- Zermelo's Axiom of Choice. Its Origins, Development, and Influence.Gregory H. Moore - 1984 - Journal of Symbolic Logic 49 (2):659-660.details
|
|
Abstraction and set theory.Bob Hale - 2000 - Notre Dame Journal of Formal Logic 41 (4):379--398.details
|
|
The reason's proper study: essays towards a neo-Fregean philosophy of mathematics.Crispin Wright & Bob Hale - 2001 - Oxford: Clarendon Press. Edited by Crispin Wright.details
|
|
(1 other version)Frege.Michael Dummett - 1981 - Cambridge: Harvard University Press.details
|
|
Iteration Again.George Boolos - 1989 - Philosophical Topics 17 (2):5-21.details
|
|
Well- and non-well-founded Fregean extensions.Ignacio Jané & Gabriel Uzquiano - 2004 - Journal of Philosophical Logic 33 (5):437-465.details
|
|
(1 other version)The iterative conception of set.George Boolos - 1971 - Journal of Philosophy 68 (8):215-231.details
|
|
Foundations of Set Theory.Abraham Adolf Fraenkel & Yehoshua Bar-Hillel - 1973 - Atlantic Highlands, NJ, USA: Elsevier.details
|
|
Absolute generality.Agustín Rayo & Gabriel Uzquiano (eds.) - 2006 - New York: Oxford University Press.details
|
|
Foundations without foundationalism: a case for second-order logic.Stewart Shapiro - 1991 - New York: Oxford University Press.details
|
|
Principles of reflection and second-order logic.Stewart Shapiro - 1987 - Journal of Philosophical Logic 16 (3):309 - 333.details
|
|
Mathematics and bleak house.John P. Burgess - 2004 - Philosophia Mathematica 12 (1):18-36.details
|
|
Prolegomenon To Any Future Neo‐Logicist Set Theory: Abstraction And Indefinite Extensibility.Stewart Shapiro - 2003 - British Journal for the Philosophy of Science 54 (1):59-91.details
|
|
(1 other version)Frege's Other Program.Aldo Antonelli & Robert May - 2005 - Notre Dame Journal of Formal Logic 46 (1):1-17.details
|
|
Fixing Frege.John P. Burgess - 2005 - Princeton University Press.details
|
|
(1 other version)Zermelo: definiteness and the universe of definable sets.Heinz-Dieter Ebbinghaus - 2003 - History and Philosophy of Logic 24 (3):197-219.details
|
|
(1 other version)Zur Frage der Unendlichkeitsschemata in der axiomatischen Mengenlehre.Paul Bernays - 1961 - In Bar-Hillel, Yehoshua & [From Old Catalog] (eds.), Essays on the Foundations of Mathematics. Jerusalem,: Magnes Press. pp. 3--49.details
|
|
Logic, Logic, and Logic.George Boolos - 1998 - Cambridge, Mass: Harvard University Press. Edited by Richard C. Jeffrey.details
|
|
(1 other version)Frege: Philosophy of Mathematics.Michael DUMMETT - 1991 - Philosophy 68 (265):405-411.details
|
|
Burgess on Plural Logic and Set Theory.O. Linnebo - 2007 - Philosophia Mathematica 15 (1):79-93.details
|
|
Absolute Generality.Agustín Rayo & Gabriel Uzquiano Cruz - 2009 - Critica 41 (121):67-84.details
|
|
Zermelo's Conception of Set Theory and Reflection Principles.W. W. Tait - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press.details
|
|
Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre.Ernst Zermelo - 1930 - Fundamenta Mathematicæ 16:29--47.details
|
|
Burgess on plural logic and set theory.Øystein Linnebo - 2007 - Philosophia Mathematica 15 (1):79-93.details
|
|
Zermelo and the Skolem paradox.Dirk Van Dalen & Heinz-Dieter Ebbinghaus - 2000 - Bulletin of Symbolic Logic 6 (2):145-161.details
|
|
(1 other version)Logic, Logic and Logic.George Boolos & Richard C. Jeffrey - 1998 - Studia Logica 66 (3):428-432.details
|
|
From Mathematics to Philosophy.Hao Wang - 1975 - British Journal for the Philosophy of Science 26 (2):170-174.details
|
|
Basic Law.George Boolos & Peter Clark - 1993 - Aristotelian Society Supplementary Volume 67 (1):213-249.details
|
|
Zermelo (1930) is concerned with impredicative second-order set theory. He treats the general case of set theory with urelements, but it will be enough to consider only the case of pure set theory, ie without urelements. In this context, Zermelo's theory is the axiomatic second-order theory T2 in the language of pure set theory whose axioms are Extensionality, Regu. [REVIEW]Ww Tait - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press. pp. 469.details
|
|
Basic Law (V).George Boolos & Peter Clark - 1993 - Aristotelian Society Supplementary Volume 67 (1):213 - 249.details
|
|
John P. Burgess, Fixing Frege. [REVIEW]Pierre Swiggers - 2006 - Tijdschrift Voor Filosofie 68 (3):665-665.details
|
|
Similar Subclasses.Harvey M. Friedman - unknowndetails
|
|