Results for 'Quantum Mechanics'

919 found
Order:
  1. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2. An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3. Quantum Mechanics, Fields, Black Holes, and Ontological Plurality.Gustavo E. Romero - 2024 - Philosophies 9 (4):97-121.
    The ontology behind quantum mechanics has been the subject of endless debate since the theory was formulated some 100 years ago. It has been suggested, at one time or another, that the objects described by the theory may be individual particles, waves, fields, ensembles of particles, observers, and minds, among many other possibilities. I maintain that these disagreements are due in part to a lack of precision in the use of the theory’s various semantic designators. In particular, there (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  5. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  6. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  7. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Quantum Mechanics, Metaphysics, and Bohm's Implicate Order.George Williams - 2019 - Mind and Matter 2 (17):155-186.
    The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  10.  73
    The Prototime Interpretation of Quantum Mechanics.Susan Schneider & Mark Bailey - manuscript
    We propose the Prototime Interpretation of quantum mechanics, which claims that quantum entanglement occurs in a "prototemporal" realm which underlies spacetime. Our paper is tentative and exploratory. The argument form is inference to the best explanation. We claim that the Prototime Interpretation (PI) is worthy of further consideration as a superior explanation for perplexing quantum phenomena such as delayed choice, superposition, the wave-particle duality and nonlocality. In Section One, we introduce the Prototime Interpretation. Section Two identifies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Quantum mechanics unscrambled.Jean-Michel Delhotel - 2014
    Is quantum mechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantum mechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Axiomatic foundations of Quantum Mechanics revisited: the case for systems.S. E. Perez-Bergliaffa, Gustavo E. Romero & H. Vucetich - 1996 - International Journal of Theoretical Phyisics 35:1805-1819.
    We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  13. Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology.Biswaranjan Dikshit - 2018 - Neuroquantology 16 (4):26-33.
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. The quantum mechanical path integral: Toward a realistic interpretation.Mark Sharlow - 2007
    In this paper, I explore the feasibility of a realistic interpretation of the quantum mechanical path integral - that is, an interpretation according to which the particle actually follows the paths that contribute to the integral. I argue that an interpretation of this sort requires spacetime to have a branching structure similar to the structures of the branching spacetimes proposed by previous authors. I point out one possible way to construct branching spacetimes of the required sort, and I ask (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  15. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of (...) mechanics is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Quantum Mechanical EPRBA covariance and classical probability.Han Geurdes - manuscript
    Contrary to Bell’s theorem it is demonstrated that with the use of classical probability theory the quantum correlation can be approximated. Hence, one may not conclude from experiment that all local hidden variable theories are ruled out by a violation of inequality result.
    Download  
     
    Export citation  
     
    Bookmark  
  17. Derivation of the Quantum Mechanical Momentum Operator in the Position Representation.Ryan Reece - manuscript
    I pedagogically show that the momentum operator in quantum mechanics, in the position representation, commonly known to be a derivative with respect to a spatial x-coordinate, can be derived by identifying momentum as the generator of space translations.
    Download  
     
    Export citation  
     
    Bookmark  
  18. Philosophical & Practical Implications of Quantum Mechanics.Sunil Thakur - manuscript
    Quantum mechanics makes some very significant observations about nature. Unfortunately, these observations remain a mystery because they do not fit into and/or cannot be explained through classical mechanics. However, we can still explore the philosophical and practical implications of these observations. This article aims to explain philosophical and practical implications of one of the most important observations of quantum mechanics – uncertainty or the arbitrariness in the behavior of particles.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. (1 other version)Quantum mechanics and consciousness: Thoughts on a causal correspondence theory.Ian J. Thompson - 2017 - In S. Gosh, B. D. Mundhra, K. Vasudeva Rao & Varun Agarwal (eds.), Quantum Physics & Consciousness - Thoughts of Founding Fathers of Quantum Physics and other Renowned Scholars. Bhaktivedanta Institute. pp. 173-185.
    Which way does causation proceed? The pattern in the material world seems to be upward: particles to molecules to organisms to brains to mental processes. In contrast, the principles of quantum mechanics allow us to see a pattern of downward causation. These new ideas describe sets of multiple levels in which each level influences the levels below it through generation and selection. Top-down causation makes exciting sense of the world: we can find analogies in psychology, in the formation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Heisenberg quantum mechanics, numeral set-theory and.Han Geurdes - manuscript
    In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. How quantum mechanics with deterministic collapse localizes macroscopic objects.Arthur Jabs - manuscript
    Why microscopic objects exhibit wave properties (are delocalized), but macroscopic do not (are localized)? Traditional quantum mechanics attributes wave properties to all objects. When complemented with a deterministic collapse model (Quantum Stud.: Math. Found. 3, 279 (2016)) quantum mechanics can dissolve the discrepancy. Collapse in this model means contraction and occurs when the object gets in touch with other objects and satisfies a certain criterion. One single collapse usually does not suffice for localization. But the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Quantum Mechanics and the Philosophy of Alfred North Whitehead.Michael Epperson - 2004 - New York: Fordham University Press.
    In Process and Reality and other works, Alfred North Whitehead struggled to come to terms with the impact the new science of quantum mechanics would have on metaphysics. -/- This ambitious book is the first extended analysis of the intricate relationships between relativity theory, quantum mechanics, and Whitehead's cosmology. Michael Epperson illuminates the intersection of science and philosophy in Whitehead's work-and details Whitehead's attempts to fashion an ontology coherent with quantum anomalies. -/- Including a nonspecialist (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  24. Does Consciousness-Collapse Quantum Mechanics Facilitate Dualistic Mental Causation?Alin C. Cucu - forthcoming - Journal of Cognitive Science.
    One of the most serious challenges (if not the most serious challenge) for interactive psycho-physical dualism (henceforth interactive dualism or ID) is the so-called ‘interaction problem’. It has two facets, one of which this article focuses on, namely the apparent tension between interactions of non-physical minds in the physical world and physical laws of nature. One family of approaches to alleviate or even dissolve this tension is based on a collapse solution (‘consciousness collapse/CC) of the measurement problem in quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Indeterminism in Quantum Mechanics: Beyond and/or Within.Vasil Penchev - 2020 - Development of Innovation eJournal (Elsevier: SSRN) 8 (68):1-5.
    The problem of indeterminism in quantum mechanics usually being considered as a generalization determinism of classical mechanics and physics for the case of discrete (quantum) changes is interpreted as an only mathematical problem referring to the relation of a set of independent choices to a well-ordered series therefore regulated by the equivalence of the axiom of choice and the well-ordering “theorem”. The former corresponds to quantum indeterminism, and the latter, to classical determinism. No other premises (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Philosophical Foundations of Quantum Mechanics.Alireza Mansouri - 2016 - Tehran: Nashre Ney.
    The revolution brought about by quantum mechanics in the early 20th century was nothing short of remarkable. It shattered the foundational principles of classical physics, giving rise to a plethora of controversial and intriguing conceptual questions. Questions that still perplex and confound the scientific community today. Is the quantum mechanical description of physical reality complete? Are the objects of nature truly inseparable? And most importantly, do objects not have a specific position before measurement, and are there non-causal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Interpretation Misunderstandings about Elementary Quantum Mechanics.Federico G. Lopez Armengol & Gustavo E. Romero - 2017 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 7:55--60.
    Quantum Mechanics is a fundamental physical theory about atomic-scale processes. It was built between 1920 and 1940 by the most distinguished physicists of that time. The accordance between the predictions of the theory and experimental results is remarkable. The physical interpretation of its mathematical constructs, however, raised unprecedented controversies. Ontological, semantic, and epistemic vagueness abound in the orthodox interpretations and have resulted in serious misunderstandings that are often repeated in textbooks and elsewhere. In this work, we identify, criticize, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Consciousness Studies and Quantum Mechanics.Varanasi Ramabrahmam - 2017 - Http://Scsiscs.Org/Conference/Scienceandscientist/2017/ 5:165-171.
    The limitations and unsuitability of the twentieth century intellectual marvel, the quantum mechanics for the task of unraveling working of human consciousness is critically analyzed. The inbuilt traits of the probabilistic, approximate and imprecise nature of quantum mechanical approach are brought out. -/- The limitations and the unsuitability of using such knowledge for the understanding of precise, correct, finite and definite happenings of activities relating to human consciousness and mind, which are not quantum in nature, are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Manifestation of Quantum Mechanical Properties of a Proprietor’s Consciousness in Slit Measurements of Economic Systems.Sergiy Melnyk & Igor Tuluzov - 2014 - Neuroquantology 12 (3).
    The present paper discusses the problem of quantum-mechanical properties of a subject’s consciousness. The model of generalized economic measurements is used for the analysis. Two types of such measurements are analyzed – transactions and technologies. Algebraic ratios between the technology-type measurements allow making their analogy with slit experiments in physics. It has been shown that the description of results of such measurements is possible both in classical and in quantum formalism of calculation of probabilities. Thus, the quantum-mechanical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Dynamics, Quantum mechanics and the Indeterminism of nature.Jörg Neunhäuserer - manuscript
    We show that determinism is false assuming a realistic interpretation of quantum mechanics and considering the sensitive dynamics of macroscopical physical systems.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Interpreting Quantum Mechanics and Predictability in Terms of Facts About the Universe.Andrew Knight - manuscript
    A potentially new interpretation of quantum mechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantum superposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Quantum Mechanics: Observer and von Neumann Chain.Michele Caponigro - manuscript
    In this brief paper, we argue about the conceptual relationship between the role of observer in quantum mechanics and the von Neumann Chain. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  33. The principles of quantum mechanics.Paul Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  34. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement is available. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Quantum Mechanics as Quantum Information, Mostly.Christopher A. Fuchs - 2003 - Journal of Modern Optics 50:987-1023.
    In this paper, I try to cause some good-natured trouble. The issue is, when will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations? The suspicion is expressed that no end will be in sight until a means is found to reduce quantum theory to two or three statements of crisp physical (rather than abstract, axiomatic) significance. In this regard, no tool appears better calibrated for a direct assault than quantum information theory. Far (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  36. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. The Indeterminist Objectivity of Quantum Mechanics Versus the Determinist Subjectivity of Classical Physics.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (18):1-5.
    Indeterminism of quantum mechanics is considered as an immediate corollary from the theorems about absence of hidden variables in it, and first of all, the Kochen – Specker theorem. The base postulate of quantum mechanics formulated by Niels Bohr that it studies the system of an investigated microscopic quantum entity and the macroscopic apparatus described by the smooth equations of classical mechanics by the readings of the latter implies as a necessary condition of (...) mechanics the absence of hidden variables, and thus, quantum indeterminism. Consequently, the objectivity of quantum mechanics and even its possibility and ability to study its objects as they are by themselves imply quantum indeterminism. The so-called free-will theorems in quantum mechanics elucidate that the “valuable commodity” of free will is not a privilege of the experimenters and human beings, but it is shared by anything in the physical universe once the experimenter is granted to possess free will. The analogical idea, that e.g. an electron might possess free will to “decide” what to do, scandalized Einstein forced him to exclaim (in a letter to Max Born in 2016) that he would be а shoemaker or croupier rather than a physicist if this was true. Anyway, many experiments confirmed the absence of hidden variables and thus quantum indeterminism in virtue of the objectivity and completeness of quantum mechanics. Once quantum mechanics is complete and thus an objective science, one can ask what this would mean in relation to classical physics and its objectivity. In fact, it divides disjunctively what possesses free will from what does not. Properly, all physical objects belong to the latter area according to it, and their “behavior” is necessary and deterministic. All possible decisions, on the contrary, are concentrated in the experimenters (or human beings at all), i.e. in the former domain not intersecting the latter. One may say that the cost of the determinism and unambiguous laws of classical physics, is the indeterminism and free will of the experimenters and researchers (human beings) therefore necessarily being out of the scope and objectivity of classical physics. This is meant as the “deterministic subjectivity of classical physics” opposed to the “indeterminist objectivity of quantum mechanics”. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Possible Perspective for Quantum Mechanics Interpretation: An Essay-Suggestion.Spiridon Dumitru - 2022 - European Journal of Applied Physics, ISSN: 2684-4451 4 (5):55-62.
    The idea of new-type articles, named “Perspectives”, announced recently by some leading journals, is suggested to be approached for the controversial question of quantum mechanics interpretation. Firstly, it is revealed briefly the unsatisfactory situation of the nowadays predominant doctrine about that question. Then some basic elements of the proposed approach are presented. Those elements refer to (i) uncertainty relations, (ii) distinction between own tasks of quantum mechanics and description of quantum measurements, (iii) defects of collapse (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. What Quantum Mechanics Doesn't Show.Justin P. McBrayer & Dugald Owen - 2016 - Teaching Philosophy 39 (2):163-176.
    Students often invoke quantum mechanics in class or papers to make philosophical points. This tendency has been encouraged by pop culture influences like the film What the Bleep do We Know? There is little merit to most of these putative implications. However, it is difficult for philosophy teachers unfamiliar with quantum mechanics to handle these supposed implications in a clear and careful way. This paper is a philosophy of science version of MythBusters. We offer a brief (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. The quantum mechanical time reversal operator.Andrew Thomas Holster - unknown
    The analysis of the reversibility of quantum mechanics depends upon the choice of the time reversal operator for quantum mechanical states. The orthodox choice for the time reversal operator on QM states is known as the Wigner operator, T*, where * performs complex conjugation. The peculiarity is that this is not simply the unitary time reversal operation, but an anti-unitary operator, involving complex conjugation in addition to ordinary time reversal. The alternative choice is the Racah operator, which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  41. Quantum mechanics reality and separability.Franco Selleri & G. Tarozzi - 1981 - la Rivista Del Nuovo Cimento 4 (2):1-53.
    TABLE OF CONTENTS: Introduction; de Broglie's paradox.; Quantum theory of distant particles; The EPR paradox; Einstein locality and Bell's inequality; Recent research on Bell's inequality; General consequences of Einstein locality; Nonloeality and relativity; Time-symmetric theories; The Bohm-Aharonov hypothesis; Experiments on Einstein locality; Reduction of the wave packet; Measurements, reality and consciousness; Conclusions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Energy Non-conservation in Quantum Mechanics.Sean M. Carroll & Jackie Lodman - 2021 - Foundations of Physics 51 (4):1-15.
    We study the conservation of energy, or lack thereof, when measurements are performed in quantum mechanics. The expectation value of the Hamiltonian of a system changes when wave functions collapse in accordance with the standard textbook treatment of quantum measurement, but one might imagine that the change in energy is compensated by the measuring apparatus or environment. We show that this is not true; the change in the energy of a state after measurement can be arbitrarily large, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. The Problems of Quantum Mechanics and Possible solutions : Copenhagen interpretation, many worlds interpretation, transactional interpretation, decoherence and quantum logic.Rochelle Marianne Forrester - unknown
    This paper reviews some of the literature on the philosophy of quantum mechanics. The publications involved tend to follow similar patterns of first identifying the mysteries, puzzles or paradoxes of the quantum world, and then discussing the existing interpretations of these matters, before the authors produce their own interpretations, or side with one of the existing views. The paper will show that all interpretations of quantum mechanics involve elements of apparent weirdness. They suggest that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Barad, Bohr, and quantum mechanics.Jan Faye & Rasmus Jaksland - 2021 - Synthese 199:8231-8255.
    The last decade has seen an increasing number of references to quantum mechanics in the humanities and social sciences. This development has in particular been driven by Karen Barad’s agential realism: a theoretical framework that, based on Niels Bohr’s interpretation of quantum mechanics, aims to inform social theorizing. In dealing with notions such as agency, power, and embodiment as well as the relation between the material and the discursive level, the influence of agential realism in fields (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  45. Reasonable Inferences From Quantum Mechanics: A Response to “Quantum Misuse in Psychic Literature”.Bernardo Kastrup - 2019 - Journal of Near-Death Studies 37 (3):185-200.
    This invited article is a response to the paper “Quantum Misuse in Psychic Literature,” by Jack A. Mroczkowski and Alexis P. Malozemoff, published in this issue of the Journal of Near-Death Studies. Whereas I sympathize with Mroczkowski’s and Malozemoff’s cause and goals, and I recognize the problem they attempted to tackle, I argue that their criticisms often overshot the mark and end up adding to the confusion. I address nine specific technical points that Mroczkowski and Malozemoff accused popular writers (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Achilles, the Tortoise and Quantum Mechanics.Alfred Driessen - manuscript
    The four antinomies of Zeno of Elea, especially Achilles and the tortoise continue to be provoking issues which are even now not always satisfactory solved. Aristotle himself used this antinomy to develop his understanding of movement: it is a fluent continuum that has to be treated as a whole. The parts, if any, are only potentially present in the whole. And that is exactly what quantum mechanics is claiming: movement is quantized in contrast to classical mechanics. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Quantum Mechanics May Need Consciousness.Andrew Knight - manuscript
    The assertion by Yu and Nikolic that the delayed choice quantum eraser experiment of Kim et al. empirically falsifies the consciousness-causes-collapse hypothesis of quantum mechanics is based on the unfounded and false assumption that the failure of a quantum wave function to collapse implies the appearance of a visible interference pattern.
    Download  
     
    Export citation  
     
    Bookmark  
  48. Quantum Mechanics and Relational Realism.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization (in “orthodox” terms, each measurement outcome) is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept of “actualization (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. Quantum Mechanics and its epistemological implications.Antonio Portaluri - 2014 - Milano MI, Italia: Psiche e Realtà - Tecniche Nuove.
    On October 24th, 1927, the world's most important physicists met in Brussels for what is known as the fifth edition of the Solvay Conference. The focus of the discussion was the new Quantum Mechanics, to which most of the people present at the meeting had contributed but about which they had contrasting opinions. On the one hand, Niels Bohr and Werner Heisenberg claimed they had provided the new science with a definite structure, not subject to further modifications, while (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. (2 other versions)Linguistic Copenhagen interpretation of quantum mechanics: Quantum Language [Ver. 4].Shiro Ishikawa - manuscript
    Recently we proposed “quantum language" (or,“the linguistic Copenhagen interpretation of quantum mechanics"), which was not only characterized as the metaphysical and linguistic turn of quantum mechanics but also the linguistic turn of Descartes=Kant epistemology. Namely, quantum language is the scientific final goal of dualistic idealism. It has a great power to describe classical systems as well as quantum systems. Thus, we believe that quantum language is the language in which science is written. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 919