):637-640.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)How probable is an infinite sequence of heads?Timothy Williamson - 2007 - Analysis 67 (3):173-180.
    Isn't probability 1 certainty? If the probability is objective, so is the certainty: whatever has chance 1 of occurring is certain to occur. Equivalently, whatever has chance 0 of occurring is certain not to occur. If the probability is subjective, so is the certainty: if you give credence 1 to an event, you are certain that it will occur. Equivalently, if you give credence 0 to an event, you are certain that it will not occur. And so on for other (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Definability of measures and ultrafilters.David Pincus & Robert M. Solovay - 1977 - Journal of Symbolic Logic 42 (2):179-190.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Tasks, super-tasks, and the modern eleatics.Paul Benacerraf - 1962 - Journal of Philosophy 59 (24):765-784.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • How probable is an infinite sequence of heads? A reply to Williamson.Ruth Weintraub - 2008 - Analysis 68 (299):247-250.
    It is possible that a fair coin tossed infinitely many times will always land heads. So the probability of such a sequence of outcomes should, intuitively, be positive, albeit miniscule: 0 probability ought to be reserved for impossible events. And, furthermore, since the tosses are independent and the probability of heads (and tails) on a single toss is half, all sequences are equiprobable. But Williamson has adduced an argument that purports to show that our intuitions notwithstanding, the probability of an (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)How probable is an infinite sequence of heads?Timothy Williamson - 2007 - Analysis 67 (3):173-180.
    Isn't probability 1 certainty? If the probability is objective, so is the certainty: whatever has chance 1 of occurring is certain to occur. Equivalently, whatever has chance 0 of occurring is certain not to occur. If the probability is subjective, so is the certainty: if you give credence 1 to an event, you are certain that it will occur. Equivalently, if you give credence 0 to an event, you are certain that it will not occur. And so on for other (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Probability, Regularity, and Cardinality.Alexander R. Pruss - 2013 - Philosophy of Science 80 (2):231-240.
    Regularity is the thesis that all contingent propositions should be assigned probabilities strictly between zero and one. I will prove on cardinality grounds that if the domain is large enough, a regular probability assignment is impossible, even if we expand the range of values that probabilities can take, including, for instance, hyperreal values, and significantly weaken the axioms of probability.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Non-Archimedean Probability.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2013 - Milan Journal of Mathematics 81 (1):121-151.
    We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned probability zero (in other words: the probability functions are regular). We use a non-Archimedean field as the range of the probability function. As a result, the property of countable additivity in Kolmogorov’s axiomatization of probability is replaced by (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Declarations of independence.Branden Fitelson & Alan Hájek - 2017 - Synthese 194 (10):3979-3995.
    According to orthodox (Kolmogorovian) probability theory, conditional probabilities are by definition certain ratios of unconditional probabilities. As a result, orthodox conditional probabilities are undefined whenever their antecedents have zero unconditional probability. This has important ramifications for the notion of probabilistic independence. Traditionally, independence is defined in terms of unconditional probabilities (the factorization of the relevant joint unconditional probabilities). Various “equivalent” formulations of independence can be given using conditional probabilities. But these “equivalences” break down if conditional probabilities are permitted to have (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Set Theory.Thomas J. Jech - 1978 - New York, NY, USA: Academic Press.
    Set Theory has experienced a rapid development in recent years, with major advances in forcing, inner models, large cardinals and descriptive set theory. The present book covers each of these areas, giving the reader an understanding of the ideas involved. It can be used for introductory students and is broad and deep enough to bring the reader near the boundaries of current research. Students and researchers in the field will find the book invaluable both as a study material and as (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Correction to John D. Norton “How to build an infinite lottery machine”.John D. Norton & Alexander R. Pruss - 2018 - European Journal for Philosophy of Science 8 (1):143-144.
    An infinite lottery machine is used as a foil for testing the reach of inductive inference, since inferences concerning it require novel extensions of probability. Its use is defensible if there is some sense in which the lottery is physically possible, even if exotic physics is needed. I argue that exotic physics is needed and describe several proposals that fail and at least one that succeeds well enough.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (2 other versions)Set Theory.T. Jech - 2005 - Bulletin of Symbolic Logic 11 (2):243-245.
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • Learning the Impossible.Vann McGee - 1994 - In Ellery Eells & Brian Skyrms (eds.), Probability and Conditionals: Belief Revision and Rational Decision. New York: Cambridge University Press. pp. 179-199.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • (1 other version)A Definable Nonstandard Model Of The Reals.Vladimir Kanovei & Saharon Shelah - 2004 - Journal of Symbolic Logic 69 (1):159-164.
    We prove, in ZFC, the existence of a definable, countably saturated elementary extension of the reals.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The absolute arithmetic continuum and the unification of all numbers great and small.Philip Ehrlich - 2012 - Bulletin of Symbolic Logic 18 (1):1-45.
    In his monograph On Numbers and Games, J. H. Conway introduced a real-closed field containing the reals and the ordinals as well as a great many less familiar numbers including $-\omega, \,\omega/2, \,1/\omega, \sqrt{\omega}$ and $\omega-\pi$ to name only a few. Indeed, this particular real-closed field, which Conway calls No, is so remarkably inclusive that, subject to the proviso that numbers—construed here as members of ordered fields—be individually definable in terms of sets of NBG, it may be said to contain (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Tasks and Supertasks.James Thomson - 1954 - Analysis 15 (1):1--13.
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • The qualitative paradox of non-conglomerability.Nicholas DiBella - 2018 - Synthese 195 (3):1181-1210.
    A probability function is non-conglomerable just in case there is some proposition E and partition \ of the space of possible outcomes such that the probability of E conditional on any member of \ is bounded by two values yet the unconditional probability of E is not bounded by those values. The paradox of non-conglomerability is the counterintuitive—and controversial—claim that a rational agent’s subjective probability function can be non-conglomerable. In this paper, I present a qualitative analogue of the paradox. I (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Popper Functions, Uniform Distributions and Infinite Sequences of Heads.Alexander R. Pruss - 2015 - Journal of Philosophical Logic 44 (3):259-271.
    Popper functions allow one to take conditional probabilities as primitive instead of deriving them from unconditional probabilities via the ratio formula P=P/P. A major advantage of this approach is it allows one to condition on events of zero probability. I will show that under plausible symmetry conditions, Popper functions often fail to do what they were supposed to do. For instance, suppose we want to define the Popper function for an isometrically invariant case in two dimensions and hence require the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)[Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • Null probability, dominance and rotation.A. R. Pruss - 2013 - Analysis 73 (4):682-685.
    New arguments against Bayesian regularity and an otherwise plausible domination principle are offered on the basis of rotational symmetry. The arguments against Bayesian regularity work in very general settings.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • [Omnibus Review].H. Jerome Keisler - 1970 - Journal of Symbolic Logic 35 (2):342-344.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (1 other version)A definable nonstandard model of the reals.Vladimir Kanovei & Saharon Shelah - 2004 - Journal of Symbolic Logic 69 (1):159-164.
    We prove, in ZFC,the existence of a definable, countably saturated elementary extension of the reals.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Saturated model theory.Gerald E. Sacks - 1972 - Reading, Mass.,: W. A. Benjamin.
    This book contains the material for a first course in pure model theory with applications to differentially closed fields.
    Download  
     
    Export citation  
     
    Bookmark   32 citations