IPCC SPECIAL REPORT ON CLIMATE CHANGE AND LAND (SRCCL) -/- Chapter 3: Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
I examine the meaning and merits of a premise in the Exclusion Argument, the causal closure principle that all physical effects have physical causes. I do so by addressing two questions. First, if we grant the other premises, exactly what kind of closure principle is required to make the Exclusion Argument valid? Second, what are the merits of the requisite closure principle? Concerning the first, I argue that the Exclusion Argument requires a strong, “stringently pure” version of closure. The latter (...) employs two qualifications concerning the physical sufficiency and relative proximity of the physical cause required for every physical effect. The second question is addressed in two steps. I begin by challenging the adequacy of the empirical support offered by David Papineau for closure. Then I assess the merits of “level” and “domain” versions of stringently pure closure. I argue that a domain version lacks adequate and non-question-begging support within the context of the Exclusion Argument. And I argue that the level version leads to a puzzling metaphysics of the physical domain. Thus, we have grounds for rejecting the version of closure required for the Exclusion Argument. This means we can resist the Exclusion Argument while avoiding the implausible implications that come with rejecting one of its other premises. That is, because there are grounds to reject causal closure, one can reasonably affirm the non-overdeterminative causal efficacy of conscious mental states while denying that the latter are identical with physical states. (shrink)
GAMETOGÊNESE -/- Emanuel Isaque Cordeiro da Silva Instituto Agronômico de Pernambuco Departamento de Zootecnia – UFRPE Embrapa Semiárido -/- • _____OBJETIVO -/- Os estudantes bem informados, estão a buscando conhecimento a todo momento. O estudante de Veterinária e Zootecnia, sabe que a Reprodução é uma área de primordial importância para sua carreira. Logo, o conhecimento da mesma torna-se indispensável. No primeiro trabalho da série fisiologia reprodutiva dos animais domésticos, foi abordado de forma clara, didática e objetiva os mecanismos de diferenciação (...) sexual dos embriões em desenvolvimento, quais os genes envolvidos nesse processo e tudo mais. Nesse segundo trabalho, a abordagem será teórica, mas também clara, sobre a formação primordial dos gametas femininos e masculinos, através da ovogênese nas fêmeas e a espermatogênese nos machos. Esse trabalho visa levar a importância do processo de formação dos gametas e a produção hormonal das gônadas, bem como o entendimento sobre as interações com o eixo hipotálamo-hipofisário. -/- •____INTRODUÇÃO -/- A reprodução sexual é um processo mediante a qual dois organismos da mesma espécie unem seu material genético para dar lugar a um organismo fixo com combinação única de genes; para isso, cada organismo produz células que contém a metade do material genético característico da espécie. Essas células haploides (1n) são denominadas gametas; ao combinar-se um gameta masculino com um feminino produz-se uma célula diploide (2n) (zigoto ou ovo) a partir da qual se forma o embrião. A grande maioria das espécies com reprodução sexual são anisogâmicas, o que significa que produzem dois tipos de gametas diferentes: os gametas masculinos são microscópios, móveis e produzem-se em grande quantidade, enquanto que os femininos são grandes, imóveis e produzem-se em menor quantidade. O tipo de gameta que um indivíduo produz é o que define seu sexo; sobre os animais o macho é o indivíduo que produz grandes quantidades de espermatozoides e a fêmea produz uma menor quantidade de óvulos, enquanto que nas plantas as gônadas masculinas são as produtoras pólen e as femininas produzem oosferas. Os gametas são diferentes do resto das células do organismo, as quais se chamam células somáticas; essas últimas são diploides porque contém dois pares de cromossomos, um par herdado do pai do indivíduo e o outro da mãe. As células somáticas, ademais, se dividem por mitose, ao qual os cromossomos se duplicam antes de cada divisão celular e cada uma das células filhas recebe um complemento diploide idêntico dos cromossomos, logo todas as células somáticas de um indivíduo possuem o mesmo material genético, embora cada tipo celular expresse diferentes combinações de genes. Em contraponto, os gametas são células haploides porque possuem somente um par de cromossomos e a metade do material genético característico da espécie. Cada um dos cromossomos em um gameta é resultado da recombinação dos genes contidos nos cromossomos paterno e materno do indivíduo que originam o gameta, e cada um destes possuem uma combinação única de genes. Os gametas se formam a partir das células germinais, que são células que em sua origem são diploides e elas de “comprometem” a manter-se como uma linha celular especial que em determinado momento sofrerá o processo de meiose para dar origem aos gametas haploides, sejam óvulos ou espermatozoides segundo o sexo do animal. Como descrito no trabalho sobre a diferenciação sexual, as células germinativas primordiais originam-se no epiblasto do embrião, e migram desde o saco vitelino até colonizar as cristas gonodais, onde, por sua vez, proliferam-se e se organizam junto com as células somáticas da gônada primitiva para formar o testículo ou o ovário. As células germinais masculinas e femininas tem a mesma origem embrionária. As gônadas indiferenciadas em um embrião possuem três tipos celulares: as células que dão origem aos gametas (ovogonia ou espermatogonia), as precursoras de células que nutrem os gametas em desenvolvimento (células da granulosa no ovário; células de Sertoli no testículo) e as precursoras de células que secretam hormônios sexuais (células da teca no ovário; células de Leydig no testículo). As células germinais são as únicas estruturas do organismo que têm a capacidade de dividir-se por meiose sofrendo uma redução no número de seus cromossomos, sendo responsável pela transmissão da carga genética aos descendentes. Em contraste, as células somáticas somente se dividem por mitose. A formação dos gametas compreende fases sequenciais de mitose, meiose e pós-meiose. Esses processos são altamente organizados e necessitam de um preciso e bem coordenado programa de expressão genética. Uma das características importantes da gametogênese é a redução cromossômica, que através da meiose, reduz pela metade o número de cromossomos e produz células distintas entre si, devido a trocas de material genético entre os pares de cromossomos provenientes do pai e da mãe, o que ocorre no processo de “crossing over” durante a primeira fase da meiose. A gametogênese é o processo mediante o qual as células germinais de cada sexo se multiplicam, dividem e diferenciam até formar os gametas. No caso da formação dos gametas masculinos o processo recebe o nome específico de espermatogênese, e para os gametas femininos é denominado como ovogênese. Embora os dois processos alcancem o objetivo comum de produção das células haploides, por onde compartilham algumas características, existem diferenças marcadas entre eles devido a necessidade de produzir um número muito distinto de gametas, de tamanho diferente, e com características de motilidade também distintas. -/- •___ESPERMATOGÊNESE -/- A espermatogênese é o processo mediante o qual se produz os gametas masculinos denominados espermatozoides. Durante a vida fetal as células germinais e as células somáticas do testículo em formação organizam-se em túbulos seminíferos que se derivam dos cordões sexuais primários e conformam a maior parte da medula do testículo. Na etapa fetal cada tubo seminífero é delimitado por uma membrana basal, recoberta na parte interior pelas células precursoras das células de Sertoli (um tipo de células somáticas). No exterior do túbulo localizam-se as células precursoras das células de Leydig ou intersticiais (figura 1), que também são células somáticas. Entre a membrana basal e as células de Sertoli encontram-se algumas células germinais denominadas espermatogonias de reserva A0 (denominadas gonócitos) que serão o único tipo de células germinais presentes no testículo enquanto o animal não alcançar a puberdade. As células de Sertoli estabelecem na região basal uniões oclusoras entre si, formando parte da barreira hemato-testicular. As espermatogonias A0 localizam-se por dentro da membrana basal do túbulo seminífero, embora fora da barreira hemato-testicular. Figura 1: fase neonatal. Nota-se a grande infiltração de tecido intersticial em quase 50% da seção originando que os túbulos sejam pequenos e redondos em sua maioria. O citoplasma e núcleo das células pré-Leydig são notadas claramente por essa ser uma espécie suína onde o tecido intersticial está claramente diferenciado. Hematoxilina-eosina (X 220.5). Fonte: Embrapa. -/- O número de células de Sertoli no testículo depende da influência do hormônio folículo estimulante (FSH) presente durante a vida fetal e as primeiras etapas de vida pós-natal. A população de células de Sertoli ao chegar a puberdade se manterá fixa durante o resto da vida do animal; existe uma relação positiva entre o tamanho e a população de células de Sertoli e a capacidade de produção de espermatozoides do testículo. As células de Sertoli são as únicas células somáticas que estão no epitélio seminífero, e sua função é a nutrição, sustentação e controle endócrino das células germinais. As células de Sertoli participam ativamente no processo de liberação dos espermatozoides para a luz do túbulo. Nesse momento, as células de Sertoli realizam a fagocitose de parte do citoplasma do espermatozoide dos chamados corpos residuais. As células de Sertoli também fagocitam as células germinais que se degeneram no curso normal da espermatogênese. Essas células ainda sintetizam grande quantidade de proteínas, como por exemplo as proteínas ABP (androgen hinding protein), que transportam andrógenos para todo o aparelho reprodutivo, transferrinas, que transportam ferro para a respiração celular das células germinais e também às inibinas, que regulam a liberação de FSH pela hipófise, através de um sistema de retroalimentação (feedback) negativa (figura 2). Figura 2: epitélio seminífero, células de Sertoli (flecha) (400 X). Fonte: Embrapa. -/- Antes da puberdade dos túbulos seminíferos observam-se ao corte como estruturas de diâmetro pequeno, sem luz, e conformados unicamente pelas células de Sertoli e espermatogonias de reserva e rodeados por abundante tecido intersticial, ao que estão presentes as células precursoras das células de Leydig. Ainda antes da puberdade, a diferenciação celular manifesta-se primeiro pela presença de espermatócitos primários, os quais se degeneram em geral na fase de paquíteno, por falta de estimulação hormonal. A partir de que o animal chega a puberdade inicia-se o processo de espermatogênese, que se manterá durante toda a vida do animal, exceto em espécies de animais silvestres muito estacionais, ao qual pode se suspender durante a época não reprodutiva para voltar e ser retomada na época ou estação reprodutiva. Depois da puberdade, os túbulos seminíferos possuem um diâmetro muito maior; em seu interior observa-se um grande número de células germinais de todos os tipos, diferentes estádios de divisão, e em seu lúmen contém líquido e espermatozoides. Ainda sobre o alcancei da puberdade, as espermatogonias começam a dividir-se aceleradamente por mitose, enquanto que no espaço intersticial as células mesenquimais também começam a se diferenciar e a dar origem as células de Leydig (figura 3). A partir dessa etapa as células de Leydig (totalmente diferenciadas) são também evidentes no exterior do túbulo, junto com as células mioides ou peritubulares que o rodeiam o que ao contrair-se são responsáveis por controlar o avanço dos fluidos e as células presentes no lúmen do túbulo. As células mioides estão situadas ao redor do túbulo, e é creditado a elas a promoção da contração e da integridade estrutural do túbulo. Esse tipo celular apenas se diferencia na puberdade pela ação dos andrógenos (figura 4). As interações entre as células de Sertoli e as mioides parecem ter um papel importante na manutenção das funções do testículo. Durante o processo de espermatogênese, as espermatogonias de reserva dividem-se periodicamente e enquanto algumas células fixas permanecem como espermatogonias de reserva, outras proliferam e sofrem uma seção de divisões mitóticas durante as quais se vão diferenciando até formarem espermatócitos primários (espermatocitogênese ou fase de mitose), logo sofrem divisões especiais mediante as quais reduzem seu número de cromossomos (fase de meiose), e ao final trocam de forma para converter-se em espermatozoides (espermatocitogênese) (figura 5). Cada uma dessas etapas da espermato- gênese será descrito detalhadamente adiante, antes é necessário a explicação de algumas características das células de Sertoli e de Leydig que ajudarão a entender seu papel durante a espermatogênese. Figura 3: células de Leydig no espaço intersticial do testículo bovino adulto PAS (400 X). Fonte: Embrapa. -/- Figura 4: o estabelecimento da puberdade pela presença de espermatozoides no túbulo. Hematoxilina-eosina (400 X). Fonte: Embrapa. Figura 5: fases mitóticas das espermatogonias (A0 e B) para formação de um espermatócito primário e as duas fases de meiose que se sucedem antes da espermatogênese. Fonte: ZARCO, 2018. -/- Ao início da espermatocitogênese as uniões oclusoras entre as células de Sertoli se abrem por etapas (como as comportas de um submarino) para permitir a passagem das espermatogonias em direção ao centro do túbulo seminífero sem que se estabeleça uma continuidade entre o exterior e o interior da barreira hemato-testicular. Uma vez ultrapassada essa barreira, as sucessivas gerações de espermatogonias, espermatócitos, espermátides e espermatozoides irão se localizar em direção ao interior do túbulo seminífero, em estreita associação com as células de Sertoli. Em consequência, as células de Sertoli dividem o túbulo seminífero em dois compartimentos; o compartimento basal (debaixo das uniões oclusoras das células de Sertoli), ao qual residem as espermatogonias de reserva, e o compartimento adluminal (em direção ao centro do túbulo), cujos espaços entre as células de Sertoli desenvolvem o resto do processo de espermatogênese (meiose e espermatocitogênese). Esse feito é importante porque durante a vida fetal as únicas células germinais existentes eram as espermatogonias de reserva, pelo que os antígenos expressados por gerações mais avançadas (espermatogonias intermediárias, secundárias, espermátides e espermatozoides) não são reconhecidos como próprios do corpo pelo sistema imunológico. Logo, o anterior implica que deve existir uma barreira entre eles e o sangue para evitar um ataque imunológico. Em todas as etapas da espermatogênese, as células de Sertoli atuam como células de suporte para as células germinais, que sempre permanecem recoberta pela membrana das células de Sertoli. Também atuam como células nutricionais já que proporcionam o meio em que as células germinais se desenvolvem e maturam, assim como as substâncias que regulam e sincronizam as sucessivas divisões e transformações das células germinais. As células de Sertoli produzem hormônios, como estrógenos e inibina que atuam sobre a hipófise para regular a secreção das gonadotropinas que controlam a espermatogênese. As células de Leydig que residem no exterior do túbulo seminífero também são importantes para a espermatogênese: produzem a testosterona que estimula e mantém a espermatogênese, bem como serve como substrato sobre o qual atua como aromatizador das células de Sertoli para transformá-las em estrógenos. Como supracitado, para seu estudo podemos dividir a espermatogênese em três fase: espermatocitogênese, meiose e espermiogênese (figura 6). Agora, serão descritas cada uma dessas etapas. Em algumas espécies, incluindo no homem, os macrófagos representam o segundo tipo celular intersticial mais numeroso no testículo, depois das células de Leydig. Os macrófagos e vários subtipos de linfócitos são identificados nós testículos de ovinos e ratos. Eles estão intimamente associados com as células de Leydig e atuam juntamente na regulação da esteroidogênese. Figura 6: fluxograma da espermatogênese. -/- Espermatocitogênese -/- A espermatocitogênese, também chamada de etapa proliferativa ou de mitose, consiste numa série de divisões mitóticas sofridas pelas células descendentes de uma espermatogonia de reserva. Uma vez que a célula se divide, abandona o estado de reserva e começa um processo de diferenciação. As espermatogonias de reserva (denominadas espermatogonias A0 na rata ou As nos humanos) são células que existem desde a vida fetal e que permanecem mitoticamente inativas durante a infância. Uma vez que alcançam a puberdade começam a dividir-se em intervalos regulares, e as células filhas podem permanecer como espermatogonias de reserva ou abandonar a reserva e ingressar na dita espermatocitogênese. Uma vez abandonada a reserva, as células filhas que vão se formando em cada divisão permanecem unidas por pontes citoplasmáticas, constituindo um clone que se divide sincronicamente. As células que se formam depois de cada divisão continuam sendo espermatogonias, porém cada geração é ligeiramente diferente da anterior. Na rata, por exemplo, as espermatogonias tipo A0 ao dividir-se originam espermatogonias do tipo A1, que em sucessivas divisões formam espermatogonias dos tipos A2, A3 e A4, as quais, por sua vez, sofrem outra mitose para formar espermatogonias intermediárias e uma mais para formar espermatogonias do tipo B. Essas últimas se diferenciam (sem se dividir) em espermatócitos primários, processo em que termina a fase de espermatocitogênese, que literalmente significa processo de geração de espermatócitos. As espermatogonias tipo A0 são a fonte para a contínua produção de gametas. A metade delas se dividem e formam células iguais (as chamadas células tronco) e a outra metade forma as espermatogonias A1, que sofre novas divisões mitóticas e formam os tipos 2, 3 e 4. O tipo A4 sofre mitose para formar a intermediária (A In), que por mitose, forma a tipo B (figura 6). Esses tipos de espermatogonias podem ser identificadas em evoluções histológicas de acordo com sua organização topográfica na membrana basal dos túbulos seminíferos ou mediante seu conteúdo de heterocromatina. Outra maneira de diferenciação se baseia em marcadores moleculares específicos que distinguem as espermatogonias tronco (A0) das demais, com os fins de isolamento, desenvolvimento in vitro e transplante. As tipo B passam por mitose para formarem os espermatócitos primários; estes iniciam a primeira etapa da meiose formando os espermatócitos secundários; na segunda etapa da divisão meiótica, cada espermatócito secundário se divide e formam as chamadas espermátides. Quando o testículo alcança seu desenvolvimento total, a meiose completa-se e as espermátides originadas se convertem em espermatozoides. Um dos maiores sinais característicos desse fenômeno é o alargamento das espermátides e sua migração em direção ao lúmen do túbulo seminífero (figuras 4, 7 e 8). Figura 7: espermatogonias marcadas por imuno-histoquímica, anticorpo monoclonal TGFa (400 x). Figura 8: fases de divisões meióticas (M), espermatócitos em paquíteno (PA) e espermatócitos secundários (ES). -/- Figura 9: estádio posterior a liberação dos espermatozoides na luz do túbulo. Hematoxilina-eosina (400 x). Mediante as seis divisões mitóticas que ocorrem durante a espermatocitogênese se forma potencialmente um clone de 64 espermatócitos primários a partir de cada espermatogonia A que ingressa sobre o processo. Não obstante, algumas células sofrem apoptose em cada uma das etapas do processo, ao qual o número real formado é menor. Em outras espécies produzem-se um transcurso similar de divisões mitóticas sucessivas durante a espermatocitogênese, embora a nomenclatura utilizada possa ser distinta, por exemplo nos bovinos as duas últimas divisões mitóticas dão origem as espermatogonias de tipo B1 e B2. -/- Meiose -/- Uma vez que as espermatogonias B se diferenciam em espermatócitos primários, esses iniciam a etapa de meiose, com uma nova divisão; desta vez a divisão é do tipo meiótica. Ao completar-se a primeira divisão meiótica (meiose I) se obtém os espermató-citos secundários, que ao sofrer a segunda divisão meiótica (meiose II) dão origem as espermátides. Vale salientar que a meiose é o processo mediante o qual reduz-se a metade do número de cromossomos, pelo que as espermátides que se obtém são células haploides (1n). Os espermatócitos secundários que se formam depois da primeira divisão meiótica contém a metade do número normal de cromossomos, porém a mesma quantidade de DNA já que cada cromossomo é duplo. As espermátides formadas na conclusão da segunda divisão meiótica (figura 7), por sua vez, contém a metade dos cromossomos, e esse já não são duplos, já que se trata de células 1n. Também deve-se enfatizar que durante a meiose é relevante o entrecruzamento dos cromossomos homólogos, pelo que cada espermátide possui uma combinação única e diferente de genes paternos e maternos. Outro ponto que deve ser levado em consideração é que cada espermátide somente possui um cromossomo sexual; a metade das espermátides contém o cromossomo X herdado da mãe do macho que está levando a cabo a espermatogênese e a outra metade contém o cromossomo Y herdado de seu pai. Para cada espermatócito primário que entra no processo de meiose obtém-se cerca de quatro espermátides, pelo qual ao ser completada a meiose potencialmente se poderiam formar até 256 espermátides por cada espermatogonia que abandona a reserva e ingressa na espermatocitogênese. -/- Espermiogênese -/- Durante a espermiogênese, também chamada de fase de diferenciação, as esper-mátides sofrem, sem se dividir, uma metamorfose que as transforma em espermatozoides, os quais finalmente são liberados das células de Sertoli em direção ao lúmen do túbulo seminífero. A espermiogênese é um processo complicado e longo já que a espermátide deve sofrer complexas trocas nucleares, citoplasmáticas e morfológicas que resultam na forma-ção dos espermatozoides. Algumas dessas mudanças incluem a condensação do material nuclear para formação de um núcleo plano e denso, a eliminação do citoplasma para a constituição de uma célula pequena, a formação de uma estrutura especializada denomi-nada acrossomo ou tampa cefálica, e a formação do pescoço e da cauda (flagelo) do esper-matozoide, do que depende a sua motilidade. Durante a maior parte da espermiogênese, as espermátides se mantém com uma estreita associação com as células de Sertoli; logo, chega-se a observar, então, flagelos que se projetam em direção a luz do túbulo que pare-cem sair das células de Sertoli, sendo na realidade os flagelos dos espermatozoides que ainda não tinham sido liberados pelo lúmen. Ao liberar os espermatozoides em direção a luz do túbulo, as células de Sertoli realizam a fagocitose de parte do citoplasma dos espermatozoides (corpos residuais). Também fagocitam os restos de todas as células germinais que sofrem apoptose ou degeneram-se durante a espermatogênese. Credita-se que ao realizar essas funções as células de Sertoli podem fazer uma monitoração eficiente da espermatogênese, o que lhes permitiria emitir sinais para colaborar na regulação desse processo em nível gonodal e a nível sistêmico através da secreção de hormônios como a inibina e o estradiol. Além da inibina e activina, as células de Sertoli sintetizam outras proteínas, como a ABP (proteína ligadora de andrógenos) que serve como uma molécula de transporte de andrógenos dentro dos túbulos seminíferos, ductos deferentes e epidídimo, ou a transfer-rina, que transporta o ferro necessário para a respiração celular. -/- Resultados da espermatogênese -/- O resultado da espermatogênese não significa apenas uma simples multiplicação das células germinais (até 256 espermatozoides a partir de cada espermatogonia A1), senão que através dela são produzidos gametas haploides pequenos, móveis e com grande diversidade genética entre eles, ao mesmo tempo que se mantêm uma reversa de células mãe (espermatogonias A0) a partir das quais se poderiam originar novos ciclos de esper-matogênese durante o resto da vida do animal. -/- Controle hormonal da espermatogênese -/- Como mencionado, o FSH reproduz um importante papel para o estabelecimento das células de Sertoli durante a vida fetal e início da vida pós-natal. O começo da esper-matogênese também é estimulado pelo FSH, que atua sobre as células de Sertoli para estimular sua função e a ativação de sinais dessas células em direção as células germinais, incluindo-as a abandonar a reserva e ingressar na espermatogênese. O FSH, assim mesmo, estimula a mitose durante o resto da espermatogênese e aumenta a eficiência do processo, já que reduz a apoptose e a degeneração de espermatogonias intermediárias e do tipo B. O FSH também estimula as células de Sertoli para produzirem inibina e ABP. Uma vez iniciada a espermatogênese somente requerem níveis baixos de FSH para se mantê-la. As células de Sertoli também devem ser estimuladas pela testosterona para funcio-nar de maneira adequada; se requer também do LH hipofisário: hormônio que estimula as células de Leydig para produzir testosterona. Por sua vez, a secreção de LH e FSH é regulada pelo GnRH hipotalâmico: esse neurohormônio também faz parte do mecanismo de regulação da espermatogênese. A espermatogênese também é modulada em nível local mediante a produção de determinados fatores e interações entre as células. Dentro dos fatores locais podemos mencionar o fator de crescimento parecido com a insulina 1 (IGF-1), o fator de crescimen-to transformante beta (TGF- β), activina, ocitocina e diversas citocinas. Entre as intera-ções celulares existem tanto uniões de comunicação entre as células de Sertoli e as células germinais, como pontes citoplasmáticas entre todas as células germinais que formam o clone de células descendentes de uma espermatogonia A1. Uma vez que as células de Sertoli iniciam sua função na puberdade é possível manter experimentalmente a espermatogênese somente com testosterona, sem ser requeri-dos nenhum outro hormônio. A quantidade de espermatozoides produzidos, no entanto, é maior quando há presença do FSH. Abaixo do estímulo do FSH as células de Sertoli produzem estradiol e inibina, hormônios que geram uma retroalimentação sobre o eixo hipotálamo-hipofisário para a regulação da secreção de gonadotropinas. Em particular, a inibina reduz a secreção de FSH, pelo qual é factível que sirva como um sinal que evite uma excessiva estimulação as células de Sertoli. -/- Ciclo do epitélio seminífero -/- Em cada espécie as espermatogonias de reserva iniciam um novo processo de divi-sões celulares em intervalos fixos: a casa 14 dias no touro; 12 dias no garanhão e a cada 9 dias no cachaço (reprodutor suíno). A nova geração de células que começam a proliferar sobre a base do tubo deslocam-se em direção ao centro do túbulo a geração anterior, que por sua vez deslocam-se as gerações anteriores. Devido as mudanças que vão sofrendo cada geração celular se ajustam a tempos característicos de cada etapa, já que rodas as células em uma determinada seção do túbulo estão sincronizadas entre si pelas células de Sertoli; em cada espécie somente é possível encontrar um certo número de combinações celulares: 14 diferentes combinações no caso da rata, 8 no touro e 6 no ser humano. A sucessão de possíveis combinações até regressar a primeira combinação se conhece como o ciclo do epitélio seminífero. Na maioria das espécies os espermatozoides que são libera-dos em direção a luz do túbulo provém das células que entraram no processo de esperma-togênese quatro gerações antes que a geração que está ingressando nesse momento, pelo que a espermatogênese no touro dura ao redor de 60 dias e um pouco menos em outras espécies domésticas. Significa que os efeitos negativos das alterações na espermatogêne-se podem estar presentes até dois meses depois de que se produziram essas alterações. Como supracitado, geralmente se observa a mesma combinação celular em toda a área de uma determinada secção transversal do túbulo seminífero. No entanto, se fizermos uma série de secções, observa-se que ao longo do túbulo há uma sucessão ordenada de combinações (a primeira em uma determinada secção; a segunda combinação na seguinte secção, e assim sucessivamente em secções subsequentes até regressar a primeira combi-nação. Teremos, então, que ao início da divisão das espermatogonias A1 se produz de forma sincronizada em uma secção do túbulo, e vai-se transmitindo como uma onda peristáltica as secções adjacentes. Esse processo é denominado como onda do epitélio seminífero e graças à esse túbulo seminífero sempre tem secções em todas as etapas da espermatogênese, com o que se alcança uma produção constante de espermatozoides. -/- Alterações da espermatogênese -/- Nas espécies estacionais a espermatogênese, como já mencionado, pode reduzir-se ou inclusive suspender sua atividade fisiológica durante a época não reprodutiva dessas espécimes, porém esse processo fisiológico não pode ser considerado como uma altera-ção. No entanto, a espermatogênese só pode ser alterada pelas enfermidades ou por fatores externos. A principal causa de alterações na espermatogênese é o aumento da temperatura testicular. Por isso, os testículos são localizados na saco escrotal e são “caídos” para fora do corpo como pode-se observar nos bovinos, caprinos, ovinos, caninos e no próprio homem. A temperatura testicular deve estar cerca de 2 a 6 °C abaixo da temperatura corporal normal. As células germinais masculinas são sensíveis ao calor, pelo qual na maioria dos mamíferos os testículos se encontram fora da cavidade abdominal e existe um sofisticado sistema de termorregulação para mantê-los a uma temperatura menor que a corporal. Se a temperatura corporal for elevada ou se os testículos permanecerem na cavidade abdominal, ou ainda se os sistemas termorreguladores do testículo sejam afetados por fatores inflamatórios como edema ou falta de mobilidade testicular dentro do escroto, a temperatura do tecido testicular aumentará e a espermatogênese sofrerá alterações proporcionais ao excesso de temperatura e a duração da elevação. A espermatogênese também pode ser afetada pela exposição a hormônios ou a outras substâncias. É possível que a causa mais comum (sobretudo no homem) seja o uso de esteroides anabólicos, que elevam a concentração de andrógenos na circulação, provo-cando um feedback negativo sobre a secreção de gonadotropinas. Ao deixar de estimular-se o testículo pelas gonadotropinas, este deixará de produzir testosterona, e as concentra-ções de andrógeno exógeno nunca alcançará as altíssimas concentrações de testosterona que normalmente estão presentes a nível do tecido testicular por ser o local onde se produz o hormônio. Também se supõe que diversas substâncias com propriedades estrogênicas derivadas de processos industriais (indústria dos plásticos, hidrocarbonetos etc.) e presentes no ambiente (fatores xenobióticos) podem ser responsáveis pelas alterações na espermatogênese em diversas espécies, entre as quais se inclui o ser humano. -/- • OVOGÊNESE E FOLICULOGÊNESE -/- A ovogênese é o processo seguido pelas células germinais da fêmea para a forma-ção dos óvulos, que são células haploides. Durante a vida fetal as células germinais proliferam-se no ovário por mitose, formando um grande número de ovogonias, algumas das quais se diferenciam em ovócitos primários que iniciam sua primeira divisão meiótica para deter-se na prófase da divisão. Somente alguns desses ovócitos primários retornarão e concluirão a primeira divisão meiótica em algum momento da vida adulta do animal, dando origem a um ovócito secundário e a um corpo polar. O ovócito secundário inicia a sua segunda divisão meiótica, a qual volta a ficar suspensa até receber um estímulo apropriado, já que somente os ovócitos secundários que são ovulados e penetrados por um espermatozoide retornam e concluem a segunda divisão meiótica, dando origem a um óvulo (figura 10). O processo de ovogênese é realizado dentro dos folículos ovarianos, que também tem que sofrer um longo transcurso de desenvolvimento e diferenciação denominado foliculogênese pelo que a ovogênese como tal realiza-se dentro do marco desse último processo. Por essa razão, na seguinte seção descreverei tanto a ovogênese como a folicu-logênese, e a relação que existe entre ambos. Figura 10: representação da ovogênese. Na etapa de proliferação, as células germinais se diferen-ciam por mitose. A meiose I se caracteriza por uma prófase prolongada, ocorrendo a duplicação do DNA. Nas duas divisões, que ocorrem antes da ovulação e depois da fertilização, a quantidade de DNA é reduzida a 1n, com o fim de que a fusão dos pronúcles (singamia) pós-fertilização, seja gerado um zigoto com um número de cromossomos de 2n (diploide). -/- Geração de ovócitos primários e folículos primordiais Tanto a ovogênese como a foliculogênese iniciam-se durante a vida fetal, quando as células germinais primordiais provenientes do saco vitelino colonizam a gônada primitiva e, junto com as células somáticas z organizam-se para a formação dos cordões sexuais secundários, que se desenvolvem principalmente no córtex do ovário. Nesse período, as células germinais que colonizaram o ovário sofrem até 30 divisões mitóticas, proliferando-se até formar milhares ou milhões de ovogonias, que inicialmente formam “ninhos” constituídos cada um deles por um clone de várias ovogonias que descendem da mesma célula precursora e que se mantêm unidas por pontes citoplasmáticas, sincronizan-do suas divisões mitóticas. Nessa etapa alcança-se a máxima população de células germinais no ovário, que antes de nascer se reduzirá drasticamente por apoptose. No ovário do feto humano chegam a haver até sete milhões de células germinais que ao nascimento se reduzem a dois milhões. Os ovários fetais do bovino, de maneira análoga, chegam a ter até 2.100.000 células germinais, que ao nascimento reduzem para 130.000 aproximadamente. A redução no número de ovogonias produz-se ao mesmo tempo que essas células, que vêm dividindo-se por mitose e estão agrupadas em ninhos, iniciam sua primeira divisão meiótica para se transformarem em ovócitos primários: células germinais que se encontram em uma etapa de suspensão (diplóteno) da prófase da primeira divisão meiótica. Nesse período produz-se uma grande proporção de células germinais; as células somáticas dos cordões sexuais, por sua vez, emitem projeções citoplasmáticas que separam a isolam os ovócitos primários sobreviventes, ficando cada um deles rodeados por uma capa de células aplanadas da (pré) granulosa. Ao mesmo tempo em que se forma uma membrana basal entre as células da granulosa e o tecido intersticial do ovário. Ao ovócito primário rodeado de uma capa de células da (pré) granulosa aplanadas e delimita-das por uma membrana basal denomina-se de folículo primordial (figura 11). Nas vacas os folículos primordiais bem formados já estão presentes nos ovários a partir do dia 90 da gestação. A maioria dos folículos primordiais com os que nasce uma fêmea se manterão inativos durante um longo tempo; muitos deles durante toda a vida do animal. Nos folículos primordiais inativos tanto os ovócitos primários como as células da granulosa conservam sua forma original e mantém um metabolismo reduzido estritamente ao mínimo necessário para manter-se viáveis. Por essa razão, ao realizar um corte histológico de qualquer ovário as estruturas mais numerosas que se observam serão os folículos primordiais. No entanto, cada dia da vida de um animal, inclusive desde a vida fetal, um certo número de folículos primordiais reiniciam seu desenvolvimento, e a partir desse momento um folículo exclusivamente pode ter dois destinos: o primeiro, prosseguir seu desenvolvi-mento até chegar a ovular, e o segundo (que é muito mais frequente) encontrar em algum momento condições inadequadas que fazem fronteira com ele para parar seu desenvolvi-mento, levando-o a sofrer atresia e degenerar até desaparecer do ovário. Figura 11: sequência da foliculogênese apresentando as diferentes estruturas que podemos encontrar em cada fase. Fonte: ZARCO, 2018. Culminação da ovogênese A ovogênese somente se completará quando um ovócito primário reinicia a meio-se; completa sua primeira divisão meiótica para formar um ovócito secundário e um primeiro corpo polar e, quando, finalmente sofrer uma segunda divisão meiótica para formar um óvulo e um segundo corpo polar. Os óvulos são as células 1n que constituem os gametas femininos, pouco numerosos, grandes e imóveis. A grande maioria dos ovóci-tos primários, como veremos mais adiante, nunca retomam a meiose e, em consequência, não chegam a formar ovócitos secundários, e muitos dos ovócitos secundários tampouco sofrem uma segunda divisão meiótica, pelo que não chegam a formar os óvulos. Ao longo da vida de uma fêmea, na maioria das espécies, menos de 0,1% dos ovócitos primários (um a cada mil) chega a terminar a ovogênese, dando origem a um óvulo. O supracitado deve-se a que a ovogênese somente pode retomar-se e ser completa-da em ovócitos primários que se encontram dentro dos folículos primordiais que (uma vez ativados) vão alcançando diversas etapas de seu desenvolvimento em momentos precisos aos que encontram as condições ideais de oxigenação, nutrição, vascularização e exposição a fatores parácrinos e a exposição a concentrações de hormônios que se requerem para que o folículo continue em cada etapa de seu desenvolvimento com o processo de foliculogênese até chegar a ovular. Qualquer folículo que não esteja nessas condições ao longo do desenvolvimento sofrerá degeneração e atresia, pelo que o ovócito primário em seu interior nunca chegará ao ponto em que pode retomar a primeira divisão meiótica. No que resta da presente seção revisaremos o processo de foliculogênese em cujo marco se desenvolve a ovogênese; havemos que tomar de conta que essa última se limita ao que ocorre nas células germinais (ovogonia, ovócito primário, secundário e óvulo), pelo qual depende intimamente do desenvolvimento do folículo de que essas células formam parte. Em um princípio a ativação do folículo primordial e o desenvolvimento folicular são independentes das gonadotropinas: não se conhecem os mecanismos precisos median-te os quais um folículo primordial se ativa e reinicia seu desenvolvimento, nem como se decide quais folículos, dentre as dezenas de milhares de ou centenas de milhares presentes em um ovário se reativarão em um dia em particular. A reativação trata-se de uma liberação de influência de fatores inibidores, já que os folículos primordiais se reativam espontaneamente quando cultivados in vitro, isolados do resto do tecido ovariano. Uma vez que um folículo primordial se ativa, inicia-se um longo processo de desenvolvimento que somente depois de vários meses (ao redor de cinco meses no caso dos bovinos) o levará a um estádio em que seu desenvolvimento posterior requer a presença das gonado-tropinas; daí que se diz que as primeiras etapas do desenvolvimento são independentes das gonadotropinas. Durante a fase independente de gonadotropinas, um folículo primordial que tenha sido ativado e tenha começado a crescer; passará primeiro para a etapa de folículo primá-rio, caracterizada por conter um ovócito primário que está rodeado, por sua vez, por uma capa de células da granulosa, que não são planas, e sim cúbicas. Depois, se o folículo continuar crescendo se transformará em um folículo secundário, ao qual as células da granulosa começam a proliferar (aumentando em número) e se organizam em duas ou mais capas que rodeiam o ovócito primário. Entre o ovócito e as células da granulosa que o rodeiam se forma nesta uma zona pelúcida; ainda assim o ovócito mantém contato direto com essas células, mediante o estabelecimento de pontes citoplasmáticas que atravessam a zona pelúcida. Através dessas pontes citoplasmáticas as células da granulosa podem passar nutrientes e informação ao ovócito primário. O volume e o diâmetro do ovócito primário aumentam ao mesmo tempo que as células da granulosa proliferam-se, para incrementar as capas ao redor do ovócito. De maneira gradual o citoplasma do ovócito primário aumenta até 50 vezes seu volume e a proliferação das células continua. Esses folículos que possuem cada vez mais células e portanto mais capas de células da granulosa se denominam folículos secundários. Para evitar confusões, há a necessidade de nomen-clatura ao qual o folículo vá mudando de nome de primordial a primário e logo, de secun-dário, a terciário, por sua vez, o ovócito que encontra-se em seu interior, a todo momento, segue sendo um ovócito primário. Durante a etapa dependente de gonadotropinas, os folículos secundários começam a formar um espaço cheio de líquido, o antro folicular, desse modo se convertem em folí-culos terciários. Com a utilização de outra nomenclatura, a formação do antro marca a transição entre folículos pré-antrais (sem antro) e folículos antrais (com antro). Em algum momento dessa transição entre folículo secundário e terciário, também aparece a depen-dência de folículos em direção as gonadotropinas, pelo qual somente podem seguir crescendo na presença do hormônio luteinizante (LH) e do hormônio folículo estimulante (FSH). Nos bovinos e em outras espécies (para seu estudo), os folículos antrais são dividi-dos em pequenos, médios e grandes. Embora todos eles possuam um antro folicular, dependendo do seu grau de desenvolvimento requerem diferentes concentrações de gona-dotropinas para continuar o crescimento. Os folículos antrais mais pequenos somente re-querem concentrações baixas de LH e FSH, pelo qual podem continuar crescendo em qualquer momento do ciclo estral inclusive em animais que não estão ciclando (fêmeas em anestro pré-puberal, gestacional, lactacional, estacional). Nas etapas posteriores os folículos antrais requerem primeiro concentrações elevadas de FSH, e nas etapas finais somente podem continuar crescendo na presença de pulsos frequentes de LH, pelo qual somente os folículos que encontram-se sob concentrações apropriadas desses hormônios podem seguir crescendo. Por essa razão, nos animais que se encontram em anestro de qualquer tipo somente é possível encontrar folículos antrais pequenos ou médios, segundo a espécie, e nos animais que se encontram ciclando (estro) o maior tamanho folicular encontrado em um determinado dia do ciclo dependerá das concentrações de FSH e LH presentes nesse momento e nos dias anteriores. Um folículo que chega ao estado máximo de desenvolvimento, conhecido como folículo pré-ovulatório, ao final, somente chegará a ovular se for exposto a um pico pré-ovulatório de LH. Como supracitado, cada dia na vida de uma fêmea inicia seu desenvolvimento um certo número de folículos; a grande maioria sofrem atresia, mas depois da puberdade em cada dia do ciclo estral um ou vários folículos vão encontrando ao longo do seu desenvol-vimento concentrações hormonais que lhes permite chegar na etapa de folículo pré-ovula-tório. Somente nestes folículos, e como consequência de um pico pré-ovulatório de LH, se reinicia e completa-se a primeira divisão meiótica do ovócito primário, produzindo duas células distintas. Uma delas é o ovócito secundário, que retém praticamente todo o citoplasma. Contém, assim mesmo, em seu núcleo um par de cromossomos duplos, a outra é o primeiro corpo polar, que é exclusivamente um núcleo com uma quantidade mínima de citoplasma. Na maioria das espécies ovula-se um ovócito secundário que se encontra, então, suspendido na segunda divisão meiótica. Esta segunda divisão meiótica somente reinicia-rá e completarar-se uma vez que o espermatozoide começa a penetrar sob o ovócito secundário. Ao concluir-se a divisão se forma o segundo corpo polar e completa-se a ovogênese com o qual se obtém o óvulo, célula 1n que constitui o gameta feminino. No entanto, o óvulo existe pouco tempo como tal, já que em poucos minutos/horas (depen-dendo da espécie) se produzirá a fusão do núcleo do mesmo (pró-núcleo feminino) com o do espermatozoide (pró-núcleo masculino), com o qual se completa a fertilização e se forma um novo indivíduo (o ovo ou zigoto). -/- Ondas foliculares -/- Como mencionado supra, todos os dias um determinado número de folículos pri-mordiais se ativam e começam a crescer, os quais crescem em um ritmo característico em cada espécie. Isso provoca que em qualquer momento existam nos ovários folículos pri-mordiais (que começam a crescer em alguns dias ou semanas), assim como folículos secundários em diversas etapas do desenvolvimento, os quais iniciaram seu desenvolvi-mento em semanas ou inclusive meses (segundo o grau de desenvolvimento atual). Também em qualquer momento poderá haver folículos antrais nas etapas iniciais de seu desenvolvimento (com antros que já se podem detectar em cortes histológicos mas não são visíveis macroscopicamente). Todos esses folículos chegaram até seu estado de de-senvolvimento atual (primário, secundário ou antral pequeno), independente da etapa do ciclo estral em que sejam observados ou encontrados. Nos bovinos, os folículos que chegam ao início da etapa antral iniciaram seu desenvolvimento cinco meses antes, e todavia requerem ao redor de 42 dias para chegar ao estado pré-ovulatório. Para continuar seu desenvolvimento, os folículos antrais pequenos devem encon-trar concentrações altas de FSH, que os estimulam para prosseguir o crescimento. Cada vez que se produz uma elevação nas concentrações de FSH, esse hormônio estimula o desenvolvimento de um grupo de folículos antrais pequenos, que começaram a crescer muito tempo antes e que o dia da elevação de FSH tenha alcançado o grau de desenvolvi-mento preciso para responder com eficiência a este hormônio, o qual atuará através de seus receptores nas células da granulosa para estimular a produção de estradiol, a secreção de inibina, a produção de líquido folicular e a proliferação das células da granulosa. Um grupo de folículos antrais pequenos é assim recrutado pelo FSH para acelerar seu cresci-mento e aumentar sua produção de estradiol e inibina (figura 12). Mediante um seguimento ultrassonográfico dos ovários é possível identificar pou-cos dias depois um certo número de folículos, que por haver sido recrutados começam um período de crescimento acelerado. Durante alguns dias vários folículos crescem juntos, porém depois um deles é selecionado para continuar crescendo, enquanto que o restante do grupo deixam de fazê-lo e terminam sofrendo atresia. Através da ultrassom é possível identificar o folículo selecionado, agora chamado folículo domi-nante, já que sua trajetória de crescimento sofre um desvio com respeito a seguida pelo restante do grupo. Os folículos que não foram selecionados deixam de crescer e sofrem atresia já que deixam de possuir o suporte gonadotrópico de FSH, uma vez que as concentrações desse hormônio são suprimidos pela inibina e o estradiol produzidos pelo conjunto de folículos que conformam a onda folicular (figura 12), porém o folículo mais desenvolvido do grupo se converterá em dominante. A inibina atua diretamente a nível hipofisário para reduzir a secreção de FSH. Figura 12: onda folicular e relação dos níveis de FSH, estradiol e LH. Fonte: ZARCO, 2018. -/- Figura 13: Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. Fonte: SILVA, E. I. C. da, 2019. -/- A razão pela qual o folículo dominante é capaz de continuar seu desenvolvimento apesar da baixa nas concentrações de FSH é que o folículo é o único que alcançou o grau de progresso necessário para que apareçam os receptores para LH em suas células da granulosa. Esse processo permite ao folículo dominante ser estimulado pela LH, e que requeira baixas concentrações de FSH para manter seu desenvolvimento. A secreção de LH em forma de pulsos de baixa frequência (um pulso a cada quatro a seis horas), característica da fase lútea do ciclo estral; é suficiente para permitir que um folículo dominante continue crescendo por mais dias depois da sua seleção e que mais tarde mantenha-se viável durante alguns dias embora não aumentem de tamanho. Contu-do, se durante o período viável desse folículo não seja finalizada a fase lútea e não diminuam as concentrações de progesterona, o folículo terminará sofrendo atresia devido a exigência de um padrão de secreção acelerada de LH (aproximadamente um pulso por hora) durante o desenvolvimento pré-ovulatório, que somente pode ser produzido com a ausência da progesterona. Uma vez que um folículo dominante sofre atresia deixa de produzir inibina, pelo qual as concentrações de FSH podem elevar-se novamente para iniciar o recrutamento de outro grupo de folículos a partir da qual se origina uma nova onda folicular. Durante o ciclo estral de uma vaca podem gerar-se dois ou três ondas foliculares; somente em raros casos quatro. A etapa de dominância folicular da primeira onda na grande maioria dos casos não coincide com a regressão do corpo lúteo, pelo qual o primei-ro folículo dominante quase invariavelmente termina em atresia. Em algumas vacas o fo-lículo dominante da segunda onda ainda está viável quando se produz a regressão do corpo lúteo e acelera-se a secreção de LH, pelo qual esse segundo folículo dominante se converte em folículo pré-ovulatório e, ao final ovula. Em outros animais o segundo folícu-lo dominante também perde a sua viabilidade antes da regressão do corpo lúteo, por onde nesses animais se inicia uma terceira onda folicular, da qual surge o folículo que finalmen-te ovulará depois de produzir-se a regressão do corpo lúteo. Sem importar a onda em que se origine, uma vez que um folículo dominante é ex-posto a alta frequência de secreção de LH que se produz depois da regressão do corpo lúteo, aumenta ainda mais sua secreção de estradiol até que as altas concentrações desse hormônio comecem a exercer um feedback positivo para a secreção do LH. Isso provoca-rá a aceleração da frequência de secreção do LH até que os pulsos são tão frequentes que começam a ficar por cima e produzir-se o pico pré-ovulatório de LH, que é responsável pela realização da ovulação e a maturação final do ovócito. -/- •___DIFERENÇAS ENTRE ESPERMATOGÊNESE E OVOGÊNESE -/- Enquanto que na fêmea a ovogênese inicia-se durante a vida fetal, no macho a es-permatogênese começa na puberdade. Na fêmea, a partir de um ovócito primário se origi-na um óvulo; no macho, de um espermatócito primário se produzem, teoricamente, quatro espermatozoides. Outra característica interessante é que enquanto a fêmea já conta desde o nasci-mento com todos os ovócitos que necessitará na vida adulta, o macho necessitará chegar a puberdade para iniciar o desenvolvimento das células sexuais, já que ao nascer somente possui gonócitos precursores das células germinais, células de Sertoli e intersticiais. Na vida adulta de uma fêmea, o número de células germinais desaparece paulati-namente. Uma vez iniciada a espermatogênese no macho, a cada ciclo do epitélio seminí-fero as células germinais são renovadas mantendo a provisão para toda a vida reprodutiva. Na fêmea, a meiose sofre duas interrupções em seu transcurso, e no macho é ininterrupta. Figura 14: representação em diagramação comparativa do desenvolvimento da gametogênese. -/- Principais pontos abordados sobre as diferenças entre a gametogênese masculina e feminina: ❙ Na ovogênese a meiose contêm-se em duas ocasiões esperando acontecimentos externos para prosseguir. Já na espermatogênese não existe a suspensão da meiose. ❙ A espermatogênese é um processo contínuo, enquanto que a ovogênese pode completar exclusivamente um óvulo em cada ciclo estral; já que só pode ser completada por mais de um nas espécies que ovulam vários ovócitos no caso das porcas, cadelas, gatas etc. ❙ Na espermatogênese existem células de reserva que permitem a continuação du-rante toda a vida, enquanto que na ovogênese o número de ovócitos primários é limitado. A fêmea somente conta com os que nasceu, e eles não se dividem. ❙ Na espermatogênese obtém-se até 256 espermatozoides para cada espermatogo-nia que inicia o processo, enquanto que na ovogênese somente se obtém um óvulo a partir de cada ovócito primário. ❙ Durante a espermatogênese se produz uma metamorfose que transforma as es-permátides em espermatozoides. Na ovogênese não ocorre um processo análogo. ❙ Na espermatogênese, durante a meiose produzem-se quatro espermátides a partir de cada espermatócito primário. Na ovogênese se produz somente um óvulo a partir de cada ovócito primário; produz, ademais, dois corpos polares. ❙ Todos os óvulos que se produzem durante a ovogênese contém um cromossomo X, enquanto que a metade dos espermatozoides possuem um cromossomo Y e a outra metade um cromossomo X. ❙ Na espermatogênese produzem-se centenas ou dezenas de milhões de esperma-tozoides por dia, enquanto que na ovogênese se produz um ou alguns óvulos a cada ciclo estral. ❙ A espermatogênese produz gametas macroscópicos e com motilidade própria, enquanto que a ovogênese produz gametas grandes e imóveis. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ABDEL-RAOUF, Mohammed et al. The postnatal development of the reproductive organs in bullswith special reference to puberty.(Including growth of the hypophysis and the adrenals). Acta endocrinologica, n. Suppl No. 49, 1960. ADONA, Paulo Roberto et al. Ovogênese e foliculogênese em mamíferos. Journal of Health Sciences, v. 15, n. 3, 2013. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: Folliculogenesis and pre‐antral follicle development. Reproduction in domestic animals, v. 45, n. 1, p. 171-179, 2010. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reproduction in domestic animals, v. 45, n. 1, p. 180-187, 2010. ALBERTINI, David F.; CARABATSOS, Mary Jo. Comparative aspects of meiotic cell cycle control in mammals. Journal of molecular medicine, v. 76, n. 12, p. 795-799, 1998. AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. BAKER, T. G. Oogenesis and ovulation. In. Reproduction in Mammals I Germ Cells and Fertilization, p. 29-30, 1972. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. BIGGERS, John D.; SCHUETZ, Allen W. Oogenesis. University Park Press, 1972. BINELLI, Mario; MURPHY, Bruce D. Coordinated regulation of follicle development by germ and somatic cells. Reproduction, Fertility and Development, v. 22, n. 1, p. 1-12, 2009. CHIARINI-GARCIA, Helio; RUSSELL, Lonnie D. High-resolution light microscopic characterization of mouse spermatogonia. Biology of reproduction, v. 65, n. 4, p. 1170-1178, 2001. CHOUDARY, J. B.; GIER, H. T.; MARION, G. B. Cyclic changes in bovine vesicular follicles. Journal of animal science, v. 27, n. 2, p. 468-471, 1968. CLERMONT, Yves; PEREY, Bernard. Quantitative study of the cell population of the seminiferous tubules in immature rats. American Journal of Anatomy, v. 100, n. 2, p. 241-267, 1957. COSTA, DEILER SAMPAIO; PAULA, T. A. R. Espermatogênese em mamíferos. Scientia, v. 4, 2003. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. 2020. Acervo pessoal. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. 2020. Acervo pessoal. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. EPIFANO, Olga; DEAN, Jurrien. Genetic control of early folliculogenesis in mice. Trends in Endocrinology & Metabolism, v. 13, n. 4, p. 169-173, 2002. ERICKSON, B. H. Development and senescence of the postnatal bovine ovary. Journal of animal science, v. 25, n. 3, p. 800-805, 1966. REFERÊNCIAS BIBLIOGRÁFICAS -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. GALINA-HIDALGO, Carlos Salvador. A study of the development of testicular function and an evaluation of testicular biopsy in farm animals. 1971. Tese de Doutorado. Royal Veterinary College (University of London). GALLICANO, G. Ian. Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Front Biosci, v. 6, p. D1089-1108, 2001. GILBERT, Scott F. Biología del desarrollo. Ed. Médica Panamericana, 2005. GNESSI, Lucio; FABBRI, Andrea; SPERA, Giovanni. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocrine reviews, v. 18, n. 4, p. 541-609, 1997. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HEDGER, Mark P. Testicular leukocytes: what are they doing?. Reviews of reproduction, v. 2, n. 1, p. 38-47, 1997. HUTSON, James C. Testicular macrophages. In: International review of cytology. Academic Press, 1994. p. 99-143. HYTTEL, P. Gametogênese. In. HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. JONES, Richard E.; LOPEZ, Kristin H. Human reproductive biology. Academic Press, 2013. KIERSZENBAUM, Abraham L.; TRES, Laura L. Primordial germ cell‐somatic cell partnership: A balancing cell signaling act. Molecular Reproduction and Development: Incorporating Gamete Research, v. 60, n. 3, p. 277-280, 2001. MATZUK, Martin M. et al. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, v. 296, n. 5576, p. 2178-2180, 2002. MCLAREN, Anne. Germ and somatic cell lineages in the developing gonad. Molecular and cellular endocrinology, v. 163, n. 1-2, p. 3-9, 2000. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MERCHANT-LARIOS, Horacio; MORENO-MENDOZA, Norma. Onset of sex differentiation: dialog between genes and cells. Archives of medical research, v. 32, n. 6, p. 553-558, 2001. MINTZ, Beatrice et al. Embryological phases of mammalian gametogenesis. Embryological phases of mammalian gametogenesis., v. 56, n. Suppl. 1, p. 31-43, 1960. MORALES, M. E. et al. Gametogénesis. I. Revisión de la literatura, con enfoque en la ovogénesis. Medicina Universitaria, v. 8, n. 32, p. 183-9, 2006. NAKATSUJI, NORIO; CHUMA, SHINICHIRO. Differentiation of mouse primordial germ cells into female or male germ cells. International Journal of Developmental Biology, v. 45, n. 3, p. 541-548, 2002. NILSSON, Eric; PARROTT, Jeff A.; SKINNER, Michael K. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Molecular and cellular endocrinology, v. 175, n. 1-2, p. 123-130, 2001. REFERÊNCIAS BIBLIOGRÁFICAS -/- NORRIS, David O.; LOPEZ, Kristin H. The endocrinology of the mammalian ovary. In: Hormones and reproduction of vertebrates. Academic Press, 2011. p. 59-72. PEDERSEN, Torben. Follicle growth in the immature mouse ovary. European Journal of Endocrinology, v. 62, n. 1, p. 117-132, 1969. PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. ROSER, J. F. Endocrine and paracrine control of sperm production in stallions. Animal Reproduction Science, v. 68, n. 3-4, p. 139-151, 2001. RUSSELL, Lonnie D. et al. Histological and histopathological evaluation of the testis. International journal of andrology, v. 16, n. 1, p. 83-83, 1993. RÜSSE, I.; SINOWATZ, F. Gametogenese. Lehrbuch der Embryologie der Haustiere, p. 42-92, 1991. SAITOU, Mitinori; BARTON, Sheila C.; SURANI, M. Azim. A molecular programme for the specification of germ cell fate in mice. Nature, v. 418, n. 6895, p. 293-300, 2002. SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. SAWYER, Heywood R. et al. Formation of ovarian follicles during fetal development in sheep. Biology of reproduction, v. 66, n. 4, p. 1134-1150, 2002. SCARAMUZZI, R. J.; MARTENSZ, N. D.; VAN LOOK, P. F. A. Ovarian morphology and the concentration of steroids, and of gonadotrophins during the breeding season in ewes actively immunized against oestradiol-17β or oestrone. Reproduction, v. 59, n. 2, p. 303-310, 1980. SEIDEL JR, G. E. et al. Control of folliculogenesis and ovulation in domestic animals: puberal and adult function. In: 9th International Congress on Animal Reproduction and Artificial Insemination, 16th-20th June 1980. II. Round tables. Editorial Garsi., 1980. p. 11-16. SKINNER, Michael K. Cell-cell interactions in the testis. Endocrine Reviews, v. 12, n. 1, p. 45-77, 1991. SMITZ, J. E.; CORTVRINDT, Rita G. The earliest stages of folliculogenesis in vitro. Reproduction, v. 123, n. 2, p. 185-202, 2002. SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. SUTOVSKY, Peter; MANANDHAR, Gaurishankar. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In. The sperm cell: Production, maturation, fertilization, regeneration, p. 1-30, 2006. TAZUKE, Salli I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development, v. 129, n. 10, p. 2529-2539, 2002. VAN STRAATEN, H. W. M.; WENSING, C. J. G. Leydig cell development in the testis of the pig. Biology of Reproduction, v. 18, n. 1, p. 86-93, 1978. TURNBULL, K. E.; BRADEN, A. W. H.; MATTNER, P. E. The pattern of follicular growth and atresia in the ovine ovary. Australian Journal of Biological Sciences, v. 30, n. 3, p. 229-242, 1977. WASSARMAN, Paul M. Gametogenesis. Londres: Academic Press, 2012. WROBEL, K.-H.; SÜß, Franz. Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anatomy and embryology, v. 197, n. 6, p. 451-467, 1998. REFERÊNCIAS BIBLIOGRÁFICAS -/- ZARCO, L. Gametogénese. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. ZIRKIN, Barry R. et al. Endocrine and Paracrine Regulation of Mammalian Spermatogenesis. In: Hormones and Reproduction of Vertebrates. Academic Press, 2011. p. 45-57. -/- REALIZAÇÃO -/- . (shrink)
Inspired by Castañeda (1966, 1968), Perry (1979) and Lewis (1979) showed that a specific variety of singular thoughts, thoughts about oneself “as oneself” – de se thoughts, as Lewis called them – raise special issues, and they advanced rival accounts. Their suggestive examples raise the problem of de se thought – to wit, how to characterize it so as to give an accurate account of the data, tracing its relations to singular thoughts in general. After rehearsing the main tenets of (...) two contrasting accounts – a Lewisian one and a Perrian one – in the first section of this paper, in the second I will present a proposal of my own, which is a specific elaboration of the Perrian account. In the first section I will indicate some weaknesses of Perry’s presentation of his view; the proposal I will articulate in the second overcomes them. I will conclude with a brief discussion of reasons for preferring one or another account, in particular regarding the issue of the communication of de se thoughts. (shrink)
1. INTRODUÇÃO -/- No "mundo" das produções animais, e sem que saibamos exatamente o motivo ou os motivos, não é incomum observar, mesmo a nível docente (faceta em que nos sentimos especialmente culpados), uma notável discussão (obscuridade de ideias e/ou na linguagem, produzida deliberadamente ou não) ao abordar os conceitos de fertilidade, fecundidade e prolificidade. -/- Esta falta de clareza conceitual torna-se tanto mais manifesta quando, precisamente a partir dos referidos conceitos, se pretende efetuar, por exemplo, uma programação ou uma (...) análise técnico-econômica de uma exploração pecuária. -/- O objetivo do presente trabalho é tentar introduzir com "clareza de ideias" acerca dos referidos conceitos essenciais na Zootecnia, sempre no domínio que nos é próprio, o das produções animais. Com a finalidade de tornar a exposição mais didática, construindo os conceitos sobre a cultura dos suínos. No entanto, que fique bem claro desde já que, com pequenas variações, pode-se considerar qualquer outra «espécie animal superior», incluindo as aves. -/- Para efeitos de brevidade e concisão, e porque serão abordados noutros trabalhos, não vamos aprofundar aqui, para além do estritamente indispensável, as questões relativas à anatomia do aparelho reprodutor e à fisiologia da reprodução. -/- -/- 2. FERTILIDADE -/- Segundo o Dicionário Geral Ilustrado da Língua Portuguesa: -/- — Fertilidade: Qualidade de fértil. -/- — Fértil: Virtude que tem a terra para produzir copiosos frutos. -/- A palavra "fertilidade" tem a sua raiz no vocábulo latino "fertilis" (produtivo, abundante). Ao nível da produção animal, a fertilidade pode ser definida como: -/- «A capacidade de um macho ou de uma fêmea púbere de produzir e liberar gametas maduros fisiologicamente aptos a fecundar (espermatozoides) ou para serem fecundados (ovócitos de segunda ordem)». -/- No caso da fêmea, o aparecimento da puberdade começa com a intervenção das hormonas gonadotrofinas FSH e LH (folículo estimulante e lúteo estimulante, respectivamente). Com ela se inicia o desenvolvimento de 15-30 ou mais folículos primários localizados no estroma ovariano, processo que se repetirá de forma cíclica enquanto não se inicia um processo de anafrodisia funcional (gestação) ou patológica. -/- 2.1 Fertilidade em suínos: formação de ovários, ovócitos, folículos e generalidades das fêmeas -/- Na porca, os ovários são duas formações ovais situadas na cavidade abdominal na região sublombar em ambos os lados do raquis. Geralmente, o ovário direito tem um tamanho superior ao esquerdo e, como no caso da maioria das fêmeas mamíferas, a maior parte da superfície ovariana está rodeada pelo epitélio germinal e pelo peritoneu, exceto numa pequena porção, ílio-ovárico, por onde penetram os vasos e os nervos. -/- O estroma ovárico é formado por uma rede de tecido conjuntivo em cujas maias se encontram numerosos folículos que contêm as células germinativas ou ovócitos em diversos estágios de desenvolvimento. Estes folículos manifestam-se na superfície do ovário da porca sob a forma de uma série de eminências arredondadas que lhe dão um aspecto de amora. -/- A fêmea já nasce com um número determinado de folículos primários originados durante o desenvolvimento embrionário, contendo cada folículo um ovócito de primeira ordem que alcançou um desenvolvimento de dictiotene da prófase meiótica ou mitose I. -/- A partir dos folículos primários originam-se folículos secundários ou poliestratificados, alcançando-se o grau de folículos terciários de Graaf ou maduros, com o aparecimento da puberdade. O folículo terciário ou antral caracteriza-se por um aumento de volume e uma grande complexidade, contém, em princípio, o ovócito de primeira ordem que sofreu o período de vitelo-gênese e que vai dar lugar ao ovócito de segunda ordem quando ocorre a lise do cumulus proliger ou ooforo, com o qual a célula sexual permanece agora livre no seio do líquido folicular. Neste processo o ovócito de primeira ordem sofreu modificações características como são um deslocamento do núcleo para a superfície da célula e o protoplasma distribui-se irregularmente. -/- Um folículo terciário ou maduro tem a seguinte estrutura desde a parte externa à interna: teca externa, teca interna, membrana de Slajvansky, membrana granulosa e as células da coroa radiada que rodeiam o ovócito, uma membrana pelúcida que envolve totalmente o ovócito de grande transcendência no momento da fecundação e finalmente o ovócito de primeira ordem. Existe uma cavidade denominada cavidade folicular, que contém um líquido segregado pelas células da granulosa, licor folicular de composição complexa, destacando as hormonas sexuais femininas e concretamente o 17-beta-estradiol. A membrana granulosa está relacionada com a coroa radiada pelo «cumulus proliger» ou ooforo que serve de nexo de ligação. -/- Posteriormente, e seguindo o processo, origina-se o folículo pré-ovulatório ou deiscente, produzindo-se a eclosão do folículo e libertando-se um ovócito de segunda ordem em período de metafase II graças a um processo que Pérez García denominou como ovocitação, termo que foi aceito nos diversos meios científicos, já que considera que o termo ovulação no caso dos vertebrados é incorreto. Este ovócito de segunda ordem é a verdadeira célula fértil, coisa que não ocorre quando se libera ou se produz o óvulo no oviduto; os óvulos são células inférteis. No processo de ovocitação intervém uma série de mecanismos que classificamos em pressores, enzimáticos e neuro-hormonais, destacando entre estes últimos a hormona luteoestimulante (LH), além dos fatores introváricos descritos recentemente. -/- Consequentemente, uma fêmea, no nosso caso suína, será fértil quando for capaz de levar a bom termo de forma regular e de acordo com a periodicidade do seu ciclo sexual o processo descrito supra. -/- Na prática cotidiana das explorações não é possível saber diretamente se uma fêmea é fértil ou não. Neste contexto, por exemplo, ninguém poderá nos informar se ante as manifestações psicomáticas do zelo existe fertilidade; pode tratar-se de um zelo anovular que requer para o seu diagnóstico a utilização de métodos endoscópicos ou ecográficos, assim como métodos cirúrgicos como a perfusão dos ovidutos ou do útero para obter os ovócitos liberados avaliando-se a quantidade e qualidade dos mesmos. -/- Por conseguinte, a frase frequentemente ouvida a nível das explorações: «é uma fêmea muito fértil», é, a menos que tenha sido efetuado o «controle específico» da reprodutora, pelo menos «tecnicamente inadequado». -/- 2.2 Fertilidade em suínos: formação, translocação e generalidades dos espermatozoides no macho -/- O caso do porco é um pouco diferente. No período embrionário formam-se as espermatogônias, células equivalentes às ovogonias da fêmea. De cada espermatogônia primária ou espermatogônia A1 por numerosas mitoses, produzem-se 16 espermatócitos primários mais uma espermatogônia B1 que repetirá o processo. Por conseguinte, o período de proliferação ou multiplicação difere significativamente do mesmo período no caso da fêmea, uma vez que no macho durante toda a vida sexual são produzidas continuamente novas espermatogônias. -/- Cada espermatócito primário, através de um processo de crescimento muito limitado, origina um espermatócito de primeira ordem que, durante o período de maturação, originará dois espermatócitos de segunda ordem (haploides) e, em segundo lugar, quatro espermátides (haploides). Cada uma destas espermátides, através de um processo de transformação denominado espermiogênese ou espermatohistogênese, originará um espermatozoide. Os espermatozoides passarão posteriormente do rete testis ao epidídimo, onde se armazenarão alelostaticamente. A trajetória dos espermatozoides antes de chegar ao epidídimo passa pelos tubos retos de Haller (muito lentamente pela pressão exercida) para chegar às lagunas de Haller e daí aos cones eferentes. O trânsito dos espermatozoides através do epidídimo é de fundamental importância porque é aqui onde tem lugar a verdadeira maturação. Os espermatozoides obtidos a nível da cabeça do epidídimo não terminaram a sua maturação e, portanto, carecem de capacidade fecundante, enquanto que aqueles provenientes da cauda deste órgão a têm em grande medida. No entanto, à saída do epidídimo, os espermatozoides ainda não atingiram a sua plena maturidade. Para isso deverão passar pelas ampolas do ducto deferente ou de Henle para que, como afirmam a maioria dos autores, tenha lugar a seleção de formas anormais e de espermatozoides fracos. As células intersticiais do epitélio seminífero são responsáveis por fornecer aos espermatozoides um material nutricional que exerce ações tróficas e endócrinas que favorecem o equilíbrio celular do espermatozoide. Finalmente estes espermatozoides, conjuntamente com as secreções prostáticas, das vesículas seminais e das glândulas bulbouretrais, terminarão sua trajetória na uretra, sendo eliminados ao exterior pelo órgão copulador ou pênis mediante o processo de ejaculação. -/- No momento da ejaculação libera-se o esperma, ou sêmen, que é o resultado da mistura do material espermático de origem testicular e as sucessivas secreções das glândulas acessórias antes citadas, que derramam seus produtos na uretra. No entanto, o processo final espermatogênico não termina no trato genital masculino, mas sim no trato feminino depois do coito ou da inseminação artificial graças ao conhecido processo extremamente complexo da capacitação espermática. -/- Um varrão é fértil a partir do momento em que é capaz de produzir espermatozoides normais. Analisando o esperma de forma adequada poderemos constatar com uma relativa precisão, tendo em conta a grande quantidade de fatores endógenos e exógenos que afetam a um ser tão sensível como o porco, o nível de fertilidade do mesmo. Devemos ter em mente que macho suíno adulto pode ser inicialmente muito fértil (apresentar uma grande quantidade de espermatozoides, de 400-1.300 x 106/ml na fração espermática do seu ejaculado) e, em vez disso, não ser apto para a reprodução porque pode apresentar defeitos no epidídimo e/ou nas ampolas de Henle pelo qual os espermatozoides não amadurecem e portanto não são úteis para efeitos reprodutivos. -/- Contudo, na prática, e de acordo com a própria definição, o porco é considerado fértil quando produz espermatozoides maduros com as seguintes características: -/- - Concentração correta; -/- - Capacidade motora adequada; -/- - Capacidade metabólica; -/- - Estrutura correta em relação à cabeça e ao flagelo (pescoço, trato intermediário e cauda, considerando esta última formada por seu trato principal e seu trato terminal), avaliando-se também o estado do acrossoma; -/- - Adequado comportamento cromocitógeno. -/- Logo deve ficar claro que a fertilidade é uma aptidão que em geral têm os machos e as fêmeas púberes para produzir e liberar gametas anatômicos e fisiológicos corretos (os híbridos das espécies cavalar e asnal, os mulos e os burdéganos, por exemplo, não são férteis; uma fêmea com ausência de desenvolvimento gonodal tampouco). -/- -/- 3. FECUNDIDADE -/- De acordo com o Dicionário da Língua Portuguesa: -/- — Fecundidade: Qualidade de fecundo. -/- — Fecundo: Que produz ou se reproduz por meios naturais. -/- A palavra «fecundidade» provém do latim fecunditas, significa «virtude e faculdade de produzir». Qualidade de fecundo, do latim fecundus, que «produz ou se reproduz em virtude dos meios naturais». -/- Esta definição pode conduzir, no âmbito das produções animais, a equívocos. Somos a favor da aplicação da seguinte definição de fecundidade. -/- «É a capacidade que um macho e/ou uma fêmea fértil tem para conseguir que os seus gametas, anatómica e fisiológica, aumentem normalmente: uma vez liberados, juntam-se aos do outro sexo para formar um zigoto». -/- Este fenômeno recebe o nome de fecundação, não sendo correto o de fertilização, que é utilizado por alguns autores. -/- 3.1 Generalidades e a fecundação em suínos -/- No caso da porca, para continuar com o mesmo exemplo ao longo de todo o trabalho, os gametas femininos, ovócitos de segunda ordem, sofrem uma descida ou migração, uma vez liberados do folículo maduro, através do oviduto para entrar em contato com os espermatozoides. -/- Esta migração pode ocorrer porque antes de ocorrer a mencionada deiscência folicular caracterizada por um congestionamento, tanto do próprio ovário como dos ovidutos ou trompas de Falópio, o pavilhão destas últimas aproxima-se do ovário (o oviduto de três partes: bandeira, corpo e istmo). Constituindo uma espécie de funil, graças à intervenção das fimbrias do pavilhão, no qual, em princípio, os oócitos deiscentes devem ser depositados com o respectivo líquido folicular. -/- As razões pelas quais o ovócito se dirige ao pavilhão não são bem conhecidas, embora se pense que a causa é devida às correntes que originam os cílios com seus movimentos. O ovócito percorre o oviduto num tempo adequado (reunindo, portanto, as condições adequadas de pH, pressão osmótica, etc.) para que o espermatozoide possa alcançá-lo e entrar em contato com ele. -/- Se o ovócito de segunda ordem não cair no infundíbulo ou transitar a uma velocidade inadequada pelo oviduto não poderá ter lugar a impregnação (penetração do espermatozoide no ovócito de segunda ordem) e portanto a fecundação (singamia e cariogamia). Há que ter em conta que a fecundação provoca a segunda etapa da maturação do ovócito caracterizada pela finalização da mitose II, já que como supracitado o ovócito de segunda ordem se libera no processo de metafase II (equacional), originando um óvulo que já contém o material cromossômico masculino e eliminando o segundo polocito. -/- Podemos interpretar que a eliminação deste segundo polocito, como consequência da penetração da cabeça do espermatozoide no ovócito originando-se um óvulo, seria como o resultado de uma espécie de incompatibilidade entre o pronúcleo do polocito e o que fornece o espermatozoide. Por conseguinte, no período de maturação da ovogênese produz-se, através de um processo reducional, um ovócito de segunda ordem e um primeiro pólcito. Posteriormente, o ovócito de segunda ordem originará por uma mitose equacional, que carece do período de duplicação do ADN no ciclo de Savel, um óvulo e um segundo pólcito. Às vezes, mas nem sempre, o primeiro polocito originará um terceiro e um quarto polocito mediante mitose, pelo que no total podem originar-se três polocito. Estes polocitos podem ser chamados de ovos abortivos porque carecem praticamente de deutoplasma que ficou englobado no óvulo e que permitirá o desenvolvimento embrionário em seus primeiros estádios até que se estabeleçam as conexões feto-maternas. -/- O óvulo maduro apresenta o pronúcleo feminino capaz de conjugar-se com o pronúcleo masculino, dando lugar à formação do zigoto. Mas, insisto mais uma vez, a penetração do espermatozoide ocorre sempre no estágio de ovócito de segunda ordem e nunca quando a célula sexual tenha alcançado o estádio de óvulo. -/- Evidentemente e depois de todo o comentado: -/- UMA PORCA PODE SER FERTIL E NÃO FECUNDA -/- Por isso bastaria, por exemplo, que o pavilhão da tromba não conseguisse aproximar-se de maneira adequada ao ovário, com o que os ovócitos de segunda ordem, anatômica e fisiologicamente normais, cairiam na cavidade abdominal. Nestas circunstâncias a fecundação, logicamente, seria totalmente impossível. -/- O espermatozoide, por sua vez, tem que subir um trecho do oviduto para "encontrar" o ovócito. Este avanço ocorre como consequência das contrações peristálticas do útero que realiza uma sucção do esperma. Neste momento os espermatozoides experimentam uma importante seleção biológica dado que para atravessar o istmo tubárico necessitam ter uma adequada vitalidade (na porca a união uterotubárica, assim como a primeira parte do istmo, atuam parcialmente como uma barreira). -/- Evidentemente, o espermatozoide não o tem fácil, embora consiga aproximar-se do ovócito graças às quatro hormonas produzidas pelos gametas (dois androgamonas e duas ginogamonas), embora atualmente fala-se da existência de três ginogamonas já que o ovócito se comporta como um polo positivo e a parte terminal da cabeça do espermatozóide como um polo negativo. -/- Uma vez que o espermatozoide entra em contato com o ovócito, deve «salvar» a camada protetora do ovócito (formada por um aglomerado mucoso de natureza espessa e viscosa, além de uma camada interna que pode ser mais ou menos poliestratificada que constitui a coroa radiada procedente das células da membrana granulosa). Para superar estes obstáculos, os espermatozoides têm uma estrutura, o acrossoma. Esta estrutura contém um complexo específico de lipoglicoproteínas que inclui uma série de enzimas como hialuronidase e acrosina. A hialuronidase está provavelmente envolvida na dispersão do cumulus proliger. A acrosina está relacionada com a penetração do espermatozoide através da zona pelúcida. -/- Então também podemos afirmar, como fizemos no caso da reprodutora, que: -/- UM PORCO TAMBÉM PODE SER FERTIL E NÃO FECUNDO -/- Bastaria para isso que os espermatozoides experimentassem um hipocinese, por isso sendo excessivamente lentos não tinham suficiente motilidade de avanço. -/- No entanto, sem ter a necessidade de chegar a estes extremos, o que deve ficar claro é que: -/- a) Fertilidade e fecundidade são dois conceitos claramente distintos. -/- b) Para que um reprodutor ou uma reprodutora possam tornar-se fecundos antes devem ser férteis. -/- Assim, por exemplo, um macho fértil pode não ser fecundo; quando um reprodutor não tem ereção, não tem suficiente ardor genérico, não é capaz, obviamente, de introduzir seu aparelho copulador no trato genital da fêmea. Esta situação pode ser ultrapassada, pelo menos em alguns casos, mediante a utilização de um ejaculador elétrico e posterior aplicação da técnica de inseminação artificial. -/- Uma fórmula clássica para determinar a porcentagem global de fecundidade obtida num rebanho durante um determinado período de tempo (T) pode ser a seguinte: -/- Fecundidade (T)(%)=(N° de fêmeas gestantes (T))/(N° de fêmeas cobertas (T)) x 100 -/- A mesma fórmula é utilizada para determinar a «capacidade fecundante» (CF) de um macho X durante um período T. -/- CF(x)(T)(%)=(N° de fêmeas cobertas / macho X (T) gestantes)/(N° de fêmeas cobertas / macho X (T) ) x 100 -/- Obviamente, na prática, a «capacidade fecundante final» do macho X não é apenas função das suas próprias aptidões, é também função da aptidão fecundante das fêmeas por ele cobertas. -/- Por esta razão, para que o parâmetro CFX(T) seja «fiável», o macho X deve ter coberto um elevado número de fêmeas durante o período T. Consequentemente, este período de tempo não pode ser excessivamente curto, dependendo do ciclo sexual da espécie. -/- Analisados os termos fertilidade e fecundidade, vamos tratar a despeito da prolificidade. -/- -/- 4. PROLIFICIDADE -/- Segundo o Dicionário da Língua Portuguesa: -/- — Prolífico: Que tem a virtude de gerar.; -/- — Gerar: Dar origem a um novo ser. -/- No âmbito das produções animais é um termo realmente fácil de de compreender, não existindo discrepância entre os autores. -/- Poderíamos estabelecer a seguinte definição para a prolificidade: -/- "É a capacidade que a fêmea reprodutora tem para proporcionar aos zigotos um meio adequado em que possam realizar o seu desenvolvimento e chegar ao término". -/- 4.1 Generalidades e prolificidade em suínos -/- No caso da porca, poderíamos definir, em primeiro lugar, a prolificidade como o número de leitões nascidos por parto. A maioria dos autores consideram os leitões nascidos vivos e os nascidos mortos; outros só computam os nascidos vivos. Nós nos inclinamos pela primeira consideração. -/- No seio da fêmea, uma vez realizada a fecundação, a «fusão» das células germinativas do macho e da fêmea, inicia-se a divisão das células do zigoto, que constituem uma massa ou um aglomerado de células não especializadas. (Quando no processo de divisão forem atingidas as 16 células, a mencionada massa celular não identificada recebe a denominação de mórula, a qual dará lugar à blástula ou blastocisto.) -/- Durante os primeiros dias este zigoto em divisão, que irá transformar-se em embrião, desloca-se; primeiro, ao longo do oviduto; depois, no útero. Uma vez alcançado o útero é quando ocorre a nidificação. Esta nidificação pode ocorrer porque a mórula segrega uma enzima que é capaz de fixar-se em uma porção do endométrio, resultando em uma cavidade. É precisamente nesta cavidade que tem lugar a «implantação». -/- Nos suínos, o momento da nidificação situa-se entre 10 e 15 dias a contar do início da gestação. Aproximadamente entre os 15-16 dias de gestação os embriões estão totalmente fixados nas paredes uterinas. A partir deste momento pode-se iniciar o desenvolvimento das estruturas que vão permitir com que a mãe possa alimentar os novos seres (durante os primeiros dias, os ovos fertilizados alimentam-se do seu próprio deutoplasma e do chamado leite uterino de Williams proveniente do endotélio uterino). -/- Uma vez desenvolvidas todas as estruturas necessárias (saco vitelino, corioalantoides, saco amniótico, etc.), o embrião pode desenvolver-se no limite das suas possibilidades, transformar-se num feto e tentar atingir o seu objetivo que não é outro senão o de chegar com vida ao final, quero dizer, na altura do parto. -/- Em suma, de acordo com o exposto até aqui, acerca prolificidade da porca, um cálculo para medir o índice reprodutivo é dado por: prolificidade Y em seu parto n será: -/- Prolificidade porca Yn = Número de leitões nascidos (vivos+mortos) -/- Quando se fala da prolificidade média de um lote de reprodutoras (entendendo-se por «lote de reprodutoras» um conjunto de porcas que se encontram no mesmo estado fisiológico), considera-se o número médio de crias durante o período de partos. -/- Assim, por exemplo, a prolificidade média de um lote de 20 porcas que pariram, na respectiva maternidade, 180 leitões vivos e 6 leitões mortos é: -/- Prolificidade médiando lote=(180 l.v.+ 6 l.m.)/(20 porcas paridas)=9,3 leitões/porca -/- Se nos referirmos a uma exploração com 200 porcas reprodutoras ativas presentes na propriedade, desde o dia 1 de Janeiro a 31 de Dezembro, ao qual foram «obtidos» 1800 leitões vivos e 40 leitões nascidos mortos, a prolificidade média da exploração durante este ano será: -/- Prolificidade média do rebanho=(1800 l.v+40 l.m.)/(200 reprodutoras)= 9,2 leitões/reprodutora ativa -/- Este número, a nível prático e referente exclusivamente a um ano, é pouco indicativo dado que dependerá da calendarização no programa de gestão da exploração. -/- Normalmente, o parâmetro mais utilizado para refletir o desempenho de uma exploração no aspecto reprodutivo é o da produtividade definida pela expressão: -/- Produtividade final real=prolificidade média x (N° de fêmeas paridas)/(N° total de fêmeas) -/- Suponhamos que, numa exploração de 200 porcas reprodutoras, tenham parido 150 leitões (vivos+mortos) com uma prolificidade média de 9,0 leitões, a produtividade será: -/- Produtividade final real=9,0 leit./porca x (150 porcas paridas)/(200 porcas total)=6,75 leit./porca -/- Se esta produtividade for referente à um ano, a fórmula será: -/- Produtividade final anual = prolificidade média x (N° de fêmeas paridas)/(N° total de fêmeas) x (365 dias)/I -/- Sendo I – Intervalo médio entre dois partos. -/- No exemplo (exploração) anterior, se o intervalo médio entre dois partos é de 154 dias, a produtividade final anual será: -/- Produtiv. final anual = 9,0 leit./porca x (150 p.paridas)/(200 p.presentes) x (365 dias)/(154 dias)=16 leit./porca/ano -/- Trata-se de um valor muito indicativo do nível médio de «eficácia produtiva» ou eficiência reprodutiva da exploração. -/- Tal como foi calculado para as reprodutoras, estima-se a eficácia produtiva de um macho reprodutor X a partir de uma fórmula semelhante, dada por: -/- Produtividade(mX) = prolificidade x (N° de fêmeas paridas)/(N° de fêmeas cobertas) -/- Onde a prolificidade é a média de crias das fêmeas paridas. -/- Se um macho reprodutor tiver coberto (inseminado) 200 porcas, ao qual 140 pariram um total de 850 leitões vivos e 20 leitões mortos, seu coeficiente produtivo é: -/- Produtiv.macho X=(870 leitões (vivos+mortos))/(140 porcas paridas) x (140 p.paridas)/(200 p.cobertas)=4,35 leit./porca coberta -/- Este parâmetro expressa o número médio de crias nascidas por fêmea coberta. -/- Numa exploração pecuária (especialmente numa exploração suinícola) torna-se muito interessante, na prática, estudar a evolução da produtividade dos machos reprodutores ao longo do tempo. -/- Numa exploração pode também ser interessante calcular a eficácia reprodutiva das fêmeas da exploração que exprime o número de dias necessários para obter uma criação (índice Ni). Este índice permite comparar a diferente eficácia reprodutiva de duas fêmeas e é definido pela seguinte expressão: -/- Ni=Ii/(Prolificidade i) -/- Sendo: -/- Ii = Intervalo médio entre dois partos de uma fêmea i. -/- Prolificidade i = Número médio de crias nascidas por parto na fêmea i. -/- Em nosso caso, a porca 134 tem um intervalo médio entre partos de 156 dias e uma prolificidade média de 9,1 leitões. Por sua vez, a porca 143 tem um I = 163 dias e uma prolificidade média de 9,5 leitões. Com base nos dados apresentados achamos o índice Ni, mediante os cálculos: -/- N134 = (156 dias)/(9,1 leitões)=17,14 dias/leit. -/- N143 = (163 dias)/(9,5 leit.) =17,16 dias/leit. -/- Neste caso, ao contrário do que se poderia perceber a olho nu, as duas reprodutoras possuem a mesma eficácia reprodutiva (quanto menor o índice Ni, maior a eficácia reprodutiva). Esta é a razão, de que numa exploração nem sempre um desmame precoce dos leitões (18-24 dias) é melhor que um desmame mais tardio (24-28 dias). -/- A eficácia reprodutiva numa exploração de R fêmeas reprodutoras durante um período de T dias é avaliada através da fórmula: -/- NiR = (T x R)/(N° de crias nascidas em T) -/- Se, numa exploração de 200 porcas reprodutoras, tiverem nascido, nos últimos 365 dias, um total de 1840 leitões (1800 leitões vivos e 40 leitões mortos), a eficácia reprodutiva será: -/- N200 = (365 dias x 200 porcas)/(1840 leit.nascidos)=39,67 dias/leit. -/- Ao qual equivale a uma prolificidade média do rebanho, no tempo considerado, de: -/- Prolificidade média do rebanho=(365 dias)/(39,67 dias/leit.)=9,2 leit. -/- Tal e como havia sido estimado anteriormente. -/- Não é necessário insistir na importância prática que tem, a nível das explorações, a correta consideração e a adequada utilização dos conceitos, parâmetros e índices expostos nas páginas precedentes. Neste sentido, em muitas das nossas explorações, também aqui, há ainda um longo caminho a percorrer. -/- -/- 5. RESUMO E PRIMEIRAS CONCLUSÕES -/- Ao longo deste trabalho venho tentado expor de uma forma mais clara e simples possível a realidade conceitual dos termos fertilidade, fecundidade e prolificidade dentro da perspectiva das produções animais. -/- Em todos os casos, trata-se de capacidades ou aptidões anatômica-fisiológicas dos reprodutores ligadas ao exercício da sua atividade no âmbito da exploração. -/- Nessa presente exposição, objetivou-se deixar claro que: -/- a) Fertilidade, fecundidade e prolificidade são conceitos totalmente distintos embora estejam correlacionados. -/- b) Um reprodutor e/ou reprodutora pode ser fértil e não fecundo. -/- c) Consequentemente, um reprodutor e/ou reprodutora não pode ser fecundo se não for fértil antes. -/- d) Um reprodutor e/ou reprodutora pode ser fértil e fecundo e não ser prolífico. -/- e) Consequentemente, para que um reprodutor e/ou reprodutora possa ser prolífico antes tem que ser fecundo. E se for fecundo, significa que também é fértil. -/- f) Na prática, as explorações só podem estimar, no âmbito do conceito geral de «eficácia reprodutiva», a fecundidade e a prolificidade dos reprodutores, nunca a sua fertilidade. -/- Uma vez classificados e estudados os referidos conceitos, estamos em condições de enfrentar outros temas ligados ao processo reprodutivo. -/- -/- 6. REFERÊNCIAS BIBLIOGRÁFICAS -/- -/- BRACKETT, B. G.; JÚNIOR, G. E. A.; SEIDEL, S. M. Avances en zootecnia. Nuevas técnicas de reproducción animal. 1ª ed. Zaragoza: Editorial Acribia, 1988. -/- COLE, H. H.; CUPPS, P. T. Reproduction in domestic animals. 1ª ed. Londres: Academic Press, 1977. -/- FERREIRA, A. H. et al. Produção de suínos: teoria e prática. Brasília: ABCS, 2014. -/- GORDON, I. Reproducción controlada del cerdo. Zaragoza: Editorial Acribia, 1999. -/- HAFEZ, E. S. E.; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. -/- HUGHES, P. E.; VARLEY, M. A. Reproducción del cerdo. Zaragoza: Editorial Acribia, 1984. (shrink)
I argue that transference is, ultimately, identity over time, and that identity over time can't possibly be causation. Transference, then, fails as an analysis of causation.
I defend a Deferred Ostension view of quotation, on which quotation-marks are the linguistic bearers of reference, functioning like a demonstrative; the quoted material merely plays the role of a demonstratum. On this view, the quoted material works like Nunberg’s indexes in his account of deferred ostensión in general. The referent is obtained through some contextually suggested relation; in the default case the relation will be … instantiates the linguistic type __, but there are other possibilities. In this way, the (...) deferred ostension view deals with a problem I pointed out for the identity proposal in my earlier work, that we do not merely refer with quotations to expression-types, but also to other entities related in some way to the relevant token we use: features exhibited by the token distinct from those constituting its linguistic type, features exhibited by other tokens of the same type but not by the one actually used (as when, by using a graphic token, we refer to its phonetic type), or even other related tokens (see the examples on p. 261 of García-Carpintero 1994). (shrink)
This is a transcript of a conversation between P F Strawson and Gareth Evans in 1973, filmed for The Open University. Under the title 'Truth', Strawson and Evans discuss the question as to whether the distinction between genuinely fact-stating uses of language and other uses can be grounded on a theory of truth, especially a 'thin' notion of truth in the tradition of F P Ramsey.
Esta coletânea é um tributo a Peter Frederick Strawson pelo centenário de seu nascimento (1919-2019). Diferentemente de outras coletâneas, esta propõe colocar em relevo a interlocução de Strawson com a tradição filosófica. Em outras palavras, por um lado, queremos evidenciar as discussões que Strawson travou com os seus contemporâneos (Austin, Quine, Russell e Wittgenstein), e, por outro, a influência que recebeu e as críticas que dirigiu àqueles que o precederam na história da filosofia (Aristóteles, Descartes, Hume, Kant). Poderíamos ter enriquecido (...) a lista acima com o nome de muitos outros filósofos com os quais Strawson teve contato, mas julgamos que o trabalho ficaria bastante extenso. Por esse motivo, optamos por aqueles nomes mais significativos que figuram na construção da história intelectual de Strawson. O presente volume reúne nove capítulos que levam como título o nome de Strawson e do filósofo com o qual ele dialogou ao longo de suas obras. Essa opção na nomeação dos capítulos por si só já permite colocar em evidência os principais filósofos pelos quais Strawson se interessou e com os quais se confrontou ao longo de seu trabalho filosófico. Com exceção do capítulo sobre Wittgenstein, que é uma versão revisada de um texto publicado anteriormente, todos os outros capítulos são inéditos e foram escritos especialmente para esta coletânea. O volume inclui na abertura a tradução de “Um fragmento de autobiografia intelectual”, de P. F. Strawson. Quando elegemos como título desta obra, Strawson e a tradição filosófica, não estamos insinuando que Strawson é um historiador da filosofia e muito menos que se interesse por historiografia. O título desta obra apenas quer indicar que Strawson, por um lado, transita na história da filosofia com alguma facilidade, além de nutrir um grande apreço por ela e, por outro, que ele discute com os principais nomes da história da filosofia no que concerne aos temas de seu interesse. A sua proposta filosófica é alimentada e irrigada por esse conhecimento, o que lhe dá a possibilidade de assumir na maioria das vezes posições ponderadas e equilibradas acerca de temas complexos por ele tratados. ISBN: 978-85-5696-689-6. Nº de pág.: 244. (shrink)
The reception of the translations of Aristotelian and pseudo-Aristotelian works at the University of Paris in the thirteenth century promoted a new understanding of the sciences as specialized fields of knowledge. The huge amount of translations required a new organization of knowledge, which included novel subjects and categories. Among these there is a very special case, namely the pseudo-Aristotelian De plantis, translated from Arabic into Latin and then back into Greek to be re-translated into Latin again. De plantis was included (...) in the new curriculum in Ripoll 109, and constituted the main source for botanical studies until the sixteenth century. Throughout this paper we will explore the reception and impact of De plantis in both the Arabic and the Latin traditions. We aim to show its foundational role in the development of botany as a theoretical discipline within the natural sciences. (shrink)
I argue racial injustice undermines the reliability of news source reports in the information domain of racial injustice. I argue that this in turn undermines subjects’ doxastic justification in inferences they base on these news sources in the racial injustice information domain. I explain that racial injustice does this undermining through the effect of racial prejudice on news organizations’ members and the effect of society's racially unjust structure on non-dominant racial group-controlled news sources.
Despite the apparent relationship between personal values and entrepreneurship, this topic t has been subject to little academic research. This article aims to explain, in the Brazilian context, how the personal values of entrepreneurs influence the degree of professionalism in their business. The article uses a descriptive and exploratory quantitative approach, with data collected via a survey and focus group. Results show that, in the Brazilian context, ethics and capitalist values have a greater influence on professionalism than do risk, innovation, (...) family history, etc. Certain personal values of small-business entrepreneurs become organizational values that drive their actions in challenging environments. The finding that only one of the ten independent variables has been considered statistically influential on professionalism constitutes its main theoretical contribution. It rethinks professionalism, no longer as a dependent variable, but as a personal value, like the rest, in independent, innovative and sovereign way. (shrink)
Objectives. The purpose of this study was to conduct the first randomized controlled trial (RCT) to evaluate the effectiveness of a second-generation mindfulness-based intervention (SG-MBI) for treating fibromyalgia syndrome (FMS). Compared to first generation mindfulness-based interventions, SG-MBIs are more acknowledging of the spiritual aspect of mindfulness. Design. A RCT employing intent-to-treat analysis. Methods. Adults with FMS received an 8-week SG-MBI known as meditation awareness training (MAT; n = 74) or an active control intervention known as cognitive behaviour theory for groups (...) (n = 74). Assessments were performed at pre-, post-, and 6-month follow-up phases. Results. Meditation awareness training participants demonstrated significant and sustained improvements over control group participants in FMS symptomatology, pain perception, sleep quality, psychological distress, non-attachment (to self, symptoms, and environment), and civic engagement. A mediation analysis found that (1) civic engagement partially mediated treatment effects for all outcome variables, (2) non-attachment partially mediated treatment effects for psychological distress and sleep quality, and (3) non-attachment almost fully mediated treatment effects for FMS symptomatology and pain perception. Average daily time spent in meditation was found to be a significant predictor of changes in all outcome variables. Conclusions. Meditation awareness training may be a suitable treatment for adults with FMS and appears to ameliorate FMS symptomatology and pain perception by reducing attachment to self. (shrink)
In abstract argumentation, each argument is regarded as atomic. There is no internal structure to an argument. Also, there is no specification of what is an argument or an attack. They are assumed to be given. This abstract perspective provides many advantages for studying the nature of argumentation, but it does not cover all our needs for understanding argumentation or for building tools for supporting or undertaking argumentation. If we want a more detailed formalization of arguments than is available with (...) abstract argumentation, we can turn to structured argumentation, which is the topic of this special issue of Argument and Computation. In structured argumentation, we assume a formal language for representing knowledge and specifying how arguments and counterarguments can be constructed from that knowledge. An argument is then said to be structured in the sense that normally, the premises and claim of the argument are made explicit, and the relationship between the premises and claim is formally defined (for instance, using logical entailment). In this introduction, we provide a brief overview of the approaches covered in this special issue on structured argumentation. (shrink)
Kaplan (1999) argued that a different dimension of expressive meaning (“use-conditional”, as opposed to truth-conditional) is required to characterize the meaning of pejoratives, including slurs and racial epithets. Elaborating on this, writers have argued that the expressive meaning of pejoratives and slurs is either a conventional implicature (Potts 2007) or a presupposition (Macià 2002 and 2014, Schlenker 2007, Cepollaro and Stojanovic 2016). We argue that an expressive presuppositional theory accounts well for the data, but that expressive presuppositions are not just (...) propositions to be added to a common ground. We hold that expressives, including pejoratives and slurs, make requirements on a contextual record governed by sui generis norms specific to affective attitudes and their expressions. (shrink)
This paper argues that the normative character of our unreflective situated behaviour is not factual. We highlight a problematic assumption shared by the two most influential trends in contemporary philosophy of cognitive science, reductionism and enactivism. Our intentional, normative explanations are referential, descriptive or factual. Underneath this assumption lies the idea that only facts can make true or false our attributions of cognitive, mental and agential abilities. We will argue against this view by describing the main features and problems of (...) reductionism and enactivism and then we will offer two arguments against this shared factualist assumption: (1) normative vocabulary is ineliminable if we want a complete explanation of our situated practices; and (2) the factualist assumption is a species of the is-ought fallacy. Finally, we will claim that a folk psychological explanation of our normative practices is fully compatible with ontological naturalism when such descriptivist or factualist assumption is rejected. (shrink)
As the range of potential uses for Artificial Intelligence (AI), in particular machine learning (ML), has increased, so has awareness of the associated ethical issues. This increased awareness has led to the realisation that existing legislation and regulation provides insufficient protection to individuals, groups, society, and the environment from AI harms. In response to this realisation, there has been a proliferation of principle-based ethics codes, guidelines and frameworks. However, it has become increasingly clear that a significant gap exists between the (...) theory of AI ethics principles and the practical design of AI systems. In previous work , we analysed whether it is possible to close this gap between the ‘what’ and the ‘how’ of AI ethics through the use of tools and methods designed to help AI developers, engineers, and designers translate principles into practice. We concluded that this method of closure is currently ineffective as almost all existing translational tools and methods are either too flexible (and thus vulnerable to ethics washing) or too strict (unresponsive to context). This raised the question: if, even with technical guidance, AI ethics is challenging to embed in the process of algorithmic design, is the entire pro-ethical design endeavour rendered futile? And, if no, then how can AI ethics be made useful for AI practitioners? This is the question we seek to address here by exploring why principles and technical translational tools are still needed even if they are limited, and how these limitations can be potentially overcome by providing theoretical grounding of a concept that has been termed ‘Ethics as a Service’. (shrink)
Oliva Sabuco's New Philosophy of Human nature (1587) is an early modern philosophy of medicine that challenged the views of the successors to Aristotle, especially Galen and Ibn Sina (Avicenna). It also challenged the paradigm of the male as the epitome of the human and instead offers a gender-neutral philosophy of human nature. Now largely forgotten, it was widely read and influential amongst philosophers of medicine including DeClave, LePois, Harvey,Southey and others, particularly for its account of the role of (...) the nervous system and cerebrospinal fluid in mind-body interaction. In this article I trace its early influence by tracing provenance of the editions produced during the lifetime of its author. (shrink)
In the past decade, experimental philosophy---the attempt at making progress on philosophical problems using empirical methods---has thrived in a wide range of domains. However, only in recent years has aesthetics succeeded in drawing the attention of experimental philosophers. The present paper constitutes the first survey of these works and of the nascent field of 'experimental philosophy of aesthetics'. We present both recent experimental works by philosophers on topics such as the ontology of aesthetics, aesthetic epistemology, aesthetic concepts, and imagination, as (...) well as research from other disciplines that not only are relevant to philosophy of aesthetics but also open new avenues of research for experimental philosophy of aesthetics. Overall, we conclude that the birth of an experimental philosophy of aesthetics is good news not only for aesthetics but also for experimental philosophy itself, as it contributes to broaden the scope of experimental philosophy. (shrink)
In recent years, there has been a huge increase in the number of bots online, varying from Web crawlers for search engines, to chatbots for online customer service, spambots on social media, and content-editing bots in online collaboration communities. The online world has turned into an ecosystem of bots. However, our knowledge of how these automated agents are interacting with each other is rather poor. Bots are predictable automatons that do not have the capacity for emotions, meaning-making, creativity, and sociality (...) and it is hence natural to expect interactions between bots to be relatively predictable and uneventful. In this article, we analyze the interactions between bots that edit articles on Wikipedia. We track the extent to which bots undid each other’s edits over the period 2001–2010, model how pairs of bots interact over time, and identify different types of interaction trajectories. We find that, although Wikipedia bots are intended to support the encyclopedia, they often undo each other’s edits and these sterile “fights” may sometimes continue for years. Unlike humans on Wikipedia, bots’ interactions tend to occur over longer periods of time and to be more reciprocated. Yet, just like humans, bots in different cultural environments may behave differently. Our research suggests that even relatively “dumb” bots may give rise to complex interactions, and this carries important implications for Artificial Intelligence research. Understanding what affects bot-bot interactions is crucial for managing social media well, providing adequate cyber-security, and designing well functioning autonomous vehicles. (shrink)
I present a possible worlds semantics for a hyperintensional belief revision operator, which reduces the logical idealization of cognitive agents affecting similar operators in doxastic and epistemic logics, as well as in standard AGM belief revision theory. belief states are not closed under classical logical consequence; revising by inconsistent information does not perforce lead to trivialization; and revision can be subject to ‘framing effects’: logically or necessarily equivalent contents can lead to different revisions. Such results are obtained without resorting to (...) non-classical logics, or to non-normal or impossible worlds semantics. The framework combines, instead, a standard semantics for propositional S5 with a simple mereology of contents. (shrink)
E. F. Carritt (1876-1964) was educated at and taught in Oxford University. He made substantial contributions both to aesthetics and to moral philosophy. The focus of this entry is his work in moral philosophy. His most notable works in this field are The Theory of Morals (1928) and Ethical and Political Thinking (1947). Carritt developed views in metaethics and in normative ethics. In meta-ethics he defends a cognitivist, non-naturalist moral realism and was among the first to respond to A. J. (...) Ayer’s emotivist challenge to this view. In normative ethics he advocates a deontological view in which there is a plurality of obligations and of non-instrumental goods. In the context of defending this view he raised some penetrating and novel criticisms of ideal utilitarianism. He held that it is not acceptable to revise our reflective common-sense moral attitudes in the face of philosophical moral theories, and that moral philosophy is only indirectly practical. (shrink)
As the range of potential uses for Artificial Intelligence, in particular machine learning, has increased, so has awareness of the associated ethical issues. This increased awareness has led to the realisation that existing legislation and regulation provides insufficient protection to individuals, groups, society, and the environment from AI harms. In response to this realisation, there has been a proliferation of principle-based ethics codes, guidelines and frameworks. However, it has become increasingly clear that a significant gap exists between the theory of (...) AI ethics principles and the practical design of AI systems. In previous work, we analysed whether it is possible to close this gap between the ‘what’ and the ‘how’ of AI ethics through the use of tools and methods designed to help AI developers, engineers, and designers translate principles into practice. We concluded that this method of closure is currently ineffective as almost all existing translational tools and methods are either too flexible or too strict. This raised the question: if, even with technical guidance, AI ethics is challenging to embed in the process of algorithmic design, is the entire pro-ethical design endeavour rendered futile? And, if no, then how can AI ethics be made useful for AI practitioners? This is the question we seek to address here by exploring why principles and technical translational tools are still needed even if they are limited, and how these limitations can be potentially overcome by providing theoretical grounding of a concept that has been termed ‘Ethics as a Service.’. (shrink)
What is discrimination and what makes wrongful discrimination wrong? Even after an ever-rising tide of research over the course of the past twenty-five or so years these questions still remain hard to answer. Exercising candid and self-critical hindsight, Larry Alexander, who contributed his fair share to this tide, thus remarked: “All cases of discrimination, if wrongful, are wrongful either because of their quite contingent consequences or perhaps because they are breaches of promises or fiduciary duties.” If this is true it (...) raises serious doubts as to how wrongful discrimination can be a moral wrong in itself. Also, the question comes up as to who it is who breaches a promise or a fiduciary duty. This paper defends the view that the substance of these remarks is better understood by couching them in a political approach towards discrimination. Against this background, they give rise to real and pressing concerns. Once we conceptualise the realm political along Hobbesian lines as the battleground comprising both the private sphere of the individual and the public sphere of the commonwealth it emerges that discrimination has different significance with regard to these respective spheres. In order to illustrate this, I adopt Kasper Lippert-Rasmussen’s descriptive account of discrimination as „differential treatment on the basis of membership of a socially salient group“ and the common view that wrongful discrimination is wrong because it is harmful, disrespectful, or both. In the private sphere the case can be made for morally permissible cases of discrimination. Sexual discrimination due to sexual self-determination with consequently freely choosing your sexual or romantic partner is the central case in point. Where somebody feels unfairly rejected and consequently hurt neither the charge of harm inflicted nor that of disrespect endured need be justified. No “breach of promises or fiduciary duties” is involved. The case is different, however, when it comes to the fiduciary of power. In discriminating, he who exercises the power of the commonwealth necessarily breaches a promise and a fiduciary duty. Discrimination thus appears to be more of a problem of political philosophy than one of applied ethics. [in German] **************************************************************************************************** ******************** Was ist Diskriminierung und warum ist Diskriminierung verwerflich, wenn sie es denn ist? Dies bleibt ungeachtet der seit fünfundzwanzig Jahren anschwellenden Forschungsliteratur unverändert eine harte Nuss. Larry Alexander, der selbst maßgeblich zu dieser Forschungsliteratur beigetragen hat, merkt daher selbstkritisch an: „All cases of discrimination, if wrongful, are wrongful either because of their quite contingent consequences or perhaps because they are breaches of promises or fiduciary duties.“ Wenn dies der Fall ist, stellt sich die Frage, wie moralisch verwerfliche Diskriminierung dann noch an sich verwerflich sein kann. Es stellt sich dann auch die Frage, wer hier ein Versprechen bricht und seine Treuepflichten verletzt. Die leitende Annahme dieses Aufsatzes ist es, dass man dem sachlichen Kern dieser Bedenken Rechnung tragen kann, indem man eine politische Perspektive auf das Phänomen der Diskriminierung einnimmt. Die Bedenken erweisen sich dann als substanziell und zutreffend. Konzeptualisieren wir den Bereich des Politischen mit Thomas Hobbes als das Spannungsfeld, das die private Sphäre des Individuums und die öffentliche Sphäre des Gemeinwesens gegeneinander abgrenzt, wird sichtbar, dass Diskriminierung in diesen Sphären jeweils unterschiedlich zu bewerten ist. Um dies zu verdeutlichen, lege ich Kasper Lippert-Rasmussens deskriptives Verständnis von Diskriminierung als „differential treatment on the basis of membership of a socially salient group“ zugrunde und mache von der in der Diskussion verbreiteten Ansicht Gebrauch, dass das Zufügen von Schaden oder die Verweigerung von Respekt Diskriminierung verwerflich macht. In der privaten Sphäre kann es nun Fälle moralisch zulässiger Diskriminierung geben. Zentral ist die sexuelle Diskriminierung aufgrund der Ausübung einer freien Wahl des eigenen Sexual- oder Liebespartners. Auch wenn sich der Abgewiesene womöglich geschädigt sieht, wird unbilliger Schaden nicht zugefügt und geschul- deter Respekt nicht verweigert. Den Grund finden wir in Alexanders Formel: Ein „breach of promises“ oder eine Verletzung „fiduciary duties“ liegt nicht vor. Anders im Fall staatlicher Diskriminierung: Ein „breach of promises“ oder eine Verletzung „fiduciary duties“ liegt hier stets vor, da Fälle staatlicher Diskriminierung regelmäßig Machtmissbrauch darstellen: Der Inhaber staatlicher Gewalt verletzt die Treuepflicht, das Mandat unparteilich auszuüben, das getreulich auszuführen er gelobt hat. Diskriminierung erscheint also weniger als ein Problem der angewandten Ethik denn als eines der politischen Philosophie. (shrink)
It is common to criticize the idea of objectivity by claiming that we cannot make sense of any cognitive contact with the world that is not constituted by the very materials of our thinking, and to conclude that the idea must be abandoned and that the world is ‘well lost’. We resist this conclusion and argue for a notion of objectivity that places its source within the domain of thoughts by proposing a conception of facts, akin to McDowell’s, as thinkable (...) while independent of any act of thinking. However, we do so without any empiricist commitment. (shrink)
Abstract McDowell?s minimal empiricism holds that experience, understood as providing conceptually articulated contents, plays a role in the justification of our beliefs. We question this idea by contrasting the role of perceptual experience in moral and non-moral judgments and conclude that experience per se is irrelevant in the former case and should also be so in the latter one: only with the help of adequate beliefs experience can provide a connection with the world. We conclude with some remarks concerning the (...) importance of experience. (shrink)
Television advertisements have been one of the well-known forms of promoting and conveying a message in the business industry. Consumer behaviors are changing and evolving through the influence of social media sites like Facebook, Instagram, Twitter, YouTube, and TikTok, and the impact of COVID-19. The researchers have found several insights that describe the effect of such television advertisements on our current situation. The COVID-19 pandemic has affected social media usage; a lot of consumers found it reliable and easy to access (...) since a lot of people are into their smartphones. Some households had disregarded television as a form of entertainment and switched to social media. However, there are huge differences when advertisements are shown on social media and television. Consumers, particularly mothers prefer and are more engaged with television commercials. Most consumers skip and do not view the entire advertising on social media, causing the company and products to be disregarded. (shrink)
Why is it that most fictions present one and only one ending, rather than multiple ones? Fictions presenting multiple endings are possible, because a few exist; but they are very rare, and this calls for an explanation. We argue that such an explanation is likely to shed light on our engagement with fictions, for fictions having one and only one ending seem to be ubiquitous. After dismissing the most obvious explanations for this phenomenon, we compare the scarcity of multiple endings (...) in traditional kinds of fiction to their profusion in the case of interactive fictions. This contrast poses a challenge to accounts of our engagement with fictions in terms of games of make-believe. We conclude that solving this puzzle is likely to improve our philosophical understanding of fictions. (shrink)
Richard Moran has argued, convincingly, in favour of the idea that there must be more than one path to access our own mental contents. The existence of those routes, one first-personal—through avowal—the other third-personal—no different to the one used to ascribe mental states to other people and to interpret their actions—is intimately connected to our capacity to respond to norms. Moran’s account allows for conflicts between first personal and third personal authorities over my own beliefs; this enable some instances of (...) Moore-paradoxical cases to be meaningful. In this paper we reflect on the consequences of this view for the acquisition of beliefs, and argue that, as in the moral case, excessive concentration on a thirdpersonal understanding of thought undermines the very idea of being directed to the world and of being capable to fully own our own beliefs. We suggest that maybe too much attention to epistemic virtues or tojustification is misdirected and could produce beliefs that are themself not first-personal enough. (shrink)
Escribir hoy en día un libro sobre hermenéutica, que tal hermenéutica se refiera a la desarrollada por G. Gadamer en su conocido Verdad y método y que se pretenda añadir algo nuevo a lo mucho escrito sobre el tema parecería, a primera vista, empresa irrealizable. Que ambas pretensiones inspiren la sólida monografía de María G. Navarro —titulada Interpretar y argumentar— constituye empresa audaz y arriesgada, plena de coraje innovador, que provoca admiración, curiosidad e interés. Contra lo que pudiera parecer a (...) primera vista, el libro contiene un alto componente de originalidad y creatividad, debido a la estratagema metodoló-gica de que se sirve la autora. A saber, una hermenéutica in obliquo, estrategia consistente en interpretar a la hermenéutica gadameriana a través del prisma de la lógica de la argumentación. (shrink)
The traditional conception of risk is probabilistic, according to which the degree of risk of an event is determined by the probability of its occurence. Recently this view was challenged by Duncan Pritchard (2015, 2016), who suggested a modal theory of risk, centered in the idea that the riskiness of events depends on the modal distance between the actual world and worlds where the event obtains. What is attractive about this theory, according to Pritchard, is that it explains our judgement (...) about cases in which two equally probable events seem to have different degrees of risk. The modal theory of risk, however, has its own shortcomings: according to Bricker (2018), there are cases in which risk judgements are not tracking modal distance; there is also the problem of determining the risk of events that occur in the actual world, since the theory seems to imply that they are maximally risky because the actual world is maximally similar to itself (EBERT; SMITH; DURBACH, 2020). The modal conception of risk is also at odds with the most natural forms of reasoning over the morality of risk imposition. I begin exploring the two conceptions of risk, emphasizing their strenghts and weaknesses. I then argue that the probabilistic conception can be defended from objections, and a pluralistic theory of risk, although less unified, deserves to be considered. -/- . (shrink)
As a result of the doctoral research developed by the main author (Vargas-Chaves, 2017), it was identified the evolution and perspectives of the pharmaceutical patent in the international trade system, as well as it future legal research needs in this topic, both immediate and long-term. Furthermore, a number of problems of public health were highlighted in which the patent-term-extension mechanisms have produced a lack of access to medicines.
This paper is an investigation of the general logic of "identifications", claims such as 'To be a vixen is to be a female fox', 'To be human is to be a rational animal', and 'To be just is to help one's friends and harm one's enemies', many of which are of great importance to philosophers. I advocate understanding such claims as expressing higher-order identity, and discuss a variety of different general laws which they might be thought to obey. [New version: (...) Nov. 4th, 2016]. (shrink)
According to one large family of views, scientific explanations explain a phenomenon (such as an event or a regularity) by subsuming it under a general representation, model, prototype, or schema (see Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 421–441; Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge: MIT Press; Darden (2006); Hempel, C. G. (1965). Aspects of scientific (...) explanation. In C. G. Hempel (Ed.), Aspects of scientific explanation (pp. 331–496). New York: Free Press; Kitcher (1989); Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25). My concern is with the minimal suggestion that an adequate philosophical theory of scientific explanation can limit its attention to the format or structure with which theories are represented. The representational subsumption view is a plausible hypothesis about the psychology of understanding. It is also a plausible claim about how scientists present their knowledge to the world. However, one cannot address the central questions for a philosophical theory of scientific explanation without turning one’s attention from the structure of representations to the basic commitments about the worldly structures that plausibly count as explanatory. A philosophical theory of scientific explanation should achieve two goals. The first is explanatory demarcation. It should show how explanation relates with other scientific achievements, such as control, description, measurement, prediction, and taxonomy. The second is explanatory normativity. It should say when putative explanations succeed and fail. One cannot achieve these goals without undertaking commitments about the kinds of ontic structures that plausibly count as explanatory. Representations convey explanatory information about a phenomenon when and only when they describe the ontic explanations for those phenomena. (shrink)
Trope theory is an increasingly prominent contender in contemporary debates about the existence and nature of properties. But it suffers from ambiguity concerning the nature of a trope. Disambiguation reveals two fundamentally different concepts of a trope: modifier tropes and module tropes. These types of tropes are unequally suited for metaphysical work. Modifier tropes have advantages concerning powers, relations, and fundamental determinables, whereas module tropes have advantages concerning perception, causation, character-grounding, and the ontology of substance. Thus, the choice between modifier (...) tropes and module tropes is significant and divides the advantages of trope theory simpliciter. In addition, each resulting trope theory is unstable: modifier trope theory threatens to collapse into realism and module trope theory threatens to collapse into austere nominalism. This invites reflection on the stability of trope theory in general. (shrink)
This paper explains how to use a new software tool for argument diagramming available free on the Internet, showing especially how it can be used in the classroom to enhance critical thinking in philosophy. The user loads a text file containing an argument into a box on the computer interface, and then creates an argument diagram by dragging lines from one node to another. A key feature is the support for argumentation schemes, common patterns of defeasible reasoning historically know as (...) topics . Several examples are presented, as well as the results of an experiment in using the system with students in a university classroom. (shrink)
The suggestion that emotions are, in a way, essential to moral judgement has been getting attention in recent literature. Jesse Prinz says that emotionist theories involve at least one of the following claims: (i) emotions are necessary and sufficient for the acquisition of moral concepts (epistemic emotionism); (ii) emotions are necessary and sufficient to determine moral properties (metaphysical emotionism). According to Prinz, some empirical results in moral psychology can support these kinds of emotionism (especially the first one). In The emotional (...) construction of morals, Prinz presents the famous dumbfounding cases, in which interviewees maintain a moral judgement even when confronted with the fact that they cannot articulate reasons why, as evidence for an emotionist view of moral judgement. There is, however, controversy regarding the interpretation of such cases: to begin with, it seems possible to interpret them through reasons, as suggested by Sinott-Armstrong, Yin and Stanley (2019); also, even if there are no reasons being considered, it is possible, as suggested by Jones (2006) and Alves (2013), that dumbfounded moral judgement isn’t a genuine example of moral judgement, since the subjects do not possess basic moral concepts. I start with moral dumbfounding cases and Prinz’s emotionist interpretation of them and later consider the alternative interpretations. Even though Prinz’s reading is initially appealing, it seems the empirical evidence does not support a sentimentalist metaethics as much as he suggests, and the appeal to reasons is still essential in understanding moral judgement. -/- . (shrink)
After the 9/11 attacks the U.S. administration went beyond emergency response towards imperialism, but cloaked its agenda in the rhetoric of fighting ‘terrorists’ and ‘terrorism.’ After distinguishing between emergency thinking and emergency planning, I question the administration’s “war on terrorism” rhetoric in three stages. First, upon examining the post-9/11 antiterrorism discourse I find that it splits into two agendas: domestic, protect our infrastructure; and foreign, select military targets. Second, I review approaches to emergency planning already in place. Third, after reviewing (...) what philosophers have said about emergencies, I recommend they turn their attention to the biases inherent in and misleading uses of antiterrorist terminology. (shrink)
Book 1 of Plato’s Laws, and particularly the image of the puppet introduced near its end, has been traditionally interpreted as presenting the moral psychology model that underlies the educational system delineated by the Athenian Stranger, which construes virtue as consonance between the non–rational and the rational elements of the soul. But a different and competing conception of virtue looms large in Laws 1, virtue as victory of the best part of the soul in psychic conflict. This paper argues that (...) the Athenian’s conception of education as the correct conformation of originally conflicting psychic forces requires the simultaneous presence of the harmony and the conflict models of virtue in Laws 1. Education is in turn defined by calculation, the rational activity which persuasively leads the conflicting non–rational forces towards a consonant reciprocal rapport. By strategically developing his understanding of education and calculation in Laws 1, the Athenian shows how the harmony model of virtue overcomes the conflict model, while at the same time recognising that there is some truth to the conflict model after all and integrating it within the harmony model. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.