Results for 'Dedekind'

23 found
Order:
  1. Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Dedekind's proof.Andrew Boucher - manuscript
    In "The Nature and Meaning of Numbers," Dedekind produces an original, quite remarkable proof for the holy grail in the foundations of elementary arithmetic, that there are an infinite number of things. It goes like this. [p, 64 in the Dover edition.] Consider the set S of things which can be objects of my thought. Define the function phi(s), which maps an element s of S to the thought that s can be an object of my thought. Then phi (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Domain Extension and Ideal Elements in Mathematics†.Anna Bellomo - 2021 - Philosophia Mathematica 29 (3):366-391.
    Domain extension in mathematics occurs whenever a given mathematical domain is augmented so as to include new elements. Manders argues that the advantages of important cases of domain extension are captured by the model-theoretic notions of existential closure and model completion. In the specific case of domain extension via ideal elements, I argue, Manders’s proposed explanation does not suffice. I then develop and formalize a different approach to domain extension based on Dedekind’s Habilitationsrede, to which Manders’s account is compared. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Categoricity, Open-Ended Schemas and Peano Arithmetic.Adrian Ludușan - 2015 - Logos and Episteme 6 (3):313-332.
    One of the philosophical uses of Dedekind’s categoricity theorem for Peano Arithmetic is to provide support for semantic realism. To this end, the logical framework in which the proof of the theorem is conducted becomes highly significant. I examine different proposals regarding these logical frameworks and focus on the philosophical benefits of adopting open-ended schemas in contrast to second order logic as the logical medium of the proof. I investigate Pederson and Rossberg’s critique of the ontological advantages of open-ended (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Infinitesimals as an issue of neo-Kantian philosophy of science.Thomas Mormann & Mikhail Katz - 2013 - Hopos: The Journal of the International Society for the History of Philosophy of Science (2):236-280.
    We seek to elucidate the philosophical context in which one of the most important conceptual transformations of modern mathematics took place, namely the so-called revolution in rigor in infinitesimal calculus and mathematical analysis. Some of the protagonists of the said revolution were Cauchy, Cantor, Dedekind,and Weierstrass. The dominant current of philosophy in Germany at the time was neo-Kantianism. Among its various currents, the Marburg school (Cohen, Natorp, Cassirer, and others) was the one most interested in matters scientific and mathematical. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  6. Non-archimedean analysis on the extended hyperreal line *R_d and the solution of some very old transcendence conjectures over the field Q.Jaykov Foukzon - 2015 - Advances in Pure Mathematics 5 (10):587-628.
    In 1980 F. Wattenberg constructed the Dedekind completiond of the Robinson non-archimedean field  and established basic algebraic properties of d [6]. In 1985 H. Gonshor established further fundamental properties of d [7].In [4] important construction of summation of countable sequence of Wattenberg numbers was proposed and corresponding basic properties of such summation were considered. In this paper the important applications of the Dedekind completiond in transcendental number theory were considered. We dealing using set theory ZFC  (-model (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order PA and Zermelo’s (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  8. Laskettavuuden teorian varhaishistoria.Panu Raatikainen - 1995 - In Älyn oppihistoria – matka logiikan, psykologian ja tekoälyn juurille. Espoo: Finnish Artificial Intelligence Society.
    Nykyaikaisen logiikan keskeisenä tutkimuskohteena ovat erilaiset formalisoidut teoriat. Erityisesti vuosisadan vaihteen aikoihin matematiikan perusteiden tutkimuksessa ilmaantuneiden hämmentävien paradoksien (Russell 1902, 1903) jälkeen (ks. kuitenkin jo Frege 1879, Dedekind 1888, Peano 1889; vrt. Wang 1957) keskeiset matemaattiset teoriat on pyritty tällaisten vaikeuksien välttämiseksi uudelleen muotoilemaan täsmällisesti keinotekoisessa symbolikielessä, jonka lauseenmuodostussäännöt on täsmällisesti ja yksikäsitteisesti määrätty. Edelleen teoriat on pyritty aksiomatisoimaan, ts. on pyritty antamaan joukko peruslauseita, joista kaikki muut - tai ainakin mahdollisimman monet - teorian todet lauseet voidaan loogisesti johtaa (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Continuous Lattices and Whiteheadian Theory of Space.Thomas Mormann - 1998 - Logic and Logical Philosophy 6:35 - 54.
    In this paper a solution of Whitehead’s problem is presented: Starting with a purely mereological system of regions a topological space is constructed such that the class of regions is isomorphic to the Boolean lattice of regular open sets of that space. This construction may be considered as a generalized completion in analogy to the well-known Dedekind completion of the rational numbers yielding the real numbers . The argument of the paper relies on the theories of continuous lattices and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  10. Álgebras booleanas, órdenes parciales y axioma de elección.Franklin Galindo - 2017 - Divulgaciones Matematicas 18 ( 1):34-54.
    El objetivo de este artículo es presentar una demostración de un teorema clásico sobre álgebras booleanas y ordenes parciales de relevancia actual en teoría de conjuntos, como por ejemplo, para aplicaciones del método de construcción de modelos llamado “forcing” (con álgebras booleanas completas o con órdenes parciales). El teorema que se prueba es el siguiente: “Todo orden parcial se puede extender a una única álgebra booleana completa (salvo isomorfismo)”. Donde extender significa “sumergir densamente”. Tal demostración se realiza utilizando cortaduras de (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Hasdai Crescas and Spinoza on Actual Infinity and the Infinity of God’s Attributes.Yitzhak Melamed - 2014 - In Steven Nadler (ed.), Spinoza and Jewish Philosophy. Cambridge University Press. pp. 204-215.
    The seventeenth century was an important period in the conceptual development of the notion of the infinite. In 1643, Evangelista Torricelli (1608-1647)—Galileo’s successor in the chair of mathematics in Florence—communicated his proof of a solid of infinite length but finite volume. Many of the leading metaphysicians of the time, notably Spinoza and Leibniz, came out in defense of actual infinity, rejecting the Aristotelian ban on it, which had been almost universally accepted for two millennia. Though it would be another two (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Dogmas and the Changing Images of Foundations.José Ferreirós - 2005 - Philosophia Scientiae:27-42.
    I offer a critical review of several different conceptions of the activity of foundational research, from the time of Gauss to the present. These are (1) the traditional image, guiding Gauss, Dedekind, Frege and others, that sees in the search for more adequate basic systems a logical excavation of a priori structures, (2) the program to find sound formal systems for so-called classical mathematics that can be proved consistent, usually associated with the name of Hilbert, and (3) the historicist (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. The Finite and the Infinite in Frege's Grundgesetze der Arithmetik.Richard Heck - 1998 - In Matthias Schirn (ed.), Philosophy of Mathematics Today. Oxford University Press.
    Discusses Frege's formal definitions and characterizations of infinite and finite sets. Speculates that Frege might have discovered the "oddity" in Dedekind's famous proof that all infinite sets are Dedekind infinite and, in doing so, stumbled across an axiom of countable choice.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. On what Hilbert aimed at in the foundations.Besim Karakadılar - manuscript
    Hilbert's axiomatic approach was an optimistic take over on the side of the logical foundations. It was also a response to various restrictive views of mathematics supposedly bounded by the reaches of epistemic elements in mathematics. A complete axiomatization should be able to exclude epistemic or ontic elements from mathematical theorizing, according to Hilbert. This exclusion is not necessarily a logicism in similar form to Frege's or Dedekind's projects. That is, intuition can still have a role in mathematical reasoning. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. The Finite and the Infinite in Frege's Grundgesetze der Arithmetik.Richard G. Heck - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today. Clarendon Press.
    Discusses Frege's formal definitions and characterizations of infinite and finite sets. Speculates that Frege might have discovered the "oddity" in Dedekind's famous proof that all infinite sets are Dedekind infinite and, in doing so, stumbled across an axiom of countable choice.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. The Idea of Continuity as Mathematical-Philosophical Invariant.Eldar Amirov - 2019 - Metafizika 2 (8):p. 87-100.
    Download  
     
    Export citation  
     
    Bookmark  
  18. Differential Calculus Based on the Double Contradiction.Kazuhiko Kotani - 2016 - Open Journal of Philosophy 6 (4):420-427.
    The derivative is a basic concept of differential calculus. However, if we calculate the derivative as change in distance over change in time, the result at any instant is 0/0, which seems meaningless. Hence, Newton and Leibniz used the limit to determine the derivative. Their method is valid in practice, but it is not easy to intuitively accept. Thus, this article describes the novel method of differential calculus based on the double contradiction, which is easier to accept intuitively. Next, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. El infinito y el continuo en el sistema numérico.Eduardo Dib - 1995 - Dissertation, Universidad Nacional de Rio Cuarto
    This monography provides an overview of the conceptual developments that leads from the traditional views of infinite (and their paradoxes) to the contemporary view in which those old paradoxes are solved but new problems arise. Also a particular insight in the problem of continuity is given, followed by applications in theory of computability.
    Download  
     
    Export citation  
     
    Bookmark  
  20. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. On Saying What You Really Want to Say: Wittgenstein, Gödel and the Trisection of the Angle.Juliet Floyd - 1995 - In Jaakko Hintikka (ed.), From Dedekind to Gödel: The Foundations of Mathematics in the Early Twentieth Century, Synthese Library Vol. 251 (Kluwer Academic Publishers. pp. 373-426.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  22. Frege's Principle.Richard Heck - 1995 - In J. Hintikka (ed.), From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics. Kluwer Academic Publishers.
    This paper explores the relationship between Hume's Prinicple and Basic Law V, investigating the question whether we really do need to suppose that, already in Die Grundlagen, Frege intended that HP should be justified by its derivation from Law V.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23. Frege, Russell, Ramsey and the Notion of an Arbitrary Function.Gabriel Sandu - 2015 - In Gabriel Sandu, Marco Panza & Hourya Benis-Sinaceur (eds.), Functions and Generality of Logic: Reflections on Dedekind's and Frege's Logicisms. Cham, Switzerland: Springer Verlag.
    The paper argues that unlike Ramsey, Frege and Russell lacked the idea of an arbitrary function and this had important consequences for their foundational programs.
    Download  
     
    Export citation  
     
    Bookmark