Results for 'Quantum Oracles'

912 found
Order:
  1. Effective Physical Processes and Active Information in Quantum Computing.Ignazio Licata - 2007 - Quantum Biosystems 1 (1):51-65.
    The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume I.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2018 - Basel, Switzerland: MDPI. Edited by Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali.
    The topics approached in the 52 papers included in this book are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume II.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2019 - Basel, Switzerland: MDPI.
    The topics approached in this collection of papers are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued trapezoidal neutrosophic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  5. Quantum gravity, timelessness, and the folk concept of time.Andrew J. Latham & Kristie Miller - 2020 - Synthese 198 (10):9453-9478.
    What it would take to vindicate folk temporal error theory? This question is significant against a backdrop of new views in quantum gravity—so-called timeless physical theories—that claim to eliminate time by eliminating a one-dimensional substructure of ordered temporal instants. Ought we to conclude that if these views are correct, nothing satisfies the folk concept of time and hence that folk temporal error theory is true? In light of evidence we gathered, we argue that physical theories that entirely eliminate an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Matteo Morganti & Claudio Calosi - 2021 - British Journal for the Philosophy of Science 72 (3):865-891.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  7. How Quantum is Quantum Counterfactual Communication?Jonte R. Hance, James Ladyman & John Rarity - 2021 - Foundations of Physics 51 (1):1-17.
    Quantum Counterfactual Communication is the recently-proposed idea of using quantum physics to send messages between two parties, without any matter/energy transfer associated with the bits sent. While this has excited massive interest, both for potential ‘unhackable’ communication, and insight into the foundations of quantum mechanics, it has been asked whether this process is essentially quantum, or could be performed classically. We examine counterfactual communication, both classical and quantum, and show that the protocols proposed so far (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  9. Quantum Mechanics and the Philosophy of Alfred North Whitehead.Michael Epperson - 2004 - New York: Fordham University Press.
    In Process and Reality and other works, Alfred North Whitehead struggled to come to terms with the impact the new science of quantum mechanics would have on metaphysics. -/- This ambitious book is the first extended analysis of the intricate relationships between relativity theory, quantum mechanics, and Whitehead's cosmology. Michael Epperson illuminates the intersection of science and philosophy in Whitehead's work-and details Whitehead's attempts to fashion an ontology coherent with quantum anomalies. -/- Including a nonspecialist introduction to (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  10. Quantum Mechanics, Fields, Black Holes, and Ontological Plurality.Gustavo E. Romero - 2024 - Philosophies 9 (4):97-121.
    The ontology behind quantum mechanics has been the subject of endless debate since the theory was formulated some 100 years ago. It has been suggested, at one time or another, that the objects described by the theory may be individual particles, waves, fields, ensembles of particles, observers, and minds, among many other possibilities. I maintain that these disagreements are due in part to a lack of precision in the use of the theory’s various semantic designators. In particular, there is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  12. Quantum Gravity As the Unification of General Relativity & Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-3.
    A nonstandard viewpoint to quantum gravity is discussed. General relativity and quantum mechanics are to be related as two descriptions of the same, e.g. as Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics merged in the contemporary quantum mechanics. From the viewpoint of general relativity one can search for that generalization of relativity implying the in-variance “within – out of” of the same system.
    Download  
     
    Export citation  
     
    Bookmark  
  13. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  15. Quantum Technologies in Industry 4.0: Navigating the Ethical Frontier with Value-Sensitive Design.Steven Umbrello - 2024 - Procedia Computer Science 232:1654-1662.
    With the emergence of quantum technologies such as quantum computing, quantum communications, and quantum sensing, new potential has emerged for smart manufacturing and Industry 4.0. These technologies, however, present ethical concerns that must be addressed in order to ensure they are developed and used responsibly. This article outlines some of the ethical challenges that quantum technologies may raise for Industry 4.0 and presents the value sensitive design methodology as a strategy for ethics-by-design of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Quantum sensing and quantum engineering: a strategy for acceleration via metascience.Charles Clark, Mayur Gosai, Terry Janssen, Melissa LaDuke, Jobst Landgrebe, Lawrence Pace & Barry Smith - 2023 - Proceedings of Spie: Quantum Sensing, Imaging, and Precision Metrology 12447.
    Research and engineering in the quantum domain involve long chains of activity involving theory development, hypothesis formation, experimentation, device prototyping, device testing, and many more. At each stage multiple paths become possible, and of the paths pursued, the majority will lead nowhere. Our quantum metascience approach provides a strategy which enables all stakeholders to gain an overview of those developments along these tracks, that are relevant to their specific concerns. It provides a controlled vocabulary, built out of terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Contexts, oracles, and relevance.Varol Akman & Mehmet Surav - 1995 - In Varol Akman & Mehmet Surav (eds.), Proceedings of the AAAI-95 Fall Symposium on Formalizing Context (AAAI Technical Report FS-95-02). Palo Alto, CA: Association for the Advancement of Artificial Intelligence Press. pp. 23-30.
    We focus on how we should define the relevance of information to a context for information processing agents, such as oracles. We build our formalization of relevance upon works in pragmatics which refer to contextual information without giving any explicit representation of context. We use a formalization of context (due to us) in Situation Theory, and demonstrate its power in this task. We also discuss some computational aspects of this formalization.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Quantum of Wisdom.Colin Allen & Brett Karlan - 2022 - In Greg Viggiano (ed.), Quantum Computing and AI: Social, Ethical, and Geo-Political Implications. pp. 157-166.
    Practical quantum computing devices and their applications to AI in particular are presently mostly speculative. Nevertheless, questions about whether this future technology, if achieved, presents any special ethical issues are beginning to take shape. As with any novel technology, one can be reasonably confident that the challenges presented by "quantum AI" will be a mixture of something new and something old. Other commentators (Sevilla & Moreno 2019), have emphasized continuity, arguing that quantum computing does not substantially affect (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  21. Quantum Molinism.Thomas Harvey, Frederick Kroon, Karl Svozil & Cristian Calude - 2022 - European Journal for Philosophy of Religion 14 (3):167-194.
    In this paper we consider the possibility of a Quantum Molinism : such a view applies an analogue of the Molinistic account of free will‘s compatibility with God’s foreknowledge to God’s knowledge of (supposedly) indeterministic events at a quantum level. W e ask how (and why) a providential God could care for and know about a world with this kind of indeterminacy. We consider various formulations of such a Quantum Molinism, and after rejecting a number of options (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Quantum mechanics reality and separability.Franco Selleri & G. Tarozzi - 1981 - la Rivista Del Nuovo Cimento 4 (2):1-53.
    TABLE OF CONTENTS: Introduction; de Broglie's paradox.; Quantum theory of distant particles; The EPR paradox; Einstein locality and Bell's inequality; Recent research on Bell's inequality; General consequences of Einstein locality; Nonloeality and relativity; Time-symmetric theories; The Bohm-Aharonov hypothesis; Experiments on Einstein locality; Reduction of the wave packet; Measurements, reality and consciousness; Conclusions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Quantum Mechanics and Relational Realism: Logical Causality and Wave Function Collapse.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization (in “orthodox” terms, each measurement outcome) is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept of “actualization (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24. How Quantum Theory Helps Us Explain.Richard Healey - 2012 - British Journal for the Philosophy of Science (1):axt031.
    I offer an account of how the quantum theory we have helps us explain so much. The account depends on a pragmatist interpretation of the theory: this takes a quantum state to serve as a source of sound advice to physically situated agents on the content and appropriate degree of belief about matters concerning which they are currently inevitably ignorant. The general account of how to use quantum states and probabilities to explain otherwise puzzling regularities is then (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  25.  46
    In Defense of Quantum Dualism.John David McAlpin & Michael D. Cook - manuscript
    This paper explores the theoretical compatibility of substance dualism with a physicalist framework, challenging the notion that physicalism inherently precludes dualism. Acknowledging foundational physicalist principles like reductionism, weakly-emergent consciousness, conservation laws, and the limited impact of quantum indeterminacy, we challenge the conclusion that the universe is thus causally closed. Instead, we propose a speculative model where an extra-physical entity (akin to a “soul”) might intentionally influence quantum outcomes, and examine it as a possible mechanism for libertarian free will. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics.Sean M. Carroll & Ashmeet Singh - 2021 - Physical Review A 103 (2):022213.
    We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) and remain (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. A Quantum-Theoretic Argument Against Naturalism.Bruce L. Gordon - 2011 - In Bruce Gordon & William A. Dembski (eds.), The nature of nature: examining the role of naturalism in science. Wilmington, DE: ISI Books. pp. 179-214.
    Quantum theory offers mathematical descriptions of measurable phenomena with great facility and accuracy, but it provides absolutely no understanding of why any particular quantum outcome is observed. It is the province of genuine explanations to tell us how things actually work—that is, why such descriptions hold and why such predictions are true. Quantum theory is long on the what, both mathematically and observationally, but almost completely silent on the how and the why. What is even more interesting (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  29. Democratization of quantum technologies.Zeki Seskir, Steven Umbrello, Pieter E. Vermaas & Christopher Coenen - 2023 - Quantum Science and Technology 8:024005.
    As quantum technologies (QT) advance, their potential impact on and relation with society has been developing into an important issue for exploration. In this paper, we investigate the topic of democratization in the context of QT, particularly quantum computing. The paper contains three main sections. First, we briefly introduce different theories of democracy (participatory, representative, and deliberative) and how the concept of democratization can be formulated with respect to whether democracy is taken as an intrinsic or instrumental value. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Quantum mereotopology.Barry Smith & Berit O. Brogaard - 2002 - Annals of Mathematics and Artificial Intelligence 36 (1):153-175.
    Mereotopology faces problems when its methods are extended to deal with time and change. We offer a new solution to these problems, based on a theory of partitions of reality which allows us to simulate (and also to generalize) aspects of set theory within a mereotopological framework. This theory is extended to a theory of coarse- and fine-grained histories (or finite sequences of partitions evolving over time), drawing on machinery developed within the framework of the so-called ‘consistent histories’ interpretation of (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  31. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between relativity (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  32. Quantum leaps in philosophy of mind.David Bourget - 2004 - Journal of Consciousness Studies 11 (12):17--42.
    I discuss the quantum mechanical theory of consciousness and freewill offered by Stapp (1993, 1995, 2000, 2004). First I show that decoherence-based arguments do not work against this theory. Then discuss a number of problems with the theory: Stapp's separate accounts of consciousness and freewill are incompatible, the interpretations of QM they are tied to are questionable, the Zeno effect could not enable freewill as he suggests because weakness of will would then be ubiquitous, and the holism of measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  33. Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining the thermodynamic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Against Quantum Indeterminacy.David Glick - 2017 - Thought: A Journal of Philosophy 6 (3):204-213.
    A growing literature is premised on the claim that quantum mechanics provides evidence for metaphysical indeterminacy. But does it? None of the currently fashionable realist interpretations involve fundamental indeterminacy and the ‘standard interpretation’, to the extent that it can be made out, doesn't require indeterminacy either.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  35. Development and Evaluation of the Oracle Intelligent Tutoring System (OITS).Rami Aldahdooh & Samy S. Abu Naser - 2017 - European Academic Research 4 (10).
    This paper presents the design and development of intelligent tutoring system for teaching Oracle. The Oracle Intelligent Tutoring System (OITS) examined the power of a new methodology to supporting students in Oracle programming. The system presents the topic of Introduction to Oracle with automatically generated problems for the students to solve. The system is dynamically adapted at run time to the student’s individual progress. An initial evaluation study was done to investigate the effect of using the intelligent tutoring system on (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  36. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time according (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  38. Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  39. (1 other version)Quantum Occasionalism.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    Both transition and transformation link the ideal and material into a whole. Future is what “causes” the present, and the latter in turn is what “causes” the past. That kind of “reverse causality” needs free choice and free will in the present in order to be able to be realized unlike classical causality. A few properties feature the concept of “quantum occasionalism” as follows. Some hypothetical entity generates successively a series of well-ordered states. That hypothetical entity is called “coherent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Inter-theory Relations in Quantum Gravity: Correspondence, Reduction and Emergence.Karen Crowther - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:74-85.
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  41. Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  42. Quantum-like non-separability of concept combinations, emergent associates and abduction.P. Bruza, K. Kitto, B. Ramm, L. Sitbon & D. Song - 2012 - Logic Journal of the IGPL 20 (2):445-457.
    Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  43. Main Concepts in Philosophy of Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (31):1-4.
    Quantum mechanics involves a generalized form of information, that of quantum information. It is the transfinite generalization of information and re-presentable by transfinite ordinals. The physical world being in the current of time shares the quality of “choice”. Thus quantum information can be seen as the universal substance of the world serving to describe uniformly future, past, and thus the present as the frontier of time. Future is represented as a coherent whole, present as a choice among (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. The principles of quantum mechanics.Paul Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  45. Information, physics, quantum: the search for links.John Archibald Wheeler - 1989 - In Wheeler John Archibald (ed.), Proceedings III International Symposium on Foundations of Quantum Mechanics. pp. 354-358.
    This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantum theory provide mere (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  46. QUANTUM RESONANCE WITH THE MIND: A COMPARATIVE ANALYSIS OF BUDDHISM'S EIGHTH CONSCIOUSNESS, QUANTUM HOLOGRAPHY AND JUNG'S COLLECTIVE UNCONSCIOUS.David Leong - manuscript
    This interdisciplinary exploration discusses the intricate conceptual linkages among Buddhism’s Eighth State of Consciousness, Quantum Holography, and the Jungian Collective Unconscious. Central to this study is examining the Eighth Consciousness in Buddhist thought—a realm that transcends the conventional sensory and mental states to connect with a more universal and profound awareness. Drawing parallels, Quantum Holography posits that every part of the universe retains information about the whole, much like a hologram. This notion seemingly mirrors the Jungian concept of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. A Quantum-Bayesian Route to Quantum-State Space.Christopher A. Fuchs & Rüdiger Schack - 2011 - Foundations of Physics 41 (3):345-356.
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum Bayesianism. (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  48. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  50.  91
    Quantum Indeterminacy and Libertarian Panpsychism.M. Masi - 2024 - Mind and Matter 22 (1):31-50.
    The “consequence argument”, together with the “luck objection”, which are summed up by the “standard argument against free will”, state that if our volition were dependent on physical causally indeterministic processes, our actions would lack control and, thereby, result in random behavior that would be a mere matter of luck and chance. In particular, quantum indeterminacy is supposed to be of no use in support of libertarian agent-causation theories because any volitional act interfering with the probability distributions de fining (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 912