Results for 'AI Development'

962 found
Order:
  1. Saliva Ontology: An ontology-based framework for a Salivaomics Knowledge Base.Jiye Ai, Barry Smith & David Wong - 2010 - BMC Bioinformatics 11 (1):302.
    The Salivaomics Knowledge Base (SKB) is designed to serve as a computational infrastructure that can permit global exploration and utilization of data and information relevant to salivaomics. SKB is created by aligning (1) the saliva biomarker discovery and validation resources at UCLA with (2) the ontology resources developed by the OBO (Open Biomedical Ontologies) Foundry, including a new Saliva Ontology (SALO). We define the Saliva Ontology (SALO; http://www.skb.ucla.edu/SALO/) as a consensus-based controlled vocabulary of terms and relations dedicated to the salivaomics (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Bioinformatics advances in saliva diagnostics.Ji-Ye Ai, Barry Smith & David T. W. Wong - 2012 - International Journal of Oral Science 4 (2):85--87.
    There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval, integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. From Confucius to Coding and Avicenna to Algorithms: Cultivating Ethical AI Development through Cross-Cultural Ancient Wisdom.Ammar Younas & Yi Zeng - manuscript
    This paper explores the potential of integrating ancient educational principles from diverse eastern cultures into modern AI ethics curricula. It draws on the rich educational traditions of ancient China, India, Arabia, Persia, Japan, Tibet, Mongolia, and Korea, highlighting their emphasis on philosophy, ethics, holistic development, and critical thinking. By examining these historical educational systems, the paper establishes a correlation with modern AI ethics principles, advocating for the inclusion of these ancient teachings in current AI development and education. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. New developments in the philosophy of AI.Vincent C. Müller - 2016 - In Vincent C. Müller (ed.), Fundamental Issues of Artificial Intelligence. Cham: Springer.
    The philosophy of AI has seen some changes, in particular: 1) AI moves away from cognitive science, and 2) the long term risks of AI now appear to be a worthy concern. In this context, the classical central concerns – such as the relation of cognition and computation, embodiment, intelligence & rationality, and information – will regain urgency.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  5. Facing Janus: An Explanation of the Motivations and Dangers of AI Development.Aaron Graifman - manuscript
    This paper serves as an intuition building mechanism for understanding the basics of AI, misalignment, and the reasons for why strong AI is being pursued. The approach is to engage with both pro and anti AI development arguments to gain a deeper understanding of both views, and hopefully of the issue as a whole. We investigate the basics of misalignment, common misconceptions, and the arguments for why we would want to pursue strong AI anyway. The paper delves into various (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The Blood Ontology: An ontology in the domain of hematology.Almeida Mauricio Barcellos, Proietti Anna Barbara de Freitas Carneiro, Ai Jiye & Barry Smith - 2011 - In Barcellos Almeida Mauricio, Carneiro Proietti Anna Barbara de Freitas, Jiye Ai & Smith Barry (eds.), Proceedings of the Second International Conference on Biomedical Ontology, Buffalo, NY, July 28-30, 2011 (CEUR 883). pp. (CEUR Workshop Proceedings, 833).
    Despite the importance of human blood to clinical practice and research, hematology and blood transfusion data remain scattered throughout a range of disparate sources. This lack of systematization concerning the use and definition of terms poses problems for physicians and biomedical professionals. We are introducing here the Blood Ontology, an ongoing initiative designed to serve as a controlled vocabulary for use in organizing information about blood. The paper describes the scope of the Blood Ontology, its stage of development and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Development and validation of the AI attitude scale (AIAS-4): a brief measure of general attitude toward artificial intelligence.Simone Grassini - 2023 - Frontiers in Psychology 14:1191628.
    The rapid advancement of artificial intelligence (AI) has generated an increasing demand for tools that can assess public attitudes toward AI. This study proposes the development and the validation of the AI Attitude Scale (AIAS), a concise self-report instrument designed to evaluate public perceptions of AI technology. The first version of the AIAS that the present manuscript proposes comprises five items, including one reverse-scored item, which aims to gauge individuals’ beliefs about AI’s influence on their lives, careers, and humanity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. AI training data, model success likelihood, and informational entropy-based value.Quan-Hoang Vuong, Viet-Phuong La & Minh-Hoang Nguyen - manuscript
    Since the release of OpenAI's ChatGPT, the world has entered a race to develop more capable and powerful AI, including artificial general intelligence (AGI). The development is constrained by the dependency of AI on the model, quality, and quantity of training data, making the AI training process highly costly in terms of resources and environmental consequences. Thus, improving the effectiveness and efficiency of the AI training process is essential, especially when the Earth is approaching the climate tipping points and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. (1 other version)Ethics-based auditing to develop trustworthy AI.Jakob Mökander & Luciano Floridi - 2021 - Minds and Machines 31 (2):323–327.
    A series of recent developments points towards auditing as a promising mechanism to bridge the gap between principles and practice in AI ethics. Building on ongoing discussions concerning ethics-based auditing, we offer three contributions. First, we argue that ethics-based auditing can improve the quality of decision making, increase user satisfaction, unlock growth potential, enable law-making, and relieve human suffering. Second, we highlight current best practices to support the design and implementation of ethics-based auditing: To be feasible and effective, ethics-based auditing (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  10. Socially Good AI Contributions for the Implementation of Sustainable Development in Mountain Communities Through an Inclusive Student-Engaged Learning Model.Tyler Lance Jaynes, Baktybek Abdrisaev & Linda MacDonald Glenn - 2023 - In Francesca Mazzi & Luciano Floridi (eds.), The Ethics of Artificial Intelligence for the Sustainable Development Goals. Springer Verlag. pp. 269-289.
    AI is increasingly becoming based upon Internet-dependent systems to handle the massive amounts of data it requires to function effectively regardless of the availability of stable Internet connectivity in every affected community. As such, sustainable development (SD) for rural and mountain communities will require more than just equitable access to broadband Internet connection. It must also include a thorough means whereby to ensure that affected communities gain the education and tools necessary to engage inclusively with new technological advances, whether (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. AI Rights for Human Safety.Peter Salib & Simon Goldstein - manuscript
    AI companies are racing to create artificial general intelligence, or “AGI.” If they succeed, the result will be human-level AI systems that can independently pursue high-level goals by formulating and executing long-term plans in the real world. Leading AI researchers agree that some of these systems will likely be “misaligned”–pursuing goals that humans do not desire. This goal mismatch will put misaligned AIs and humans into strategic competition with one another. As with present-day strategic competition between nations with incompatible goals, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. The future of AI in our hands? - To what extent are we as individuals morally responsible for guiding the development of AI in a desirable direction?Erik Persson & Maria Hedlund - 2022 - AI and Ethics 2:683-695.
    Artificial intelligence (AI) is becoming increasingly influential in most people’s lives. This raises many philosophical questions. One is what responsibility we have as individuals to guide the development of AI in a desirable direction. More specifically, how should this responsibility be distributed among individuals and between individuals and other actors? We investigate this question from the perspectives of five principles of distribution that dominate the discussion about responsibility in connection with climate change: effectiveness, equality, desert, need, and ability. Since (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Developing a Trusted Human-AI Network for Humanitarian Benefit.Susannah Kate Devitt, Jason Scholz, Timo Schless & Larry Lewis - forthcoming - Journal of Digital War:TBD.
    Humans and artificial intelligences (AI) will increasingly participate digitally and physically in conflicts yet there is a lack of trusted communications across agents and platforms. For example, humans in disasters and conflict already use messaging and social media to share information, however, international humanitarian relief organisations treat this information as unverifiable and untrustworthy. AI may reduce the ‘fog-of-war’ and improve outcomes, however current AI implementations are often brittle, have a narrow scope of application and wide ethical risks. Meanwhile, human error (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. “Democratizing AI” and the Concern of Algorithmic Injustice.Ting-an Lin - 2024 - Philosophy and Technology 37 (3):1-27.
    The call to make artificial intelligence (AI) more democratic, or to “democratize AI,” is sometimes framed as a promising response for mitigating algorithmic injustice or making AI more aligned with social justice. However, the notion of “democratizing AI” is elusive, as the phrase has been associated with multiple meanings and practices, and the extent to which it may help mitigate algorithmic injustice is still underexplored. In this paper, based on a socio-technical understanding of algorithmic injustice, I examine three notable notions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Philosophers Ought to Develop, Theorize About, and Use Philosophically Relevant AI.Graham Clay & Caleb Ontiveros - 2023 - Metaphilosophy 54 (4):463-479.
    The transformative power of artificial intelligence (AI) is coming to philosophy—the only question is the degree to which philosophers will harness it. In this paper, we argue that the application of AI tools to philosophy could have an impact on the field comparable to the advent of writing, and that it is likely that philosophical progress will significantly increase as a consequence of AI. The role of philosophers in this story is not merely to use AI but also to help (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. AI Alignment vs. AI Ethical Treatment: Ten Challenges.Adam Bradley & Bradford Saad - manuscript
    A morally acceptable course of AI development should avoid two dangers: creating unaligned AI systems that pose a threat to humanity and mistreating AI systems that merit moral consideration in their own right. This paper argues these two dangers interact and that if we create AI systems that merit moral consideration, simultaneously avoiding both of these dangers would be extremely challenging. While our argument is straightforward and supported by a wide range of pretheoretical moral judgments, it has far-reaching moral (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. The Use of Artificial Intelligence (AI) in Qualitative Research for Theory Development.Prokopis A. Christou - 2023 - The Qualitative Report 28 (9):2739-2755.
    Theory development is an important component of academic research since it can lead to the acquisition of new knowledge, the development of a field of study, and the formation of theoretical foundations to explain various phenomena. The contribution of qualitative researchers to theory development and advancement remains significant and highly valued, especially in an era of various epochal shifts and technological innovation in the form of Artificial Intelligence (AI). Even so, the academic community has not yet fully (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. AI Human Impact: Toward a Model for Ethical Investing in AI-Intensive Companies.James Brusseau - manuscript
    Does AI conform to humans, or will we conform to AI? An ethical evaluation of AI-intensive companies will allow investors to knowledgeably participate in the decision. The evaluation is built from nine performance indicators that can be analyzed and scored to reflect a technology’s human-centering. When summed, the scores convert into objective investment guidance. The strategy of incorporating ethics into financial decisions will be recognizable to participants in environmental, social, and governance investing, however, this paper argues that conventional ESG frameworks (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. (1 other version)AI Extenders and the Ethics of Mental Health.Karina Vold & Jose Hernandez-Orallo - forthcoming - In Marcello Ienca & Fabrice Jotterand (eds.), Ethics of Artificial Intelligence in Brain and Mental Health.
    The extended mind thesis maintains that the functional contributions of tools and artefacts can become so essential for our cognition that they can be constitutive parts of our minds. In other words, our tools can be on a par with our brains: our minds and cognitive processes can literally ‘extend’ into the tools. Several extended mind theorists have argued that this ‘extended’ view of the mind offers unique insights into how we understand, assess, and treat certain cognitive conditions. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. Acceleration AI Ethics, the Debate between Innovation and Safety, and Stability AI’s Diffusion versus OpenAI’s Dall-E.James Brusseau - manuscript
    One objection to conventional AI ethics is that it slows innovation. This presentation responds by reconfiguring ethics as an innovation accelerator. The critical elements develop from a contrast between Stability AI’s Diffusion and OpenAI’s Dall-E. By analyzing the divergent values underlying their opposed strategies for development and deployment, five conceptions are identified as common to acceleration ethics. Uncertainty is understood as positive and encouraging, rather than discouraging. Innovation is conceived as intrinsically valuable, instead of worthwhile only as mediated by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. AI Sovereignty: Navigating the Future of International AI Governance.Yu Chen - manuscript
    The rapid proliferation of artificial intelligence (AI) technologies has ushered in a new era of opportunities and challenges, prompting nations to grapple with the concept of AI sovereignty. This article delves into the definition and implications of AI sovereignty, drawing parallels to the well-established notion of cyber sovereignty. By exploring the connotations of AI sovereignty, including control over AI development, data sovereignty, economic impacts, national security considerations, and ethical and cultural dimensions, the article provides a comprehensive understanding of this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Decolonial AI as Disenclosure.Warmhold Jan Thomas Mollema - 2024 - Open Journal of Social Sciences 12 (2):574-603.
    The development and deployment of machine learning and artificial intelligence (AI) engender “AI colonialism”, a term that conceptually overlaps with “data colonialism”, as a form of injustice. AI colonialism is in need of decolonization for three reasons. Politically, because it enforces digital capitalism’s hegemony. Ecologically, as it negatively impacts the environment and intensifies the extraction of natural resources and consumption of energy. Epistemically, since the social systems within which AI is embedded reinforce Western universalism by imposing Western colonial values (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. AI Survival Stories: a Taxonomic Analysis of AI Existential Risk.Herman Cappelen, Simon Goldstein & John Hawthorne - forthcoming - Philosophy of Ai.
    Since the release of ChatGPT, there has been a lot of debate about whether AI systems pose an existential risk to humanity. This paper develops a general framework for thinking about the existential risk of AI systems. We analyze a two-premise argument that AI systems pose a threat to humanity. Premise one: AI systems will become extremely powerful. Premise two: if AI systems become extremely powerful, they will destroy humanity. We use these two premises to construct a taxonomy of ‘survival (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24.  72
    Can AI become an Expert?Hyeongyun Kim - 2024 - Journal of Ai Humanities 16 (4):113-136.
    With the rapid development of artificial intelligence (AI), understanding its capabilities and limitations has become significant for mitigating unfounded anxiety and unwarranted optimism. As part of this endeavor, this study delves into the following question: Can AI become an expert? More precisely, should society confer the authority of experts on AI even if its decision-making process is highly opaque? Throughout the investigation, I aim to identify certain normative challenges in elevating current AI to a level comparable to that of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25.  64
    Rethinking AI: Moving Beyond Humans as Exclusive Creators.Renee Ye - 2024 - Proceedings of the Annual Meeting of the Cognitive Science Society, Volume 46.
    Termed the 'Made-by-Human Hypothesis,' I challenge the commonly accepted notion that Artificial Intelligence (AI) is exclusively crafted by humans, emphasizing its impediment to progress. I argue that influences beyond human agency significantly shape AI's trajectory. Introducing the 'Hybrid Hypothesis,' I suggest that the creation of AI is multi-sourced; methods such as evolutionary algorithms influencing AI originate from diverse sources and yield varied impacts. I argue that the development of AI models will increasingly adopt a 'Human+' hybrid composition, where human (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Living with Uncertainty: Full Transparency of AI isn’t Needed for Epistemic Trust in AI-based Science.Uwe Peters - forthcoming - Social Epistemology Review and Reply Collective.
    Can AI developers be held epistemically responsible for the processing of their AI systems when these systems are epistemically opaque? And can explainable AI (XAI) provide public justificatory reasons for opaque AI systems’ outputs? Koskinen (2024) gives negative answers to both questions. Here, I respond to her and argue for affirmative answers. More generally, I suggest that when considering people’s uncertainty about the factors causally determining an opaque AI’s output, it might be worth keeping in mind that a degree of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. AI Risk Assessment: A Scenario-Based, Proportional Methodology for the AI Act.Claudio Novelli, Federico Casolari, Antonino Rotolo, Mariarosaria Taddeo & Luciano Floridi - 2024 - Digital Society 3 (13):1-29.
    The EU Artificial Intelligence Act (AIA) defines four risk categories for AI systems: unacceptable, high, limited, and minimal. However, it lacks a clear methodology for the assessment of these risks in concrete situations. Risks are broadly categorized based on the application areas of AI systems and ambiguous risk factors. This paper suggests a methodology for assessing AI risk magnitudes, focusing on the construction of real-world risk scenarios. To this scope, we propose to integrate the AIA with a framework developed by (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Explainable AI lacks regulative reasons: why AI and human decision‑making are not equally opaque.Uwe Peters - forthcoming - AI and Ethics.
    Many artificial intelligence (AI) systems currently used for decision-making are opaque, i.e., the internal factors that determine their decisions are not fully known to people due to the systems’ computational complexity. In response to this problem, several researchers have argued that human decision-making is equally opaque and since simplifying, reason-giving explanations (rather than exhaustive causal accounts) of a decision are typically viewed as sufficient in the human case, the same should hold for algorithmic decision-making. Here, I contend that this argument (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. Unjustified untrue "beliefs": AI hallucinations and justification logics.Kristina Šekrst - forthcoming - In Kordula Świętorzecka, Filip Grgić & Anna Brozek (eds.), Logic, Knowledge, and Tradition. Essays in Honor of Srecko Kovac.
    In artificial intelligence (AI), responses generated by machine-learning models (most often large language models) may be unfactual information presented as a fact. For example, a chatbot might state that the Mona Lisa was painted in 1815. Such phenomenon is called AI hallucinations, seeking inspiration from human psychology, with a great difference of AI ones being connected to unjustified beliefs (that is, AI “beliefs”) rather than perceptual failures). -/- AI hallucinations may have their source in the data itself, that is, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  65
    A global taxonomy of interpretable AI: unifying the terminology for the technical and social sciences.Lode Lauwaert - 2023 - Artificial Intelligence Review 56:3473–3504.
    Since its emergence in the 1960s, Artifcial Intelligence (AI) has grown to conquer many technology products and their felds of application. Machine learning, as a major part of the current AI solutions, can learn from the data and through experience to reach high performance on various tasks. This growing success of AI algorithms has led to a need for interpretability to understand opaque models such as deep neural networks. Various requirements have been raised from diferent domains, together with numerous tools (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. The Ethics of AI Ethics: An Evaluation of Guidelines.Thilo Hagendorff - 2020 - Minds and Machines 30 (1):99-120.
    Current advances in research, development and application of artificial intelligence systems have yielded a far-reaching discourse on AI ethics. In consequence, a number of ethics guidelines have been released in recent years. These guidelines comprise normative principles and recommendations aimed to harness the “disruptive” potentials of new AI technologies. Designed as a semi-systematic evaluation, this paper analyzes and compares 22 guidelines, highlighting overlaps but also omissions. As a result, I give a detailed overview of the field of AI ethics. (...)
    Download  
     
    Export citation  
     
    Bookmark   157 citations  
  32. When AI meets PC: exploring the implications of workplace social robots and a human-robot psychological contract.Sarah Bankins & Paul Formosa - 2019 - European Journal of Work and Organizational Psychology 2019.
    The psychological contract refers to the implicit and subjective beliefs regarding a reciprocal exchange agreement, predominantly examined between employees and employers. While contemporary contract research is investigating a wider range of exchanges employees may hold, such as with team members and clients, it remains silent on a rapidly emerging form of workplace relationship: employees’ increasing engagement with technically, socially, and emotionally sophisticated forms of artificially intelligent (AI) technologies. In this paper we examine social robots (also termed humanoid robots) as likely (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  33.  84
    Why Does AI Lie So Much? The Problem Is More Deep Rooted Than You Think.Mir H. S. Quadri - 2024 - Arkinfo Notes.
    The rapid advancements in artificial intelligence, particularly in natural language processing, have brought to light a critical challenge, i.e., the semantic grounding problem. This article explores the root causes of this issue, focusing on the limitations of connectionist models that dominate current AI research. By examining Noam Chomsky's theory of Universal Grammar and his critiques of connectionism, I highlight the fundamental differences between human language understanding and AI language generation. Introducing the concept of semantic grounding, I emphasise the need for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. How AI Systems Can Be Blameworthy.Hannah Altehenger, Leonhard Menges & Peter Schulte - 2024 - Philosophia (4):1-24.
    AI systems, like self-driving cars, healthcare robots, or Autonomous Weapon Systems, already play an increasingly important role in our lives and will do so to an even greater extent in the near future. This raises a fundamental philosophical question: who is morally responsible when such systems cause unjustified harm? In the paper, we argue for the admittedly surprising claim that some of these systems can themselves be morally responsible for their conduct in an important and everyday sense of the term—the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. How to design AI for social good: seven essential factors.Luciano Floridi, Josh Cowls, Thomas C. King & Mariarosaria Taddeo - 2020 - Science and Engineering Ethics 26 (3):1771–1796.
    The idea of artificial intelligence for social good is gaining traction within information societies in general and the AI community in particular. It has the potential to tackle social problems through the development of AI-based solutions. Yet, to date, there is only limited understanding of what makes AI socially good in theory, what counts as AI4SG in practice, and how to reproduce its initial successes in terms of policies. This article addresses this gap by identifying seven ethical factors that (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  36. Emergent Models for Moral AI Spirituality.Mark Graves - 2021 - International Journal of Interactive Multimedia and Artificial Intelligence 7 (1):7-15.
    Examining AI spirituality can illuminate problematic assumptions about human spirituality and AI cognition, suggest possible directions for AI development, reduce uncertainty about future AI, and yield a methodological lens sufficient to investigate human-AI sociotechnical interaction and morality. Incompatible philosophical assumptions about human spirituality and AI limit investigations of both and suggest a vast gulf between them. An emergentist approach can replace dualist assumptions about human spirituality and identify emergent behavior in AI computation to overcome overly reductionist assumptions about computation. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Struggle for AI’s Recognition: Understanding the Normative Implications of Gender Bias in AI with Honneth’s Theory of Recognition.Rosalie Waelen & Michał Wieczorek - 2022 - Philosophy and Technology 35 (2).
    AI systems have often been found to contain gender biases. As a result of these gender biases, AI routinely fails to adequately recognize the needs, rights, and accomplishments of women. In this article, we use Axel Honneth’s theory of recognition to argue that AI’s gender biases are not only an ethical problem because they can lead to discrimination, but also because they resemble forms of misrecognition that can hurt women’s self-development and self-worth. Furthermore, we argue that Honneth’s theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  38. AI Enters Public Discourse: a Habermasian Assessment of the Moral Status of Large Language Models.Paolo Monti - 2024 - Ethics and Politics 61 (1):61-80.
    Large Language Models (LLMs) are generative AI systems capable of producing original texts based on inputs about topic and style provided in the form of prompts or questions. The introduction of the outputs of these systems into human discursive practices poses unprecedented moral and political questions. The article articulates an analysis of the moral status of these systems and their interactions with human interlocutors based on the Habermasian theory of communicative action. The analysis explores, among other things, Habermas's inquiries into (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Beyond the AI Divide: Towards an Inclusive Future Free from AI Caste Systems and AI Dalits.Yu Chen - manuscript
    In the rapidly evolving landscape of artificial intelligence (AI), disparities in access and benefits are becoming increasingly apparent, leading to the emergence of an AI divide. This divide not only amplifies existing socio-economic inequalities but also fosters the creation of AI caste systems, where marginalized groups—referred to as AI Dalits—are systematically excluded from AI advancements. This article explores the definitions and contributing factors of the AI divide and delves into the concept of AI caste systems, illustrating how they perpetuate inequality. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Can AI Help Us to Understand Belief? Sources, Advances, Limits, and Future Directions.Andrea Vestrucci, Sara Lumbreras & Lluis Oviedo - 2021 - International Journal of Interactive Multimedia and Artificial Intelligence 7 (1):24-33.
    The study of belief is expanding and involves a growing set of disciplines and research areas. These research programs attempt to shed light on the process of believing, understood as a central human cognitive function. Computational systems and, in particular, what we commonly understand as Artificial Intelligence (AI), can provide some insights on how beliefs work as either a linear process or as a complex system. However, the computational approach has undergone some scrutiny, in particular about the differences between what (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Will AI take away your job? [REVIEW]Marie Oldfield - 2020 - Tech Magazine.
    Will AI take away your job? The answer is probably not. AI systems can be good predictive systems and be very good at pattern recognition. AI systems have a very repetitive approach to sets of data, which can be useful in certain circumstances. However, AI does make obvious mistakes. This is because AI does not have a sense of context. As Humans we have years of experience in the real world. We have vast amounts of contextual data stored in our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. AI Can Help Us Live More Deliberately.Julian Friedland - 2019 - MIT Sloan Management Review 60 (4).
    Our rapidly increasing reliance on frictionless AI interactions may increase cognitive and emotional distance, thereby letting our adaptive resilience slacken and our ethical virtues atrophy from disuse. Many trends already well underway involve the offloading of cognitive, emotional, and ethical labor to AI software in myriad social, civil, personal, and professional contexts. Gradually, we may lose the inclination and capacity to engage in critically reflective thought, making us more cognitively and emotionally vulnerable and thus more anxious and prone to manipulation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Proposing Central Asian AI Ethics Principles: A Multilevel Approach for Responsible AI.Ammar Younas & Yi Zeng - 2024 - AI and Ethics 4.
    This paper puts forth Central Asian AI ethics principles and proposes a layered strategy tailored for the development of ethical principles in the field of artificial intelligence (AI) in Central Asian countries. This approach includes the customization of AI ethics principles to resonate with local nuances, the formulation of national and regional-level AI ethics principles, and the implementation of sector-specific principles. While countering the narrative of ineffectiveness of the AI ethics principles, this paper underscores the importance of stakeholder collaboration, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44.  42
    Towards a Taxonomy of AI Risks in the Health Domain.Delaram Golpayegani, Joshua Hovsha, Leon Rossmaier, Rana Saniei & Jana Misic - 2022 - 2022 Fourth International Conference on Transdisciplinary Ai (Transai).
    The adoption of AI in the health sector has its share of benefits and harms to various stakeholder groups and entities. There are critical risks involved in using AI systems in the health domain; risks that can have severe, irreversible, and life-changing impacts on people’s lives. With the development of innovative AI-based applications in the medical and healthcare sectors, new types of risks emerge. To benefit from novel AI applications in this domain, the risks need to be managed in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. The Point of Blaming AI Systems.Hannah Altehenger & Leonhard Menges - 2024 - Journal of Ethics and Social Philosophy 27 (2).
    As Christian List (2021) has recently argued, the increasing arrival of powerful AI systems that operate autonomously in high-stakes contexts creates a need for “future-proofing” our regulatory frameworks, i.e., for reassessing them in the face of these developments. One core part of our regulatory frameworks that dominates our everyday moral interactions is blame. Therefore, “future-proofing” our extant regulatory frameworks in the face of the increasing arrival of powerful AI systems requires, among others things, that we ask whether it makes sense (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. (1 other version)Ethics as a service: a pragmatic operationalisation of AI ethics.Jessica Morley, Anat Elhalal, Francesca Garcia, Libby Kinsey, Jakob Mökander & Luciano Floridi - 2021 - Minds and Machines 31 (2):239–256.
    As the range of potential uses for Artificial Intelligence, in particular machine learning, has increased, so has awareness of the associated ethical issues. This increased awareness has led to the realisation that existing legislation and regulation provides insufficient protection to individuals, groups, society, and the environment from AI harms. In response to this realisation, there has been a proliferation of principle-based ethics codes, guidelines and frameworks. However, it has become increasingly clear that a significant gap exists between the theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  47.  75
    AI-Driven Emotion Recognition and Regulation Using Advanced Deep Learning Models.S. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):383-389.
    Emotion detection and management have emerged as pivotal areas in humancomputer interaction, offering potential applications in healthcare, entertainment, and customer service. This study explores the use of deep learning (DL) models to enhance emotion recognition accuracy and enable effective emotion regulation mechanisms. By leveraging large datasets of facial expressions, voice tones, and physiological signals, we train deep neural networks to recognize a wide array of emotions with high precision. The proposed system integrates emotion recognition with adaptive management strategies that provide (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. The emperor is naked: Moral diplomacies and the ethics of AI.Constantin Vica, Cristina Voinea & Radu Uszkai - 2021 - Információs Társadalom 21 (2):83-96.
    With AI permeating our lives, there is widespread concern regarding the proper framework needed to morally assess and regulate it. This has given rise to many attempts to devise ethical guidelines that infuse guidance for both AI development and deployment. Our main concern is that, instead of a genuine ethical interest for AI, we are witnessing moral diplomacies resulting in moral bureaucracies battling for moral supremacy and political domination. After providing a short overview of what we term ‘ethics washing’ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. AI-Driven Learning: Advances and Challenges in Intelligent Tutoring Systems.Amjad H. Alfarra, Lamis F. Amhan, Msbah J. Mosa, Mahmoud Ali Alajrami, Faten El Kahlout, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):24-29.
    Abstract: The incorporation of Artificial Intelligence (AI) into educational technology has dramatically transformed learning through Intelligent Tutoring Systems (ITS). These systems utilize AI to offer personalized, adaptive instruction tailored to each student's needs, thereby improving learning outcomes and engagement. This paper examines the development and impact of ITS, focusing on AI technologies such as machine learning, natural language processing, and adaptive algorithms that drive their functionality. Through various case studies and applications, it illustrates how ITS have revolutionized traditional educational (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. AI in HRM: Revolutionizing Recruitment, Performance Management, and Employee Engagement.Mostafa El-Ghoul, Mohammed M. Almassri, Mohammed F. El-Habibi, Mohanad H. Al-Qadi, Alaa Abou Eloun, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):16-23.
    Artificial Intelligence (AI) is rapidly transforming Human Resource Management (HRM) by enhancing the efficiency and effectiveness of key functions such as recruitment, performance management, and employee engagement. This paper explores the integration of AI technologies in HRM, focusing on their potential to revolutionize these critical areas. In recruitment, AI-driven tools streamline candidate sourcing, screening, and selection processes, leading to more accurate and unbiased hiring decisions. Performance management is similarly transformed, with AI enabling continuous, data-driven feedback and personalized development plans (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 962