Results for 'Dispositions, Bohm, Interpretation of quantum mechanics'

1000+ found
Order:
  1. Properties and dispositions: Some metaphysical remarks on quantum ontology.Mauro Dorato - 2006 - American Institute of Physics (1):139-157.
    After some suggestions about how to clarify the confused metaphysical distinctions between dispositional and non-dispositional or categorical properties, I review some of the main interpretations of QM in order to show that – with the relevant exception of Bohm’s minimalist interpretationquantum ontology is irreducibly dispositional. Such an irreducible character of dispositions must be explained differently in different interpretations, but the reducibility of the contextual properties in the case of Bohmian mechanics is guaranteed by the fact (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  2. Quantum Mechanics, Metaphysics, and Bohm's Implicate Order.George Williams - 2019 - Mind and Matter 2 (17):155-186.
    The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Dispositions, relational properties and the quantum world.Mauro Dorato - 2017 - In Maximilien Kistler (ed.), Dispositions and Causal Powers, Routledge, 2017,. London: Routledge. pp. pp.249-270..
    In this paper I examine the role of dispositional properties in the most frequently discussed interpretations of non-relativistic quantum mechanics. After offering some motivation for this project, I briefly characterize the distinction between non-dispositional and dispositional properties in the context of quantum mechanics by suggesting a necessary condition for dispositionality – namely contextuality – and, consequently, a sufficient condition for non-dispositionality, namely non-contextuality. Having made sure that the distinction is conceptually sound, I then analyze the plausibility (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  4. Can Quantum Mechanics Solve the Hard Problem of Consciousness?Basil J. Hiley & Paavo Pylkkänen - 2022 - In Shan Gao (ed.), Consciousness and Quantum Mechanics. Oxford, UK:
    The hard problem of consciousness is the problem of explaining how and why physical processes give rise to consciousness (Chalmers 1995). Regardless of many attempts to solve the problem, there is still no commonly agreed solution. It is thus very likely that some radically new ideas are required if we are to make any progress. In this paper we turn to quantum theory to find out whether it has anything to offer in our attempts to understand the place of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Об интерпретации квантовой механики (On interpretation of quantum mechanics).Francois-Igor Pris - 2022 - ФИЛОСОФИЯ НАУКИ 2 (93):75-94.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Interpretations of Quantum Mechanics and Emptiness.Michele Caponigro & Ravi Prakash - 2009 - NeuroQuantology Journal, June 2009 7 (2):198-203.
    The underlying physical reality is a central notion in the interpretations of quantum mechanics. The a priori physical reality notion affects the corresponding interpretation. This paper explore the possibility to establish a relationship between philosophical concept of physical reality in Nagarjuna's epistemology (emptiness) and the picture of underlying physical reality in Einstein, Rovelli and Zeilinger positions. This analysis brings us to conclude that the notion of property of a quantum object is untenable. We can only speak (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Is the Statistical Interpretation of Quantum Mechanics ψ-Ontic or ψ-Epistemic?Mario Hubert - 2023 - Foundations of Physics 53 (16):1-23.
    The ontological models framework distinguishes ψ-ontic from ψ-epistemic wave- functions. It is, in general, quite straightforward to categorize the wave-function of a certain quantum theory. Nevertheless, there has been a debate about the ontological status of the wave-function in the statistical interpretation of quantum mechanics: is it ψ-epistemic and incomplete or ψ-ontic and complete? I will argue that the wave- function in this interpretation is best regarded as ψ-ontic and incomplete.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  96
    The Interpretation of Quantum Mechanics[REVIEW]Andrew Lugg - 1976 - Philosophy of Science 43 (3):449-452.
    Review of M. Audi, The Interpretation of Quantum Mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Why the Many-Worlds Interpretation of quantum mechanics needs more than Hilbert space structure.Meir Hemmo & Orly Shenker - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 61-70.
    McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10.  82
    A Numerical Solution of Ermakov Equation Corresponding to Diffusion Interpretation of Wave Mechanics.Victor Christianto & Florentin Smarandache - manuscript
    It has been long known that a year after Schrödinger published his equation, Madelung also published a hydrodynamics version of Schrödinger equation. Quantum diffusion is studied via dissipative Madelung hydrodynamics. Initially the wave packet spreads ballistically, than passes for an instant through normal diffusion and later tends asymptotically to a sub‐diffusive law. In this paper we will review two different approaches, including Madelung hydrodynamics and also Bohm potential. Madelung formulation leads to diffusion interpretation, which after a generalization yields (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Philosophy and Interpretations of Quantum Mechanics.Michele Caponigro - manuscript
    This paper is a critical suvery on the philosophy and the Interpretations of Quantum Mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  12. About Fuzzy time-Particle interpretation of Quantum Mechanics (it is not an innocent one!) version one.Farzad Didehvar - manuscript
    The major point in [1] chapter 2 is the following claim: “Any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction.” So, in the case we wish to save Classical Logic we should change our Computational Model. As we see in chapter two, the mentioned contradiction is about and around the concept of time, as it is in the contradiction of modified version of paradox. It is natural to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. The consistent histories interpretation of quantum mechanics.Edward MacKinnon - unknown
    The consistent histories reformulation of quantum mechanics was developed by Robert Griffiths, given a formal logical systematization by Roland Omn\`{e}s, and under the label `decoherent histories', was independently developed by Murray Gell-Mann and James Hartle and extended to quantum cosmology. Criticisms of CH involve issues of meaning, truth, objectivity, and coherence, a mixture of philosophy and physics. We will briefly consider the original formulation of CH and some basic objections. The reply to these objections, like the objections (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Linguistic Copenhagen interpretation of quantum mechanics: Quantum Language [Ver. 4].Shiro Ishikawa - manuscript
    Recently we proposed “quantum language" (or,“the linguistic Copenhagen interpretation of quantum mechanics"), which was not only characterized as the metaphysical and linguistic turn of quantum mechanics but also the linguistic turn of Descartes=Kant epistemology. Namely, quantum language is the scientific final goal of dualistic idealism. It has a great power to describe classical systems as well as quantum systems. Thus, we believe that quantum language is the language in which science is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  93
    The Montevideo Interpretation of Quantum Mechanics: a short review.Rodolfo Gambini & Jorge Pullin - 2015 - Entropy 20 (6).
    The Montevideo interpretation of quantum mechanics, which consists in supplementing environmental decoherence with fundamental limitations in measurement stemming from gravity, has been described in several publications. However, some of them appeared before the full picture provided by the interpretation was developed. As such it can be difficult to get a good understanding via the published literature. Here we summarize it in a self contained brief presentation including all its principal elements.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. Selected Problems in Realist Interpretations of Quantum Mechanics and a Novel Suggestion.Paul Merriam - manuscript
    In this short paper I suggest a few properties a good realist interpretation of quantum mechanics ought to have. Then I canvass several interpretations, most of which do not have these properties, and further suggest problems specific to each one. Then I give a reference to a novel interpretation that solves all of these problems.
    Download  
     
    Export citation  
     
    Bookmark  
  17. Zeno Goes to Copenhagen: A Dilemma for Measurement-Collapse Interpretations of Quantum Mechanics.David J. Chalmers & Kelvin J. McQueen - 2023 - In M. C. Kafatos, D. Banerji & D. C. Struppa (eds.), Quantum and Consciousness Revisited. DK Publisher.
    A familiar interpretation of quantum mechanics (one of a number of views sometimes labeled the "Copenhagen interpretation'"), takes its empirical apparatus at face value, holding that the quantum wave function evolves by the Schrödinger equation except on certain occasions of measurement, when it collapses into a new state according to the Born rule. This interpretation is widely rejected, primarily because it faces the measurement problem: "measurement" is too imprecise for use in a fundamental physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18.  54
    A single-world consistent interpretation of quantum mechanics from fundamental time and length uncertainties.Rodolfo Gambini, Luis Pedro Garcia-Pintos & Jorge Pullin - 2018 - Physical Review A 100 (012).
    Within ordinary ---unitary--- quantum mechanics there exist global protocols that allow to verify that no definite event ---an outcome to which a probability can be associated--- occurs. Instead, states that start in a coherent superposition over possible outcomes always remain as a superposition. We show that, when taking into account fundamental errors in measuring length and time intervals, that have been put forward as a consequence of a conjunction of quantum mechanical and general relativity arguments, there are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  20. SINGULARITIES About Fuzzy time- Particle interpretation of Quantum Mechanics (It is not an innocent one!) Version two.Farzad Didehvar - manuscript
    Here, we show that by accepting Fuzzy time-Particle interpretation of Quantum Mechanics, the singularities in the new Model are vanished.
    Download  
     
    Export citation  
     
    Bookmark  
  21. Linguistic Copenhagen interpretation of quantum mechanics: Quantum Language [Ver. 6] (6th edition).Shiro Ishikawa - manuscript
    Recently I proposed “quantum language” (or,“the linguistic Copenhagen interpretation of quantum mechanics”), which was not only characterized as the metaphysical and linguistic turn of quantum mechanics but also the linguistic turn of Descartes=Kant epistemology. Namely, quantum language is the scientific final goal of dualistic idealism. It has a great power to describe classical systems as well as quantum systems. In this research report, quantum language is seen as a fundamental theory of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Contextual quantum realism and other interpretations of quantum mechanics.Francois-Igor Pris - 2023 - Moscow: Lenand.
    It is proposed a critique of existing interpretations of quantum mechanics, both anti-realistic and realistic, and, in particular, the Copenhagen interpretation, the interpretations with hidden variables, the metaphysical interpretation of H. Everett’s interpretation, the many-worlds interpretation by D. Wallace, QBism by C. Fuchs, D. Mermin and R. Schack, the relational interpretation by C. Rovelli, neo-Kantian and phenomenological interpretations by M. Bitbol, the informational interpretation by A. Zeilinger, the Nobel Prize Winner in Physics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23.  99
    A Theory of Everything consistent with the PF interpretation of Quantum Mechanics.P. Merriam & M. Habeeb - manuscript
    This note outlines a Theory of Everything consistent with the PF interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  24.  71
    A Theory of Everything Consistent with the PF interpretation of Quantum Mechanics.P. Merriam & M. A. Z. Habeeb - manuscript
    This paper continues developing the theory of everything consistent with the Presentist Fragmentalist interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  25.  49
    The Theory of Everything consistent with the PF interpretation of quantum mechanics.P. Merriam & M. A. Z. Habeeb - manuscript
    This paper give the first foray into the development of a Theory of Everything that is consistent with the PF interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Systems with Single Degree of Freedom and the Interpretation of Quantum Mechanics.Mehran Shaghaghi - manuscript
    Physical systems can store information and their informational properties are governed by the laws of information. In particular, the amount of information that a physical system can convey is limited by the number of its degrees of freedom and their distinguishable states. Here we explore the properties of the physical systems with absolutely one degree of freedom. The central point in these systems is the tight limitation on their information capacity. Discussing the implications of this limitation we demonstrate that such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Pan(proto)psychism and the Relative-State Interpretation of Quantum Mechanics.Yu Feng - manuscript
    This paper connects the hard problem of consciousness to the interpretation of quantum mechanics. It shows that constitutive Russellian pan(proto)psychism (CRP) is compatible with Everett’s relative-state (RS) interpretation. Despite targeting different problems, CRP and RS are related, for they both establish symmetry between micro- and macrosystems, and both call for a deflationary account of Subject. The paper starts from formal arguments that demonstrate the incompatibility of CRP with alternative interpretations of quantum mechanics, followed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Does accepting Fuzzy Time-Particle interpretation of Quantum Mechanics, refute the other interpretations? (Is fuzziness of time checkable experimentally?).Farzad Didehvar - manuscript
    Throughout this paper, in a nutshell we try to show a way to check Fuzzy time in general and Fuzzy time-Particle interpretation of Quantum Mechanics, experimentally. . -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  29. What Can Consciousness Anomalies Tell Us About Quantum Mechanics?George Williams - 2016 - Journal of Scientific Exploration 30 (3):326-354.
    In this paper, I explore the link between consciousness and quantum mechanics. Often explanations that invoke consciousness to help explain some of the most perplexing aspects of quantum mechanics are not given serious attention. However, casual dismissal is perhaps unwarranted, given the persistence of the measurement problem, as well as the mysterious nature of consciousness. Using data accumulated from experiments in parapsychology, I examine what anomalous data with respect to consciousness might tell us about various explanations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  80
    On Some Metaphysical problems of Many Worlds Interpretation of Quantum Mechanics.Victor Christianto & Florentin Smarandache - manuscript
    Despite its enormous practical success, many physicists and philosophers alike agree that the quantum theory is full of contradictions and paradoxes which are difficult to solve consistently. Even after 90 years, the experts themselves still do not all agree what to make of it. The area of disagreement centers primarily around the problem of describing observations. Formally, the so-called quantum measurement problem can be defined as follows: the result of a measurement is a superposition of vectors, each representing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. A simple proof of Born’s rule for statistical interpretation of quantum mechanics.Biswaranjan Dikshit - 2017 - Journal for Foundations and Applications of Physics 4 (1):24-30.
    The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Double Slit Experiment About Fuzzy time- Particle interpretation of Quantum Mechanics (It is not an innocent one!) Version two.Farzad Didehvar - manuscript
    The question of some of the friends is: -/- How is it possible to explain “Double slit experiment” by “Fuzzy time-Particle Interpretation”?
    Download  
     
    Export citation  
     
    Bookmark  
  33. 'Charge without charge' in the stochastic interpretation of quantum mechanics.Mark Sharlow - 2007
    In this note I examine some implications of stochastic interpretations of quantum mechanics for the concept of "charge without charge" presented by Wheeler and Misner. I argue that if a stochastic interpretation of quantum mechanics were correct, then certain shortcomings of the "charge without charge" concept could be overcome.
    Download  
     
    Export citation  
     
    Bookmark  
  34. On contextual "democratization" of the Copenhagen interpretation of quantum mechanics.Francois-Igor Pris - 2020 - In Второй Международный Конгресс Русского общества истории и философии науки. «Наука как общественное благо.» Том 1. Сборник статей. / ред.: И. Т. Касавин, Л. В. Шиповалова. – Москва: Издательство РОИФН,. Moscow, Russia: pp. 128-131.
    Download  
     
    Export citation  
     
    Bookmark  
  35. Philosophical Derivation(?) of the ‘Presentist Fragmentalist’ interpretation of quantum mechanics.Paul Merriam - manuscript
    We give the derivation, as opposed to justification, of the Presentist Fragmentalist interpretation of quantum mechanics in perhaps its most basic form, and then several other considerations.
    Download  
     
    Export citation  
     
    Bookmark  
  36.  49
    A Theory of Everything consistent with the PF interpretation of Quantum Mechanics.P. Merriam - manuscript
    This paper appears to give a Theory of Everything.
    Download  
     
    Export citation  
     
    Bookmark  
  37. Interpreting Quantum Mechanics and Predictability in Terms of Facts About the Universe.Andrew Knight - manuscript
    A potentially new interpretation of quantum mechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantum superposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
    Download  
     
    Export citation  
     
    Bookmark  
  38. The Problems of Quantum Mechanics and Possible solutions : Copenhagen interpretation, many worlds interpretation, transactional interpretation, decoherence and quantum logic.Rochelle Marianne Forrester - unknown
    This paper reviews some of the literature on the philosophy of quantum mechanics. The publications involved tend to follow similar patterns of first identifying the mysteries, puzzles or paradoxes of the quantum world, and then discussing the existing interpretations of these matters, before the authors produce their own interpretations, or side with one of the existing views. The paper will show that all interpretations of quantum mechanics involve elements of apparent weirdness. They suggest that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Non-locality in the AB-time interpretation of quantum mechanics.Paul Merriam - manuscript
    Non-locality is one of the great mysteries of quantum mechanics (qm). There is a new realist interpretation of qm on the table whose notion of time incorporates both of McTaggart's A-series and B-series. In this philosophically motivated interpretation there is no fact of the matter as to whether the 'now' of one system is the 'now' of another system, until measurement. But this reproduces the idea that the spins of a Bell pair of electrons do not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Macroscopic oil droplets mimicking quantum behavior: How far can we push an analogy?Louis Vervoort & Yves Gingras - manuscript
    We describe here a series of experimental analogies between fluid mechanics and quantum mechanics recently discovered by a team of physicists. These analogies arise in droplet systems guided by a surface (or pilot) wave. We argue that these experimental facts put ancient theoretical work by Madelung on the analogy between fluid and quantum mechanics into new light. After re-deriving Madelung’s result starting from two basic fluid-mechanical equations (the Navier-Stokes equation and the continuity equation), we discuss (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Quantum Foundations of Free Will.Logan Carter - manuscript
    This paper is intended to persuade an uncommitted audience that free will is illusory. I examine free will through the lens of three interpretations of quantum theory: dynamical collapse theories, hidden variable theories, and many-worlds theories. Dynamical collapse theories, hereon called collapse theories, are the primary focus of this work since they are the most widely accepted in the current philosophy of physics climate. The core postulations and mechanics of the collapse theories are articulated. Accompanying these postulations are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Scientific Realism meets Metaphysics of Quantum Mechanics.Juha Saatsi - 2017 - In Philosophers Think About Quantum Theory.
    I examine the epistemological debate on scientific realism in the context of quantum physics, focusing on the empirical underdetermin- ation of different formulations and interpretations of QM. I will argue that much of the interpretational, metaphysical work on QM tran- scends the kinds of realist commitments that are well-motivated in the light of the history of science. I sketch a way of demarcating empirically well-confirmed aspects of QM from speculative quantum metaphysics in a way that coheres with anti-realist (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  43. Metaphysics of quantum mechanics.Craig Callender - 2009 - In Compendium of Quantum Physics. Berlin Heidelberg: Springer-Verlag. pp. 384-389.
    Quantum mechanics, like any physical theory, comes equipped with many metaphysical assumptions and implications. The line between metaphysics and physics is often blurry, but as a rough guide, one can think of a theory’s metaphysics as those foundational assumptions made in its interpretation that are not usually directly tested in experiment. In classical mechanics some examples of possible metaphysical assumptions are the claims that forces are real, that inertial mass is primitive, and that space is substantival. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Philosophical Foundations of Quantum Mechanics.Alireza Mansouri - 2016 - Tehran: Nashre Ney.
    The revolution brought about by quantum mechanics in the early 20th century was nothing short of remarkable. It shattered the foundational principles of classical physics, giving rise to a plethora of controversial and intriguing conceptual questions. Questions that still perplex and confound the scientific community today. Is the quantum mechanical description of physical reality complete? Are the objects of nature truly inseparable? And most importantly, do objects not have a specific position before measurement, and are there non-causal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Bohm's approach and individuality.Paavo Pylkkänen, Basil Hiley & Ilkka Pättiniemi - 2016 - In Alexandre Guay & Thomas Pradeu (eds.), Individuals Across the Sciences. Oxford, UK: Oxford University Press.
    Ladyman and Ross argue that quantum objects are not individuals and use this idea to ground their metaphysical view, ontic structural realism, according to which relational structures are primary to things. LR acknowledge that there is a version of quantum theory, namely the Bohm theory, according to which particles do have denite trajectories at all times. However, LR interpret the research by Brown et al. as implying that "raw stuff" or haecceities are needed for the individuality of particles (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  46. Why Bohm was never a determinist.Marij Van Strien - 2023 - In Andrea Oldofredi (ed.), Guiding Waves In Quantum Mechanics: 100 Years of de Broglie-Bohm Pilot-Wave Theory. Oxford University Press.
    Bohm’s interpretation of quantum mechanics has generally been received as an attempt to restore the determinism of classical physics. However, although this interpretation, as Bohm initially proposed it in 1952, does indeed have the feature of being deterministic, for Bohm this was never the main point. In fact, in other publications and in correspondence from this period, he argued that the assumption that nature is deterministic is unjustified and should be abandoned. Whereas it has been argued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Simondon and Bohm between determinism and indeterminism.Andrej Jovicevic - 2022 - Filozofija I Društvo 33 (3):648-670.
    The radical redefinition of the landscape of physics that followed the contributions of Niels Bohr and Werner Heisenberg at the start of the 20th century led to plethora [of] new perspectives on age-old metaphysical questions on determinism and the nature of reality. The main contention of this article is that the work of Gilbert Simondon - whose magnum opus possesses a scope uniting the most basic philosophical concerns with the most recent breakthroughs in natural sciences - is highly relevant for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Quantum Theories of Consciousness.Paavo Pylkkänen - 2018 - In Rocco J. Gennaro (ed.), The Routledge Handbook of Consciousness. New York, NY, USA: pp. 216-231.
    This paper provides a brief introduction to quantum theory and the proceeds to discuss the different ways in which the relationship between quantum theory and mind/consciousness is seen in some of the main alternative interpretations of quantum theory namely by Bohr; von Neumann; Penrose: Everett; and Bohm and Hiley. It briefly considers how qualia might be explained in a quantum framework, and makes a connection to research on quantum biology, quantum cognition and quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our (...) extends this intuitive picture of states and Hilbert-space trajectories to the more realistic case of open quantum systems despite the generic development of entanglement. We provide independent justification for the partial-trace operation for density matrices, reformulate wave-function collapse in terms of an underlying interpolating dynamics, derive the Born rule from deeper principles, resolve several open questions regarding ontological stability and dynamics, address a number of familiar no-go theorems, and argue that our interpretation is ultimately compatible with Lorentz invariance. Along the way, we also investigate a number of unexplored features of quantum theory, including an interesting geometrical structure—which we call subsystem space—that we believe merits further study. We conclude with a summary, a list of criteria for future work on quantum foundations, and further research directions. We include an appendix that briefly reviews the traditional Copenhagen interpretation and the measurement problem of quantum theory, as well as the instrumentalist approach and a collection of foundational theorems not otherwise discussed in the main text. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Towards a Micro Realistic Version of Quantum Mechanics, Part I.Nicholas Maxwell - 1976 - Foundations of Physics 6 (3):275-292.
    This paper investigates the possibiity of developing a fully micro realistic version of elementary quantum mechanics. I argue that it is highly desirable to develop such a version of quantum mechanics, and that the failure of all current versions and interpretations of quantum mechanics to constitute micro realistic theories is at the root of many of the interpretative problems associated with quantum mechanics, in particular the problem of measurement. I put forward a (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
1 — 50 / 1000