Switch to: Citations

References in:

Compendium of the foundations of classical statistical physics

In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers (2006)

Add references

You must login to add references.
  1. (1 other version)The direction of time.Hans Reichenbach - 1956 - Mineola, N.Y.: Dover Publications. Edited by Maria Reichenbach.
    The final work of a distinguished physicist, this remarkable volume examines the emotive significance of time, the time order of mechanics, the time direction of thermodynamics and microstatistics, the time direction of macrostatistics, and the time of quantum physics. Coherent discussions include accounts of analytic methods of scientific philosophy in the investigation of probability, quantum mechanics, the theory of relativity, and causality. "[Reichenbach’s] best by a good deal."—Physics Today. 1971 ed.
    Download  
     
    Export citation  
     
    Bookmark   471 citations  
  • Inventing Temperature: Measurement and Scientific Progress.Hasok Chang - 2004 - New York, US: OUP Usa.
    This book presents the concept of “complementary science” which contributes to scientific knowledge through historical and philosophical investigations. It emphasizes the fact that many simple items of knowledge that we take for granted were actually spectacular achievements obtained only after a great deal of innovative thinking, painstaking experiments, bold conjectures, and serious controversies. Each chapter in the book consists of two parts: a narrative part that states the philosophical puzzle and gives a problem-centred narrative on the historical attempts to solve (...)
    Download  
     
    Export citation  
     
    Bookmark   287 citations  
  • The taming of chance.Ian Hacking - 1990 - New York: Cambridge University Press.
    In this important new study Ian Hacking continues the enquiry into the origins and development of certain characteristic modes of contemporary thought undertaken in such previous works as his best selling Emergence of Probability. Professor Hacking shows how by the late nineteenth century it became possible to think of statistical patterns as explanatory in themselves, and to regard the world as not necessarily deterministic in character. Combining detailed scientific historical research with characteristic philosophic breath and verve, The Taming of Chance (...)
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  • (1 other version)The Emergence of Probability: A Philosophical Study of Early Ideas About Probability, Induction and Statistical Inference.Ian Hacking - 1975 - Cambridge University Press.
    Historical records show that there was no real concept of probability in Europe before the mid-seventeenth century, although the use of dice and other randomizing objects was commonplace. Ian Hacking presents a philosophical critique of early ideas about probability, induction, and statistical inference and the growth of this new family of ideas in the fifteenth, sixteenth, and seventeenth centuries. Hacking invokes a wide intellectual framework involving the growth of science, economics, and the theology of the period. He argues that the (...)
    Download  
     
    Export citation  
     
    Bookmark   158 citations  
  • The Direction of Time.Hans Reichenbach - 1956 - Philosophy 34 (128):65-66.
    Download  
     
    Export citation  
     
    Bookmark   432 citations  
  • Quantum theory and the schism in physics.Karl Raimund Popper - 1992 - New York: Routledge.
    The basic theme of Popper's philosophy--that something can come from nothing--is related to the present situation in physical theory. Popper carries his investigation right to the center of current debate in quantum physics. He proposes an interpretation of physics--and indeed an entire cosmology--which is realist, conjectural, deductivist and objectivist, anti-positivist, and anti-instrumentalist. He stresses understanding, reminding us that our ignorance grows faster than our conjectural knowledge.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Time’s arrow and Archimedes’ point.Huw Price - 1996 - Philosophical and Phenomenological Research 59 (4):1093-1096.
    Download  
     
    Export citation  
     
    Bookmark   308 citations  
  • (1 other version)A treatise on probability.J. Keynes - 1924 - Revue de Métaphysique et de Morale 31 (1):11-12.
    Download  
     
    Export citation  
     
    Bookmark   293 citations  
  • Theories of Probability.Terrence Fine - 1973 - Academic Press.
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Review of T he Direction of Time.Henryk Mehlberg - 1962 - Philosophical Review 71 (1):99.
    Download  
     
    Export citation  
     
    Bookmark   227 citations  
  • (1 other version)Physics and Chance.Lawrence Sklar - 1995 - British Journal for the Philosophy of Science 46 (1):145-149.
    Statistical mechanics is one of the crucial fundamental theories of physics, and in his new book Lawrence Sklar, one of the pre-eminent philosophers of physics, offers a comprehensive, non-technical introduction to that theory and to attempts to understand its foundational elements. Among the topics treated in detail are: probability and statistical explanation, the basic issues in both equilibrium and non-equilibrium statistical mechanics, the role of cosmology, the reduction of thermodynamics to statistical mechanics, and the alleged foundation of the very notion (...)
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • The “Past Hypothesis”: Not even false.John Earman - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (3):399-430.
    It has become something of a dogma in the philosophy of science that modern cosmology has completed Boltzmann's program for explaining the statistical validity of the Second Law of thermodynamics by providing the low entropy initial state needed to ground the asymmetry in entropic behavior that underwrites our inference about the past. This dogma is challenged on several grounds. In particular, it is argued that it is likely that the Boltzmann entropy of the initial state of the universe is an (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Taking Thermodynamics Too Seriously.Craig Callender - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):539-553.
    This paper discusses the mistake of understanding the laws and concepts of thermodynamics too literally in the foundations of statistical mechanics. Arguing that this error is still made in subtle ways, the article explores its occurrence in three examples: the Second Law, the concept of equilibrium and the definition of phase transitions.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • Bluff Your Way in the Second Law of Thermodynamics.Jos Uffink - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (3):305-394.
    The aim of this article is to analyse the relation between the second law of thermodynamics and the so-called arrow of time. For this purpose, a number of different aspects in this arrow of time are distinguished, in particular those of time-reversal (non-)invariance and of (ir)reversibility. Next I review versions of the second law in the work of Carnot, Clausius, Kelvin, Planck, Gibbs, Caratheodory and Lieb and Yngvason, and investigate their connection with these aspects of the arrow of time. It (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • Critical phenomena and breaking drops: Infinite idealizations in physics.Robert Batterman - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):225-244.
    Thermodynamics and Statistical Mechanics are related to one another through the so-called "thermodynamic limit'' in which, roughly speaking the number of particles becomes infinite. At critical points (places of physical discontinuity) this limit fails to be regular. As a result, the "reduction'' of Thermodynamics to Statistical Mechanics fails to hold at such critical phases. This fact is key to understanding an argument due to Craig Callender to the effect that the thermodynamic limit leads to mistakes in Statistical Mechanics. I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Reducing thermodynamics to statistical mechanics: The case of entropy.Craig Callender - 1999 - Journal of Philosophy 96 (7):348-373.
    This article argues that most of the approaches to the foundations of statistical mechanics have severed their link with the original foundational project, the project of demonstrating how real mechanical systems can behave thermodynamically.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Boltzmann's Approach to Statistical Mechanics.Sheldon Goldstein - unknown
    In the last quarter of the nineteenth century, Ludwig Boltzmann explained how irreversible macroscopic laws, in particular the second law of thermodynamics, originate in the time-reversible laws of microscopic physics. Boltzmann’s analysis, the essence of which I shall review here, is basically correct. The most famous criticisms of Boltzmann’s later work on the subject have little merit. Most twentieth century innovations – such as the identification of the state of a physical system with a probability distribution on its phase space, (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Preservative realism and its discontents: Revisiting caloric.Hasok Chang - 2003 - Philosophy of Science 70 (5):902-912.
    A popular and plausible response against Laudan's “pessimistic induction” has been what I call “preservative realism,” which argues that there have actually been enough elements of scientific knowledge preserved through major theory‐change processes, and that those elements can be accepted realistically. This paper argues against preservative realism, in particular through a critical review of Psillos's argument concerning the case of the caloric theory of heat. Contrary to his argument, the historical record of the caloric theory reveals that beliefs about the (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • (1 other version)From physics to metaphysics.Michael Redhead - 1995 - New York: Cambridge University Press.
    The book is drawn from the Tarner lectures, delivered in Cambridge in 1993. It is concerned with the ultimate nature of reality, and how this is revealed by modern physical theories such as relativity and quantum theory. The objectivity and rationality of science are defended against the views of relativists and social constructionists. It is claimed that modern physics gives us a tentative and fallible, but nevertheless rational, approach to the nature of physical reality. The role of subjectivity in science (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • The Origins of Time-Asymmetry in Thermodynamics: The Minus First Law.Harvey R. Brown & Jos Uffink - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):525-538.
    This paper investigates what the source of time-asymmetry is in thermodynamics, and comments on the question whether a time-symmetric formulation of the Second Law is possible.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Measures, explanations and the past: Should ‘special’ initial conditions be explained?Craig Callender - 2004 - British Journal for the Philosophy of Science 55 (2):195-217.
    For the generalizations of thermodynamics to obtain, it appears that a very ‘special’ initial condition of the universe is required. Is this initial condition itself in need of explanation? I argue that it is not. In so doing, I offer a framework in which to think about ‘special’ initial conditions in all areas of science, though I concentrate on the case of thermodynamics. I urge the view that it is not always a serious mark against a theory that it must (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • (2 other versions)Unifying Scientific Theories.Margaret Morrison - 2001 - Mind 110 (440):1097-1102.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • The Principles of Statistical Mechanics.Richard C. Tolman - 1939 - Philosophy of Science 6 (3):381-381.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • The Kind of Motion We Call Heat.S. G. Brush - 1982 - British Journal for the Philosophy of Science 33 (2):165-186.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Why ergodic theory does not explain the success of equilibrium statistical mechanics.John Earman & Miklós Rédei - 1996 - British Journal for the Philosophy of Science 47 (1):63-78.
    We argue that, contrary to some analyses in the philosophy of science literature, ergodic theory falls short in explaining the success of classical equilibrium statistical mechanics. Our claim is based on the observations that dynamical systems for which statistical mechanics works are most likely not ergodic, and that ergodicity is both too strong and too weak a condition for the required explanation: one needs only ergodic-like behaviour for the finite set of observables that matter, but the behaviour must ensure that (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Epsilon-ergodicity and the success of equilibrium statistical mechanics.Peter B. M. Vranas - 1998 - Philosophy of Science 65 (4):688-708.
    Why does classical equilibrium statistical mechanics work? Malament and Zabell (1980) noticed that, for ergodic dynamical systems, the unique absolutely continuous invariant probability measure is the microcanonical. Earman and Rédei (1996) replied that systems of interest are very probably not ergodic, so that absolutely continuous invariant probability measures very distant from the microcanonical exist. In response I define the generalized properties of epsilon-ergodicity and epsilon-continuity, I review computational evidence indicating that systems of interest are epsilon-ergodic, I adapt Malament and Zabell’s (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (2 other versions)Unifying Scientific Theories. Physical Concepts and Mathematical Structures.Margaret Morrison - 2001 - Tijdschrift Voor Filosofie 63 (2):430-431.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • (2 other versions)Unifying Scientific Theories: Physical Concepts and Mathematical Structures.Margaret Morrison - 2001 - Philosophical Quarterly 51 (204):405-408.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Eaters of the lotus: Landauer's principle and the return of Maxwell's demon.John D. Norton - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):375-411.
    Landauer’s principle is the loosely formulated notion that the erasure of n bits of information must always incur a cost of k ln n in thermodynamic entropy. It can be formulated as a precise result in statistical mechanics, but for a restricted class of erasure processes that use a thermodynamically irreversible phase space expansion, which is the real origin of the law’s entropy cost and whose necessity has not been demonstrated. General arguments that purport to establish the unconditional validity of (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Notes on Landauer's principle, reversible computation, and Maxwell's Demon.Charles H. Bennett - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):501-510.
    Landauer's principle, often regarded as the basic principle of the thermodynamics of information processing, holds that any logically irreversible manipulation of information, such as the erasure of a bit or the merging of two computation paths, must be accompanied by a corresponding entropy increase in non-information-bearing degrees of freedom of the information-processing apparatus or its environment. Conversely, it is generally accepted that any logically reversible transformation of information can in principle be accomplished by an appropriate physical mechanism operating in a (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Why Gibbs Phase Averages Work—The Role of Ergodic Theory.David B. Malament & Sandy L. Zabell - 1980 - Philosophy of Science 47 (3):339-349.
    We propose an "explanation scheme" for why the Gibbs phase average technique in classical equilibrium statistical mechanics works. Our account emphasizes the importance of the Khinchin-Lanford dispersion theorems. We suggest that ergodicity does play a role, but not the one usually assigned to it.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • The Logic of Thermostatistical Physics.Gerard G. Emch & Chuang Liu - 2002 - Springer Verlag.
    This book is devoted to a thorough analysis of the role that models play in the practise of physical theory. The authors, a mathematical physicist and a philosopher of science, appeal to the logicians’ notion of model theory as well as to the concepts of physicists.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Boltzmann and Gibbs: An attempted reconciliation.D. A. Lavis - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):245-273.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)Creating Modern Probability: Its Mathematics, Physics and Philosophy in Historical Perspective.Lawrence Sklar & Jan von Plato - 1994 - Journal of Philosophy 91 (11):622.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • On the explanation for quantum statistics.Simon Saunders - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):192-211.
    The concept of classical indistinguishability is analyzed and defended against a number of well-known criticisms, with particular attention to the Gibbs’paradox. Granted that it is as much at home in classical as in quantum statistical mechanics, the question arises as to why indistinguishability, in quantum mechanics but not in classical mechanics, forces a change in statistics. The answer, illustrated with simple examples, is that the equilibrium measure on classical phase space is continuous, whilst on Hilbert space it is discrete. The (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Boltzmann's work in statistical physics.Jos Uffink - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Atomic Metaphysics.Nick Huggett - 1999 - Journal of Philosophy 96 (1):5.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Statistical explanation and ergodic theory.Lawrence Sklar - 1973 - Philosophy of Science 40 (2):194-212.
    Some philosphers of science of an empiricist and pragmatist bent have proposed models of statistical explanation, but have then become sceptical of the adequacy of these models. It is argued that general considerations concerning the purpose of function of explanation in science which are usually appealed to by such philosophers show that their scepticism is not well taken; for such considerations provide much the same rationale for the search for statistical explanations, as these philosophers have characterized them, as they do (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Explaining the emergence of cooperative phenomena.Chuang Liu - 1999 - Philosophy of Science 66 (3):106.
    Phase transitions are well-understood phenomena in thermodynamics (TD), but it turns out that they are mathematically impossible in finite SM systems. Hence, phase transitions are truly emergent properties. They appear again at the thermodynamic limit (TL), i.e., in infinite systems. However, most, if not all, systems in which they occur are finite, so whence comes the justification for taking TL? The problem is then traced back to the TD characterization of phase transitions, and it turns out that the characterization is (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • The Spin-Echo Experiments and the Second Law of Thermodynamics.T. M. Ridderbos & M. L. G. Redhead - 1998 - Foundations of Physics 28 (8):1237-1270.
    We introduce a simple model for so-called spin-echo experiments. We show that the model is a mincing system. On the basis of this model we study fine-grained entropy and coarse-grained entropy descriptions of these experiments. The coarse-grained description is shown to be unable to provide an explanation of the echo signals, as a result of the way in which it ignores dynamically generated correlations. This conclusion is extended to the general debate on the foundations of statistical mechanics. We emphasize the (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • A Philosophical Introduction to Probability.Maria Carla Galavotti - 2005 - CSLI Publications.
    Not limited to merely mathematics, probability has a rich and controversial philosophical aspect. _A Philosophical Introduction to Probability_ showcases lesser-known philosophical notions of probability and explores the debate over their interpretations. Galavotti traces the history of probability and its mathematical properties and then discusses various philosophical positions on probability, from the Pierre Simon de Laplace's “classical” interpretation of probability to the logical interpretation proposed by John Maynard Keynes. This book is a valuable resource for students in philosophy and mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Rational Thermodynamics.C. Truesdell - 1986 - Philosophy of Science 53 (2):305-306.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Can the maximum entropy principle be explained as a consistency requirement?Jos Uffink - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (3):223-261.
    The principle of maximum entropy is a general method to assign values to probability distributions on the basis of partial information. This principle, introduced by Jaynes in 1957, forms an extension of the classical principle of insufficient reason. It has been further generalized, both in mathematical formulation and in intended scope, into the principle of maximum relative entropy or of minimum information. It has been claimed that these principles are singled out as unique methods of statistical inference that agree with (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Mechanical Explanation at the End of the Nineteenth Century.Martin J. Klein - 1973 - Centaurus 17 (1):58-82.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • From Physics to Metaphysics.Paul Teller - 1997 - Philosophical Review 106 (2):272.
    The book is drawn from the Tarner lectures, delivered in Cambridge in 1993. It is concerned with the ultimate nature of reality, and how this is revealed by modern physical theories such as relativity and quantum theory. The objectivity and rationality of science are defended against the views of relativists and social constructionists. It is claimed that modern physics gives us a tentative and fallible, but nevertheless rational, approach to the nature of physical reality. The role of subjectivity in science (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Entropy in Relation to Incomplete Knowledge.K. G. Denbigh, J. S. Denbigh & H. D. Zeh - 1991 - British Journal for the Philosophy of Science 42 (1):111-144.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The constraint rule of the maximum entropy principle.Jos Uffink - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (1):47-79.
    The principle of maximum entropy is a method for assigning values to probability distributions on the basis of partial information. In usual formulations of this and related methods of inference one assumes that this partial information takes the form of a constraint on allowed probability distributions. In practical applications, however, the information consists of empirical data. A constraint rule is then employed to construct constraints on probability distributions out of these data. Usually one adopts the rule that equates the expectation (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Populäre Schriften.Ludwig Boltzmann - 1925 - Annalen der Philosophie Und Philosophischen Kritik 5 (5):174-175.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • In What Sense is the Kolmogorov-Sinai Entropy a Measure for Chaotic Behaviour?—Bridging the Gap Between Dynamical Systems Theory and Communication Theory.Roman Frigg - 2004 - British Journal for the Philosophy of Science 55 (3):411-434.
    On an influential account, chaos is explained in terms of random behaviour; and random behaviour in turn is explained in terms of having positive Kolmogorov-Sinai entropy (KSE). Though intuitively plausible, the association of the KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. I provide this justification for the case of Hamiltonian systems by proving that the KSE is equivalent to a generalized version of Shannon's (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Calcul des Probabilités.Joseph Bertrand - 1888 - Gauthier-Villars Et Fils.
    Classic work on probability which contains the study of the famous paradox of Bertrand. Extensive preface deals with laws of chance.
    Download  
     
    Export citation  
     
    Bookmark   73 citations