Results for 'Interpretation of Quantum Mechanics, Michael Audi'

916 found
Order:
  1. (1 other version)The Interpretation of Quantum Mechanics. [REVIEW]Andrew Lugg - 1976 - Philosophy of Science 43 (3):449-452.
    Review of M. Audi, The Interpretation of Quantum Mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature.Michael Epperson & Elias Zafiris - 2013 - Lanham: Lexington Books. Edited by Elias Zafiris.
    Foundations of Relational Realism presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. -/- If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3. RELATIONAL REALISM AND THE ONTOGENETIC UNIVERSE: subject, object, and ontological process in quantum mechanics.Michael Epperson - 2020 - Angelaki 25 (3):108-119.
    Amid the wide variety of interpretations of quantum mechanics, the notion of a fully coherent ontological interpretation has seen a promising evolution over the last few decades. Despite this progress, however, the old dualistic categorical constraints of subjectivity and objectivity, correlate with the metrically restricted definition of local and global, have remained largely in place – a reflection of the broader, persistent inheritance of these comfortable strictures throughout the evolution of modern science. If one traces this inheritance back (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Quantum Mechanics and Relational Realism: Logical Causality and Wave Function Collapse.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization (in “orthodox” terms, each measurement outcome) is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Beyond Quantum Theory: A Realist Psycho-Biological Interpretation of Physical Reality.Michael Conrad, D. Home & Brian Josephson - 1988 - In A. van der Marwe, F. Selleri & G. Tarozzi (eds.), Microphysical Reality and Quantum Formalism, Vol. I. Kluwer Academic. pp. 285-293.
    Stapp and others have proposed that reality involves a fundamental life process, or creative process. It is shown how this process description may be unified with the description that derives from quantum physics. The methods of the quantum physicist and of the biological sciences are seen to be two alternative approaches to the understanding of nature, involving two distinct modes of description which can usefully supplement each other, and neither on its own contains the full story. The unified (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. What's Wrong with Interpretations of Quantum Mechanics.Paul Merriam & M. A. Z. Habeeb - manuscript
    What's wrong with Copenhagen, GRW, Superdeterminism, QBism, Many-worlds, Bohmianism, and Retrocausality, and how theses differ from Presentist Fragmentalism.
    Download  
     
    Export citation  
     
    Bookmark  
  7. The Open Systems View and the Everett Interpretation.Michael E. Cuffaro & Stephan Hartmann - 2023 - Quantum Reports 5 (2):418-425.
    It is argued that those who defend the Everett, or ‘many-worlds’, interpretation of quantum mechanics should embrace what we call the general quantum theory of open systems (GT) as the proper framework in which to conduct foundational and philosophical investigations in quantum physics. GT is a wider dynamical framework than its alternative, standard quantum theory (ST). This is true even though GT makes no modifications to the quantum formalism. GT rather takes a different view, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Interpretations of Quantum Mechanics and Emptiness.Michele Caponigro & Ravi Prakash - 2009 - NeuroQuantology Journal, June 2009 7 (2):198-203.
    The underlying physical reality is a central notion in the interpretations of quantum mechanics. The a priori physical reality notion affects the corresponding interpretation. This paper explore the possibility to establish a relationship between philosophical concept of physical reality in Nagarjuna's epistemology (emptiness) and the picture of underlying physical reality in Einstein, Rovelli and Zeilinger positions. This analysis brings us to conclude that the notion of property of a quantum object is untenable. We can only speak about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Is the Statistical Interpretation of Quantum Mechanics ψ-Ontic or ψ-Epistemic?Mario Hubert - 2023 - Foundations of Physics 53 (16):1-23.
    The ontological models framework distinguishes ψ-ontic from ψ-epistemic wave- functions. It is, in general, quite straightforward to categorize the wave-function of a certain quantum theory. Nevertheless, there has been a debate about the ontological status of the wave-function in the statistical interpretation of quantum mechanics: is it ψ-epistemic and incomplete or ψ-ontic and complete? I will argue that the wave- function in this interpretation is best regarded as ψ-ontic and incomplete.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. The Creative Universe: The Failure of Mathematical Reductionism in Physics (An Essay).Michael Epperson - 2021 - Institute of Art and Ideas News.
    In their seeking of simplicity, scientists fall into the error of Whitehead's "fallacy of misplaced concreteness." They mistake their abstract concepts describing reality for reality itself--the map for the territory. This leads to dogmatic overstatements, paradoxes, and mysteries such as the deep incompatibility of our two most fundamental physical theories--quantum mechanics and general relativity. To avoid such errors, we should evoke Whitehead's conception of the universe as a universe-in-process, where physical relations perpetually beget new physical relations. Today, the most (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Why the Many-Worlds Interpretation of quantum mechanics needs more than Hilbert space structure.Meir Hemmo & Orly Shenker - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 61-70.
    McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space structure, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Selected Problems in Realist Interpretations of Quantum Mechanics and a Novel Suggestion.Paul Merriam - manuscript
    In this short paper I suggest a few properties a good realist interpretation of quantum mechanics ought to have. Then I canvass several interpretations, most of which do not have these properties, and further suggest problems specific to each one. Then I give a reference to a novel interpretation that solves all of these problems.
    Download  
     
    Export citation  
     
    Bookmark  
  13. About Fuzzy time-Particle interpretation of Quantum Mechanics (it is not an innocent one!) version one.Farzad Didehvar - manuscript
    The major point in [1] chapter 2 is the following claim: “Any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction.” So, in the case we wish to save Classical Logic we should change our Computational Model. As we see in chapter two, the mentioned contradiction is about and around the concept of time, as it is in the contradiction of modified version of paradox. It is natural to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Philosophy and Interpretations of Quantum Mechanics.Michele Caponigro - manuscript
    This paper is a critical suvery on the philosophy and the Interpretations of Quantum Mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  15. SINGULARITIES About Fuzzy time- Particle interpretation of Quantum Mechanics (It is not an innocent one!) Version two.Farzad Didehvar - manuscript
    Here, we show that by accepting Fuzzy time-Particle interpretation of Quantum Mechanics, the singularities in the new Model are vanished.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Double Slit Experiment About Fuzzy time- Particle interpretation of Quantum Mechanics (It is not an innocent one!) Version two.Farzad Didehvar - manuscript
    The question of some of the friends is: -/- How is it possible to explain “Double slit experiment” by “Fuzzy time-Particle Interpretation”?
    Download  
     
    Export citation  
     
    Bookmark  
  17. Zeno Goes to Copenhagen: A Dilemma for Measurement-Collapse Interpretations of Quantum Mechanics.David J. Chalmers & Kelvin J. McQueen - 2023 - In M. C. Kafatos, D. Banerji & D. C. Struppa (eds.), Quantum and Consciousness Revisited. DK Publisher.
    A familiar interpretation of quantum mechanics (one of a number of views sometimes labeled the "Copenhagen interpretation'"), takes its empirical apparatus at face value, holding that the quantum wave function evolves by the Schrödinger equation except on certain occasions of measurement, when it collapses into a new state according to the Born rule. This interpretation is widely rejected, primarily because it faces the measurement problem: "measurement" is too imprecise for use in a fundamental physical theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. The consistent histories interpretation of quantum mechanics.Edward MacKinnon - unknown
    The consistent histories reformulation of quantum mechanics was developed by Robert Griffiths, given a formal logical systematization by Roland Omn\`{e}s, and under the label `decoherent histories', was independently developed by Murray Gell-Mann and James Hartle and extended to quantum cosmology. Criticisms of CH involve issues of meaning, truth, objectivity, and coherence, a mixture of philosophy and physics. We will briefly consider the original formulation of CH and some basic objections. The reply to these objections, like the objections themselves, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. The Montevideo Interpretation of Quantum Mechanics: a short review.Rodolfo Gambini & Jorge Pullin - 2015 - Entropy 20 (6).
    The Montevideo interpretation of quantum mechanics, which consists in supplementing environmental decoherence with fundamental limitations in measurement stemming from gravity, has been described in several publications. However, some of them appeared before the full picture provided by the interpretation was developed. As such it can be difficult to get a good understanding via the published literature. Here we summarize it in a self contained brief presentation including all its principal elements.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. (2 other versions)Linguistic Copenhagen interpretation of quantum mechanics: Quantum Language [Ver. 4].Shiro Ishikawa - manuscript
    Recently we proposed “quantum language" (or,“the linguistic Copenhagen interpretation of quantum mechanics"), which was not only characterized as the metaphysical and linguistic turn of quantum mechanics but also the linguistic turn of Descartes=Kant epistemology. Namely, quantum language is the scientific final goal of dualistic idealism. It has a great power to describe classical systems as well as quantum systems. Thus, we believe that quantum language is the language in which science is written. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Interpreting Quantum Mechanics and Predictability in Terms of Facts About the Universe.Andrew Knight - manuscript
    A potentially new interpretation of quantum mechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantum superposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
    Download  
     
    Export citation  
     
    Bookmark  
  22. A single-world consistent interpretation of quantum mechanics from fundamental time and length uncertainties.Rodolfo Gambini, Luis Pedro Garcia-Pintos & Jorge Pullin - 2018 - Physical Review A 100 (012).
    Within ordinary ---unitary--- quantum mechanics there exist global protocols that allow to verify that no definite event ---an outcome to which a probability can be associated--- occurs. Instead, states that start in a coherent superposition over possible outcomes always remain as a superposition. We show that, when taking into account fundamental errors in measuring length and time intervals, that have been put forward as a consequence of a conjunction of quantum mechanical and general relativity arguments, there are instances (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Does accepting Fuzzy Time-Particle interpretation of Quantum Mechanics, refute the other interpretations? (Is fuzziness of time checkable experimentally?).Farzad Didehvar - manuscript
    Throughout this paper, in a nutshell we try to show a way to check Fuzzy time in general and Fuzzy time-Particle interpretation of Quantum Mechanics, experimentally. . -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  24. Systems with Single Degree of Freedom and the Interpretation of Quantum Mechanics.Mehran Shaghaghi - manuscript
    Physical systems can store information and their informational properties are governed by the laws of information. In particular, the amount of information that a physical system can convey is limited by the number of its degrees of freedom and their distinguishable states. Here we explore the properties of the physical systems with absolutely one degree of freedom. The central point in these systems is the tight limitation on their information capacity. Discussing the implications of this limitation we demonstrate that such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. (1 other version)Fundamental Nature of the Fine-Structure Constant.Michael A. Sherbon - 2014 - International Journal of Physical Research 2 (1):1-9.
    Arnold Sommerfeld introduced the fine-structure constant that determines the strength of the electromagnetic interaction. Following Sommerfeld, Wolfgang Pauli left several clues to calculating the fine-structure constant with his research on Johannes Kepler's view of nature and Pythagorean geometry. The Laplace limit of Kepler's equation in classical mechanics, the Bohr-Sommerfeld model of the hydrogen atom and Julian Schwinger's research enable a calculation of the electron magnetic moment anomaly. Considerations of fundamental lengths such as the charge radius of the proton and mass (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  26. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  27. The Problems of Quantum Mechanics and Possible solutions : Copenhagen interpretation, many worlds interpretation, transactional interpretation, decoherence and quantum logic.Rochelle Marianne Forrester - unknown
    This paper reviews some of the literature on the philosophy of quantum mechanics. The publications involved tend to follow similar patterns of first identifying the mysteries, puzzles or paradoxes of the quantum world, and then discussing the existing interpretations of these matters, before the authors produce their own interpretations, or side with one of the existing views. The paper will show that all interpretations of quantum mechanics involve elements of apparent weirdness. They suggest that the quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. A simple proof of Born’s rule for statistical interpretation of quantum mechanics.Biswaranjan Dikshit - 2017 - Journal for Foundations and Applications of Physics 4 (1):24-30.
    The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently some researchers (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Pan(proto)psychism and the Relative-State Interpretation of Quantum Mechanics.Yu Feng - manuscript
    This paper connects the hard problem of consciousness to the interpretation of quantum mechanics. It shows that constitutive Russellian pan(proto)psychism (CRP) is compatible with Everett’s relative-state (RS) interpretation. Despite targeting different problems, CRP and RS are related, for they both establish symmetry between micro- and macrosystems, and both call for a deflationary account of Subject. The paper starts from formal arguments that demonstrate the incompatibility of CRP with alternative interpretations of quantum mechanics, followed by showing that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  71
    Refuting the refutations of the Wigner-Neumann interpretation in quantum mechanics.Spyridon Kakos - 2024 - Harmonia Philosophica Papers.
    One of the most controversial interpretations in quantum mechanics is the Wigner-Neumann interpretation, according to which the superstitions collapse only when a conscious observer observes the quantum system. In general, there is much opposition against this specific interpretation and the reasons are more philosophical than purely scientific. By refuting a specific refutation of the Wigner-Neumann interpretation postulated by Anderson and Carpenter, this paper shows how cancelling the Wigner interpretation is simply not possible at least (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. 'Charge without charge' in the stochastic interpretation of quantum mechanics.Mark Sharlow - 2007
    In this note I examine some implications of stochastic interpretations of quantum mechanics for the concept of "charge without charge" presented by Wheeler and Misner. I argue that if a stochastic interpretation of quantum mechanics were correct, then certain shortcomings of the "charge without charge" concept could be overcome.
    Download  
     
    Export citation  
     
    Bookmark  
  32. (3 other versions)A Theory of Everything consistent with the PF interpretation of Quantum Mechanics.P. Merriam - manuscript
    This paper appears to give a Theory of Everything.
    Download  
     
    Export citation  
     
    Bookmark  
  33. Contextual quantum realism and other interpretations of quantum mechanics.Francois-Igor Pris - 2023 - Moscow: Lenand.
    It is proposed a critique of existing interpretations of quantum mechanics, both anti-realistic and realistic, and, in particular, the Copenhagen interpretation, the interpretations with hidden variables, the metaphysical interpretation of H. Everett’s interpretation, the many-worlds interpretation by D. Wallace, QBism by C. Fuchs, D. Mermin and R. Schack, the relational interpretation by C. Rovelli, neo-Kantian and phenomenological interpretations by M. Bitbol, the informational interpretation by A. Zeilinger, the Nobel Prize Winner in Physics 2022, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Non-locality in the AB-time interpretation of quantum mechanics.Paul Merriam - manuscript
    Non-locality is one of the great mysteries of quantum mechanics (qm). There is a new realist interpretation of qm on the table whose notion of time incorporates both of McTaggart's A-series and B-series. In this philosophically motivated interpretation there is no fact of the matter as to whether the 'now' of one system is the 'now' of another system, until measurement. But this reproduces the idea that the spins of a Bell pair of electrons do not become (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. On Some Metaphysical problems of Many Worlds Interpretation of Quantum Mechanics.Victor Christianto & Florentin Smarandache - manuscript
    Despite its enormous practical success, many physicists and philosophers alike agree that the quantum theory is full of contradictions and paradoxes which are difficult to solve consistently. Even after 90 years, the experts themselves still do not all agree what to make of it. The area of disagreement centers primarily around the problem of describing observations. Formally, the so-called quantum measurement problem can be defined as follows: the result of a measurement is a superposition of vectors, each representing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Philosophical Derivation(?) of the ‘Presentist Fragmentalist’ interpretation of quantum mechanics.Paul Merriam - manuscript
    We give the derivation, as opposed to justification, of the Presentist Fragmentalist interpretation of quantum mechanics in perhaps its most basic form, and then several other considerations.
    Download  
     
    Export citation  
     
    Bookmark  
  37. Quantum Mechanics and the Philosophy of Alfred North Whitehead.Michael Epperson - 2004 - New York: Fordham University Press.
    In Process and Reality and other works, Alfred North Whitehead struggled to come to terms with the impact the new science of quantum mechanics would have on metaphysics. -/- This ambitious book is the first extended analysis of the intricate relationships between relativity theory, quantum mechanics, and Whitehead's cosmology. Michael Epperson illuminates the intersection of science and philosophy in Whitehead's work-and details Whitehead's attempts to fashion an ontology coherent with quantum anomalies. -/- Including a nonspecialist introduction (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  38. Philosophical Foundations of Quantum Mechanics.Alireza Mansouri - 2016 - Tehran: Nashre Ney.
    The revolution brought about by quantum mechanics in the early 20th century was nothing short of remarkable. It shattered the foundational principles of classical physics, giving rise to a plethora of controversial and intriguing conceptual questions. Questions that still perplex and confound the scientific community today. Is the quantum mechanical description of physical reality complete? Are the objects of nature truly inseparable? And most importantly, do objects not have a specific position before measurement, and are there non-causal (...) jumps? These vital problems continue to garner more attention as time passes, particularly with the fading of positivism. If you're a student seeking to explore the fascinating philosophical foundations of quantum mechanics, this book might be just what you need. Written in Persian, brings you closer to the heart of quantum controversies and the fascinating world of quantum mechanics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Problem of the Direct Quantum-Information Transformation of Chemical Substance.Vasil Penchev - 2020 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 3 (26):1-15.
    Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Towards a Micro Realistic Version of Quantum Mechanics, Part I.Nicholas Maxwell - 1976 - Foundations of Physics 6 (3):275-292.
    This paper investigates the possibiity of developing a fully micro realistic version of elementary quantum mechanics. I argue that it is highly desirable to develop such a version of quantum mechanics, and that the failure of all current versions and interpretations of quantum mechanics to constitute micro realistic theories is at the root of many of the interpretative problems associated with quantum mechanics, in particular the problem of measurement. I put forward a propensity micro realistic version (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  41. The quantum mechanical path integral: Toward a realistic interpretation.Mark Sharlow - 2007
    In this paper, I explore the feasibility of a realistic interpretation of the quantum mechanical path integral - that is, an interpretation according to which the particle actually follows the paths that contribute to the integral. I argue that an interpretation of this sort requires spacetime to have a branching structure similar to the structures of the branching spacetimes proposed by previous authors. I point out one possible way to construct branching spacetimes of the required sort, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  42. (1 other version)Scientific Realism meets Metaphysics of Quantum Mechanics.Juha Saatsi - 2017 - In Philosophers Think About Quantum Theory.
    I examine the epistemological debate on scientific realism in the context of quantum physics, focusing on the empirical underdetermin- ation of different formulations and interpretations of QM. I will argue that much of the interpretational, metaphysical work on QM tran- scends the kinds of realist commitments that are well-motivated in the light of the history of science. I sketch a way of demarcating empirically well-confirmed aspects of QM from speculative quantum metaphysics in a way that coheres with anti-realist (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  43. On contextual "democratization" of the Copenhagen interpretation of quantum mechanics.Francois-Igor Pris - 2020 - In Второй Международный Конгресс Русского общества истории и философии науки. «Наука как общественное благо.» Том 1. Сборник статей. / ред.: И. Т. Касавин, Л. В. Шиповалова. – Москва: Издательство РОИФН,. Moscow, Russia: pp. 128-131.
    Download  
     
    Export citation  
     
    Bookmark  
  44. Metaphysics of quantum mechanics.Craig Callender - 2009 - In Compendium of Quantum Physics. Berlin Heidelberg: Springer-Verlag. pp. 384-389.
    Quantum mechanics, like any physical theory, comes equipped with many metaphysical assumptions and implications. The line between metaphysics and physics is often blurry, but as a rough guide, one can think of a theory’s metaphysics as those foundational assumptions made in its interpretation that are not usually directly tested in experiment. In classical mechanics some examples of possible metaphysical assumptions are the claims that forces are real, that inertial mass is primitive, and that space is substantival. The distinctive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. An interpretation of the formalism of quantum mechanics in terms of realism.Arthur Jabs - 1992 - British Journal for the Philosophy of Science 43 (3):405-421.
    We present an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new inter- pretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. Elementary particles are considered as extended objects and nonlocal effects are included. The role of the new concepts in the problems of measurement and of the Einstein-Podolsky-Rosen correlations is described. Experiments to distinguish the proposed interpretation from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our (...) extends this intuitive picture of states and Hilbert-space trajectories to the more realistic case of open quantum systems despite the generic development of entanglement. We provide independent justification for the partial-trace operation for density matrices, reformulate wave-function collapse in terms of an underlying interpolating dynamics, derive the Born rule from deeper principles, resolve several open questions regarding ontological stability and dynamics, address a number of familiar no-go theorems, and argue that our interpretation is ultimately compatible with Lorentz invariance. Along the way, we also investigate a number of unexplored features of quantum theory, including an interesting geometrical structure—which we call subsystem space—that we believe merits further study. We conclude with a summary, a list of criteria for future work on quantum foundations, and further research directions. We include an appendix that briefly reviews the traditional Copenhagen interpretation and the measurement problem of quantum theory, as well as the instrumentalist approach and a collection of foundational theorems not otherwise discussed in the main text. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Axiomatic foundations of Quantum Mechanics revisited: the case for systems.S. E. Perez-Bergliaffa, Gustavo E. Romero & H. Vucetich - 1996 - International Journal of Theoretical Phyisics 35:1805-1819.
    We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  49. Against ‘Interpretation’: Quantum Mechanics Beyond Syntax and Semantics.Raoni Wohnrath Arroyo & Gilson Olegario da Silva - 2022 - Axiomathes 32 (6):1243-1279.
    The question “what is an interpretation?” is often intertwined with the perhaps even harder question “what is a scientific theory?”. Given this proximity, we try to clarify the first question to acquire some ground for the latter. The quarrel between the syntactic and semantic conceptions of scientific theories occupied a large part of the scenario of the philosophy of science in the 20th century. For many authors, one of the two currents needed to be victorious. We endorse that such (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  50. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 916