- The Deluge of Spurious Correlations in Big Data.Cristian S. Calude & Giuseppe Longo - 2016 - Foundations of Science 22 (3):595-612.details
|
|
Understanding without explanation.Peter Lipton - 2008 - In Henk W. De Regt, Sabina Leonelli & Kai Eigner (eds.), Scientific Understanding: Philosophical Perspectives. University of Pittsburgh Press. pp. 43-63.details
|
|
Functional explanation and the function of explanation.Tania Lombrozo & Susan Carey - 2006 - Cognition 99 (2):167-204.details
|
|
Why Ask, "Why?"? An Inquiry concerning Scientific Explanation.Wesley C. Salmon - 1978 - Proceedings and Addresses of the American Philosophical Association 51 (6):683 - 705.details
|
|
Reintroducing prediction to explanation.Heather E. Douglas - 2009 - Philosophy of Science 76 (4):444-463.details
|
|
The Structure of Science: Problems in the Logic of Scientific Explanation.Ernest Nagel - 1961 - New York, NY, USA: Harcourt, Brace & World.details
|
|
(2 other versions)Externalist Theories of Empirical Knowledge.Laurence Bonjour - 1980 - Midwest Studies in Philosophy 5 (1):53-73.details
|
|
The web of belief.Willard Van Orman Quine & J. S. Ullian - 1970 - New York,: Random House. Edited by J. S. Ullian.details
|
|
Depth: An Account of Scientific Explanation.Michael Strevens - 2008 - Cambridge: Harvard University Press.details
|
|
The philosophical novelty of computer simulation methods.Paul Humphreys - 2009 - Synthese 169 (3):615 - 626.details
|
|
Scientific explanation.James Woodward - 1979 - British Journal for the Philosophy of Science 30 (1):41-67.details
|
|
The responsibility gap: Ascribing responsibility for the actions of learning automata. [REVIEW]Andreas Matthias - 2004 - Ethics and Information Technology 6 (3):175-183.details
|
|
(1 other version)Studies in the logic of explanation.Carl Gustav Hempel & Paul Oppenheim - 1948 - Philosophy of Science 15 (2):135-175.details
|
|
Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.Cynthia Rudin - 2019 - Nature Machine Intelligence 1.details
|
|
(1 other version)Reliabilist Epistemology.Alvin Goldman & Bob Beddor - 2021 - Stanford Encyclopedia of Philosophy.details
|
|
Classical Statistics and Statistical Learning in Imaging Neuroscience.Danilo Bzdok - unknowndetails
|
|
(1 other version)Reliabilist Epistemology.Alvin Goldman & Bob Beddor - 2021 - Stanford Encyclopedia of Philosophy.details
|
|
Why a right to explanation of automated decision-making does not exist in the General Data Protection Regulation.Sandra Wachter, Brent Mittelstadt & Luciano Floridi - 2017 - International Data Privacy Law 1 (2):76-99.details
|
|
(2 other versions)Externalist Theories of Empirical Knowledge.Laurence BonJour - 2000 - In Sven Bernecker & Fred I. Dretske (eds.), Knowledge: readings in contemporary epistemology. New York: Oxford University Press.details
|
|
Explanation in artificial intelligence: Insights from the social sciences.Tim Miller - 2019 - Artificial Intelligence 267 (C):1-38.details
|
|
How the machine ‘thinks’: Understanding opacity in machine learning algorithms.Jenna Burrell - 2016 - Big Data and Society 3 (1):205395171562251.details
|
|
Science demands explanation, religion tolerates mystery.Emily G. Liquin, S. Emlen Metz & Tania Lombrozo - 2020 - Cognition 204 (C):104398.details
|
|
The Prospects for a Monist Theory of Non-causal Explanation in Science and Mathematics.Alexander Reutlinger, Mark Colyvan & Karolina Krzyżanowska - 2020 - Erkenntnis 87 (4):1773-1793.details
|
|
The Pragmatic Turn in Explainable Artificial Intelligence.Andrés Páez - 2019 - Minds and Machines 29 (3):441-459.details
|
|
Solving the Black Box Problem: A Normative Framework for Explainable Artificial Intelligence.Carlos Zednik - 2019 - Philosophy and Technology 34 (2):265-288.details
|
|
Artificial Intelligence, Responsibility Attribution, and a Relational Justification of Explainability.Mark Coeckelbergh - 2020 - Science and Engineering Ethics 26 (4):2051-2068.details
|
|
AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations.Luciano Floridi, Josh Cowls, Monica Beltrametti, Raja Chatila, Patrice Chazerand, Virginia Dignum, Christoph Luetge, Robert Madelin, Ugo Pagallo, Francesca Rossi, Burkhard Schafer, Peggy Valcke & Effy Vayena - 2018 - Minds and Machines 28 (4):689-707.details
|
|
Explaining Explanations in AI.Brent Mittelstadt - forthcoming - FAT* 2019 Proceedings 1.details
|
|
Discovering Brain Mechanisms Using Network Analysis and Causal Modeling.Matteo Colombo & Naftali Weinberger - 2018 - Minds and Machines 28 (2):265-286.details
|
|
Experience and Prediction. An Analysis of the Foundations and the Structure of Knowledge. [REVIEW]E. N. & Hans Reichenbach - 1938 - Journal of Philosophy 35 (10):270.details
|
|
A Contextual Approach to Scientific Understanding.Henk W. de Regt & Dennis Dieks - 2005 - Synthese 144 (1):137-170.details
|
|
Scientific explanation and the sense of understanding.J. D. Trout - 2002 - Philosophy of Science 69 (2):212-233.details
|
|
Explanation as orgasm.Alison Gopnik - 1998 - Minds and Machines 8 (1):101-118.details
|
|
(1 other version)The shadows and shallows of explanation.Robert A. Wilson & Frank Keil - 1998 - Minds and Machines 8 (1):137-159.details
|
|
Correlation is not causation.John Money - 1991 - Behavioral and Brain Sciences 14 (2):275-275.details
|
|
The Instrumental Value of Explanations.Tania Lombrozo - 2011 - Philosophy Compass 6 (8):539-551.details
|
|
Mechanisms and causality in molecular diseases.Shannon E. Keenan & Stanislav Y. Shvartsman - 2017 - History and Philosophy of the Life Sciences 39 (4):35.details
|
|
Explaining understanding (or understanding explanation).Wesley Van Camp - 2014 - European Journal for Philosophy of Science 4 (1):95-114.details
|
|
Computer Simulations, Machine Learning and the Laplacean Demon: Opacity in the Case of High Energy Physics.Florian J. Boge & Paul Grünke - forthcoming - In Andreas Kaminski, Michael Resch & Petra Gehring (eds.), The Science and Art of Simulation II.details
|
|
Choosing prediction over explanation in psychology: lessons from machine learning.T. Yarkoni & J. Westfall - 2017 - Perspective on Psychological Science 12 (6):1100-1122.details
|
|
Machine Learning and the Future of Scientific Explanation.Florian J. Boge & Michael Poznic - 2021 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (1):171-176.details
|
|
(1 other version)Studies in the Logic of Explanation.Carl Hempel & Paul Oppenheim - 1948 - Journal of Symbolic Logic 14 (2):133-133.details
|
|
(1 other version)The Structure of Science: Problems in the Logic of Scientific Explanation.Ernest Nagel - 1981 - Science and Society 45 (4):475-480.details
|
|
Steven French and Juha Saatsi: The Continuum Companion to the Philosophy of Science. [REVIEW]Milena Ivanova - 2013 - Science & Education 22 (9):2363-2367.details
|
|
Software Intensive Science.John Symons & Jack Horner - 2014 - Philosophy and Technology 27 (3):461-477.details
|
|
(1 other version)The Structure of Science: Problems in the Logic of Scientific Explanation.Ernest Nagel - 1961 - Mind 72 (287):429-441.details
|
|
(1 other version)The Shadows and Shallows of Explanation.Robert A. Wilson & Frank C. Keil - 2000 - In Frank C. Keil & Robert Andrew Wilson (eds.), Explanation and Cognition. MIT Press. pp. 87-114.details
|
|
The Epistemic Importance of Technology in Computer Simulation and Machine Learning.Michael Resch & Andreas Kaminski - 2019 - Minds and Machines 29 (1):1-9.details
|
|
Words, Thoughts, and Theories.Alison Gopnik & Andrew N. Meltzoff - 1999 - Mind 108 (430):395-398.details
|
|
The Spirit of Logical Empiricism: Carl G. Hempel’s Role in Twentieth-Century Philosophy of Science.Wesley C. Salmon - 1999 - Philosophy of Science 66 (3):333-350.details
|
|