Results for 'Quantum Theory, Measurement Problem'

999 found
Order:
  1. Quantum theory without measurement or state reduction problems.Alan Macdonald - manuscript
    There is a consistent and simple interpretation of the quantum theory of isolated systems. The interpretation suffers no measurement problem and provides a quantum explanation of state reduction, which is usually postulated. Quantum entanglement plays an essential role in the construction of the interpretation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Feyerabend on the Quantum Theory of Measurement: A Reassessment.Daniel Kuby & Patrick Fraser - 2022 - International Studies in the Philosophy of Science 35 (1):23-49.
    In 1957, Feyerabend delivered a paper titled ‘On the Quantum-Theory of Measurement’ at the Colston Research Symposium in Bristol to sketch a completion of von Neumann's measurement scheme without collapse, using only unitary quantum dynamics and well-motivated statistical assumptions about macroscopic quantum systems. Feyerabend's paper has been recognised as an early contribution to quantum measurement, anticipating certain aspects of decoherence. Our paper reassesses the physical and philosophical content of Feyerabend's contribution, detailing the technical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. The Ontic Probability Interpretation of Quantum Theory - Part III: Schrödinger’s Cat and the ‘Basis’ and ‘Measurement’ Pseudo-Problems (2nd edition).Felix Alba-Juez - manuscript
    Most of us are either philosophically naïve scientists or scientifically naïve philosophers, so we misjudged Schrödinger’s “very burlesque” portrait of Quantum Theory (QT) as a profound conundrum. The clear signs of a strawman argument were ignored. The Ontic Probability Interpretation (TOPI) is a metatheory: a theory about the meaning of QT. Ironically, equating Reality with Actuality cannot explain actual data, justifying the century-long philosophical struggle. The actual is real but not everything real is actual. The ontic character of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  88
    Quantum Theory, Objectification and Some Memories of Giovanni Morchio.Luca Sciortino - 2023 - In Alessandro Michelangeli & Andrea Cintio (eds.), Trails in Modern Theoretical and Mathematical Physics. Springer. pp. 301-310.
    In this contribution I will retrace the main stages of my research on the objectification problem in quantum mechanics by highlighting some personal memories of my supervisor, the theoretical physicist Giovanni Morchio. The central aim of my MSc thesis was to ask whether the hypothesis of objectification, which is currently added to the formalism, is not, at least in one case, deducible from it and in particular from the dynamics of the temporal evolution. The case study we were (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The Quantum Measurement Problem - Collapse of the Wave Function explained.Rochelle Marianne Forrester - unknown
    Quantum physicists have made many attempts to solve the quantum measurement problem, but no solution seems to have received widespread acceptance. The time has come for a new approach. In Sense Perception and Reality: A Theory of Perceptual Relativity, Quantum Mechanics and the Observer Dependent Universe I suggest the quantum measurement problem is caused by a failure to understand that each species has its own sensory world and that when we say the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of (...)—the fact that you can't stop a measurement part-way through and uncover the underlying 'ontic' dynamics of the system in question. Having discussed the hidden dynamics of a system's ontic state during measurement, we turn to more general forms of open-system dynamics and explore the extent to which the details of the underlying ontic behavior of a system can be described. We construct a space of ontic trajectories and describe obstructions to defining a probability measure on this space. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. A model for the solution of the quantum measurement problem.Biswaranjan Dikshit - 2019 - Science and Philosophy 7 (2):59-70.
    The basic idea of quantum mechanics is that the property of any system can be in a state of superposition of various possibilities. This state of superposition is also known as wave function and it evolves linearly with time in a deterministic way in accordance with the Schrodinger equation. However, when a measurement is carried out on the system to determine the value of that property, the system instantaneously transforms to one of the eigen states and thus we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Quantum Theories of Consciousness.Paavo Pylkkänen - 2018 - In Rocco J. Gennaro (ed.), The Routledge Handbook of Consciousness. New York, NY, USA: pp. 216-231.
    This paper provides a brief introduction to quantum theory and the proceeds to discuss the different ways in which the relationship between quantum theory and mind/consciousness is seen in some of the main alternative interpretations of quantum theory namely by Bohr; von Neumann; Penrose: Everett; and Bohm and Hiley. It briefly considers how qualia might be explained in a quantum framework, and makes a connection to research on quantum biology, quantum cognition and quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Bimodal Quantum Theory.Saurav Dwivedi - manuscript
    Some variants of quantum theory theorize dogmatic "unimodal" states-of-being, and are based on hodge-podge classical-quantum language. They are based on ontic syntax, but pragmatic semantics. This error was termed semantic inconsistency [1]. Measurement seems to be central problem of these theories, and widely discussed in their interpretation. Copenhagen theory deviates from this prescription, which is modeled on experience. A complete quantum experiment is "bimodal". An experimenter creates the system-under-study in initial mode of experiment, and annihilates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. On the Compatibility Between Quantum Theory and General Relativity.Cristinel Stoica - manuscript
    I propose a gentle reconciliation of Quantum Theory and General Relativity. It is possible to add small, but unshackling constraints to the quantum fields, making them compatible with General Relativity. Not all solutions of the Schrodinger's equation are needed. I show that the continuous and spatially separable solutions are sufficient for the nonlocal manifestations associated with entanglement and wavefunction collapse. After extending this idea to quantum fields, I show that Quantum Field Theory can be defined in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. New Prospects for a Causally Local Formulation of Quantum Theory.Jacob A. Barandes - manuscript
    It is difficult to extract reliable criteria for causal locality from the limited ingredients found in textbook quantum theory. In the end, Bell humbly warned that his eponymous theorem was based on criteria that “should be viewed with the utmost suspicion.” Remarkably, by stepping outside the wave-function paradigm, one can reformulate quantum theory in terms of old-fashioned configuration spaces together with ‘unistochastic’ laws. These unistochastic laws take the form of directed conditional probabilities, which turn out to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  15. The Ontic Probability Interpretation of Quantum Theory - Part I: The Meaning of Einstein's Incompleteness Claim (2nd edition).Felix Alba-Juez - manuscript
    Ignited by Einstein and Bohr a century ago, the philosophical struggle about Reality is yet unfinished, with no signs of a swift resolution. Despite vast technological progress fueled by the iconic Einstein/Podolsky/Rosen paper (EPR) [1] [2] [3], the intricate link between ontic and epistemic aspects of Quantum Theory (QT) has greatly hindered our grip on Reality and further progress in physical theory. Fallacies concealed by tortuous logical negations made EPR comprehension much harder than it could have been had Einstein (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. The Ontic Probability Interpretation of Quantum Theory - Part II: Einstein's Incompleteness/Nonlocality Dilemma (2nd edition).Felix Alba-Juez - manuscript
    After identifying in Part I [1] a conceptual confusion (TCC), a Reality preconception (TRP1), and a fallacious dichotomy (TFD), the famous EPR/EPRB [2] [3] [4] [5] [6] argument for correlated ‘particles’ is now studied in the light of the Ontic Probability Interpretation of Quantum Theory (QT/TOPI). Another Reality preconception (TRP2) is found, showing that EPR used and ignored QT predictions in a single paralogism. Employing TFD and TRP2, EPR unveiled a contradiction veiled in its premises. By removing nonlocality from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Zeno Goes to Copenhagen: A Dilemma for Measurement-Collapse Interpretations of Quantum Mechanics.David J. Chalmers & Kelvin J. McQueen - 2023 - In M. C. Kafatos, D. Banerji & D. C. Struppa (eds.), Quantum and Consciousness Revisited. DK Publisher.
    A familiar interpretation of quantum mechanics (one of a number of views sometimes labeled the "Copenhagen interpretation'"), takes its empirical apparatus at face value, holding that the quantum wave function evolves by the Schrödinger equation except on certain occasions of measurement, when it collapses into a new state according to the Born rule. This interpretation is widely rejected, primarily because it faces the measurement problem: "measurement" is too imprecise for use in a fundamental physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Quantum Measurement, Complexity and Discrete Physics.Martin Leckey - 2003 - arXiv.
    This paper presents a new modified quantum mechanics, Critical Complexity Quantum Mechanics, which includes a new account of wavefunction collapse. This modified quantum mechanics is shown to arise naturally from a fully discrete physics, where all physical quantities are discrete rather than continuous. I compare this theory with the spontaneous collapse theories of Ghirardi, Rimini, Weber and Pearle and discuss some implications of these theories and CCQM for a realist view of the quantum realm.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Four Tails Problems for Dynamical Collapse Theories.Kelvin J. McQueen - 2015 - Studies in the History and Philosophy of Modern Physics 49:10-18.
    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  20. Quantum information theoretic approach to the mind–brain problem.Danko D. Georgiev - 2020 - Progress in Biophysics and Molecular Biology 158:16-32.
    The brain is composed of electrically excitable neuronal networks regulated by the activity of voltage-gated ion channels. Further portraying the molecular composition of the brain, however, will not reveal anything remotely reminiscent of a feeling, a sensation or a conscious experience. In classical physics, addressing the mind–brain problem is a formidable task because no physical mechanism is able to explain how the brain generates the unobservable, inner psychological world of conscious experiences and how in turn those conscious experiences steer (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Philosophical Problems of Quantum Ontology.Graeme Donald Robertson - 1976 - Dissertation, Cambridge
    What is a physical object according to the theory of quantum mechanics? The first answer to be considered is that given by Bohr in terms of the concept of complementarity. This interpretation is illustrated by way of an example, the two slit experiment, which highlights some of the associated problems of ontology. One such problem is the so-called problem of measurement or observation. Various interpretations of measurement in Quantum Theory, including those of Heisenberg, von (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22.  80
    On Some Metaphysical problems of Many Worlds Interpretation of Quantum Mechanics.Victor Christianto & Florentin Smarandache - manuscript
    Despite its enormous practical success, many physicists and philosophers alike agree that the quantum theory is full of contradictions and paradoxes which are difficult to solve consistently. Even after 90 years, the experts themselves still do not all agree what to make of it. The area of disagreement centers primarily around the problem of describing observations. Formally, the so-called quantum measurement problem can be defined as follows: the result of a measurement is a superposition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Is the Brain Analogous to a Quantum Measuring Apparatus?Paavo Pylkkänen - 2022 - In Shyam Wuppuluri & Anthony C. Grayling (eds.), Metaphors and Analogies in Sciences and Humanities: Words and Worlds. Cham: Springer Synthese Library. pp. 215-235.
    Researchers have suggested since the early days of quantum theory that there are strong analogies between quantum phenomena and mental phenomena and these have developed into a vibrant new field of quantum cognition during recent decades. After revisiting some early analogies by Niels Bohr and David Bohm, this paper focuses upon Bohm and Hiley’s ontological interpretation of quantum theory which suggests further analogies between quantum phenomena and biological and psychological phenomena, including the proposal that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Fundamental Physics as the General Solution to a Maximization Problem on the Shannon Entropy of All Measurements.Alexandre Harvey Tremblay - manuscript
    We present a novel approach to quantum theory construction that involves solving a maximization problem on the Shannon entropy of all possible measurements of a system relative to its initial preparation. By constraining the maximization problem with a phase that vanishes under measurements, we obtain quantum mechanics (vanishing U(1)-valued phase), relativistic quantum mechanics (vanishing Spin^c(3,1)-valued phase) and quantum gravity (also vanishing Spin^c(3,1)-valued phase, but with dilations). The first two cases are equivalent to established theory, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. The dynamics of stock exchange based on the formalism of weak continuous quantum measurement.S. I. Melnyk & I. G. Tuluzov - 2010 - Journal of Physics 238 (012035):1-9.
    The problem of measurement in economic models and the possibility of their quantum-mechanical description are considered. It is revealed that the apparent paradox of such a description is associated with a priori requirement of conformity of the model to all the alternatives of free choice of the observer. The measurement of the state of a trader on a stock exchange is formally defined as his responses to the proposals of sale at a fixed price. It is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Quantum theory, active information and the mind-matter problem.Paavo Pylkkänen - 2016 - In Pylkkänen Paavo (ed.), Contextuality from Quantum Physics to Psychology. World Scientific. pp. 325-334.
    Bohm and Hiley suggest that a certain new type of active information plays a key objective role in quantum processes. This paper discusses the implications of this suggestion to our understanding of the relation between the mental and the physical aspects of reality.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. A final solution to the mind-body problem by quantum language.Shiro Ishikawa - 2017 - Journal of Quantum Information Science 7:140-154.
    Recently we proposed “quantum language”, which was not only characterized as the metaphysical and linguistic turn of quantum mechanics but also the linguistic turn of Descartes = Kant epistemology. And further we believe that quantum language is the only scientifically successful theory in dualistic idealism. If this turn is regarded as progress in the history of western philosophy (i.e., if “philosophical progress” is defined by “approaching to quantum language”), we should study the linguistic mind-body problem (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. Bell's theorem: A bridge between the measurement and the mind/body problems.Badis Ydri - manuscript
    In this essay a quantum-dualistic, perspectival and synchronistic interpretation of quantum mechanics is further developed in which the classical world-from-decoherence which is perceived (decoherence) and the perceived world-in-consciousness which is classical (collapse) are not necessarily identified. Thus, Quantum Reality or "{\it unus mundus}" is seen as both i) a physical non-perspectival causal Reality where the quantum-to-classical transition is operated by decoherence, and as ii) a quantum linear superposition of all classical psycho-physical perspectival Realities which are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Against ‘Interpretation’: Quantum Mechanics Beyond Syntax and Semantics.Raoni Wohnrath Arroyo & Gilson Olegario da Silva - 2022 - Axiomathes 32 (6):1243-1279.
    The question “what is an interpretation?” is often intertwined with the perhaps even harder question “what is a scientific theory?”. Given this proximity, we try to clarify the first question to acquire some ground for the latter. The quarrel between the syntactic and semantic conceptions of scientific theories occupied a large part of the scenario of the philosophy of science in the 20th century. For many authors, one of the two currents needed to be victorious. We endorse that such debate, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  31. Quantum leaps in philosophy of mind.David Bourget - 2004 - Journal of Consciousness Studies 11 (12):17--42.
    I discuss the quantum mechanical theory of consciousness and freewill offered by Stapp (1993, 1995, 2000, 2004). First I show that decoherence-based arguments do not work against this theory. Then discuss a number of problems with the theory: Stapp's separate accounts of consciousness and freewill are incompatible, the interpretations of QM they are tied to are questionable, the Zeno effect could not enable freewill as he suggests because weakness of will would then be ubiquitous, and the holism of (...) in QM is not a good explanation of the unity of consciousness for essentially the same reason that local interactions may seem incapable of accounting for it. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. Wigner’s friend and Relational Quantum Mechanics: A Reply to Laudisa.Nikki Weststeijn - 2021 - Foundations of Physics 51 (4):1-13.
    Relational Quantum Mechanics is an interpretation of quantum mechanics proposed by Carlo Rovelli. Rovelli argues that, in the same spirit as Einstein’s theory of relativity, physical quantities can only have definite values relative to an observer. Relational Quantum Mechanics is hereby able to offer a principled explanation of the problem of nested measurement, also known as Wigner’s friend. Since quantum states are taken to be relative states that depend on both the system and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Can we quarantine the quantum blight?Craig Callender - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    No shield can protect scientific realism from dealing with the quantum measurement problem. One may be able to erect barriers around the observable or classical, preserving a realism about tables, chairs and the like, but there is no safety zone within the quantum realm, the domain of our best physical theory. The upshot is not necessarily that scientific realism is in trouble. That conclusion demands further arguments. The lesson instead may be that scientific realists ought to (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  34. Time and the Quantum Measurement Problem.Ted Dace - 2021 - International Journal of Quantum Foundations Supplement 3 (1):32-43.
    The quantum measurement problem resolves according to the twofold nature of time. Whereas the continuous evolution of the wave function reflects the fundamental nature of time as continuous presence, the collapse of the wave function indicates the subsidiary aspect of time as the projection of instantaneity from the ongoing present. Each instant irreversibly emerges from the reversible temporal continuum implicit in the smoothly propagating wave function. The basis of this emergence is periodic conflict between quantum systems, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Quantum Invariance.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (22):1-6.
    Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Does Consciousness-Collapse Quantum Mechanics Facilitate Dualistic Mental Causation?Alin C. Cucu - forthcoming - Journal of Cognitive Science.
    One of the most serious challenges (if not the most serious challenge) for interactive psycho-physical dualism (henceforth interactive dualism or ID) is the so-called ‘interaction problem’. It has two facets, one of which this article focuses on, namely the apparent tension between interactions of non-physical minds in the physical world and physical laws of nature. One family of approaches to alleviate or even dissolve this tension is based on a collapse solution (‘consciousness collapse/CC) of the measurement problem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. How Quantum Theory Helps Us Explain.Richard Healey - 2012 - British Journal for the Philosophy of Science (1):axt031.
    I offer an account of how the quantum theory we have helps us explain so much. The account depends on a pragmatist interpretation of the theory: this takes a quantum state to serve as a source of sound advice to physically situated agents on the content and appropriate degree of belief about matters concerning which they are currently inevitably ignorant. The general account of how to use quantum states and probabilities to explain otherwise puzzling regularities is then (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  39. Le réalisme structural face au problème de la mesure.Quentin Ruyant - 2016 - Lato Sensu: Revue de la Société de Philosophie des Sciences 3 (1):43-51.
    Le réalisme structural est une tentative d’établir un compromis entre le réalisme scientifique et l’empirisme, en restreignant le réalisme à la structure relationnelle des théories scientifiques. Il se décline en deux versions, épistémique et ontique. Le réalisme structural ontique propose de concevoir les relations nomologiques décrites par les théories comme des éléments primitifs de la réalité. Il est motivé, notamment, par le fait que sous sa forme épistémique, le réalisme structural ne se distingue pas réellement d’une position empiriste. Cependant, il (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Towards a Micro Realistic Version of Quantum Mechanics, Part I.Nicholas Maxwell - 1976 - Foundations of Physics 6 (3):275-292.
    This paper investigates the possibiity of developing a fully micro realistic version of elementary quantum mechanics. I argue that it is highly desirable to develop such a version of quantum mechanics, and that the failure of all current versions and interpretations of quantum mechanics to constitute micro realistic theories is at the root of many of the interpretative problems associated with quantum mechanics, in particular the problem of measurement. I put forward a propensity micro (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  41. There is no measurement problem for Humeans.Chris Dorst - 2021 - Noûs 57 (2):263-289.
    The measurement problem concerns an apparent conflict between the two fundamental principles of quantum mechanics, namely the Schrödinger equation and the measurement postulate. These principles describe inconsistent behavior for quantum systems in so-called "measurement contexts." Many theorists have thought that the measurement problem can only be resolved by proposing a mechanistic explanation of (genuine or apparent) wavefunction collapse that avoids explicit reference to "measurement." However, I argue here that the measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. How to spell out the epistemic conception of quantum states.Simon Friederich - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (3):149-157.
    The paper investigates the epistemic conception of quantum states---the view that quantum states are not descriptions of quantum systems but rather reflect the assigning agents' epistemic relations to the systems. This idea, which can be found already in the works of Copenhagen adherents Heisenberg and Peierls, has received increasing attention in recent years because it promises an understanding of quantum theory in which neither the measurement problem nor a conflict between quantum non-locality and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  43. The new paradigm: quantum interbeing.Brian Wachter - manuscript
    It is the conclusion advanced in this paper that there is a necessary and sufficient causal relationship between theory of mind and the neurological creation of conscious and unconscious quantum logic existing in superposition in the human brain. It takes two intelligent agents to make one self-aware agent. -/- A key element of my reasoning is the instantiation of superposition by way of a logical device I call the “state-system.” The newly conscious human remains unaware of the inner transformation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Quantum Theory Beyond the Physical: Information in Context.Kirsty Kitto, Brentyn Ramm, Laurianne Sitbon & Peter Bruza - 2011 - Axiomathes 21 (2):331-345.
    Measures and theories of information abound, but there are few formalised methods for treating the contextuality that can manifest in different information systems. Quantum theory provides one possible formalism for treating information in context. This paper introduces a quantum inspired model of the human mental lexicon. This model is currently being experimentally investigated and we present a preliminary set of pilot data suggesting that concept combinations can indeed behave non-separably.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  45. On the (Im)possibility of Scalable Quantum Computing.Andrew Knight - manuscript
    The potential for scalable quantum computing depends on the viability of fault tolerance and quantum error correction, by which the entropy of environmental noise is removed during a quantum computation to maintain the physical reversibility of the computer’s logical qubits. However, the theory underlying quantum error correction applies a linguistic double standard to the words “noise” and “measurement” by treating environmental interactions during a quantum computation as inherently reversible, and environmental interactions at the end (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Quantum Theory and the Place of Mind in the Causal Order of Things.Paavo Pylkkänen - 2019 - In J. Acacio de Barros & Carlos Montemayor (eds.), Quanta and Mind: Essays on the Connection Between Quantum Mechanics and Consciousness. Springer Verlag. pp. 163-171.
    The received view in physicalist philosophy of mind assumes that causation can only take place at the physical domain and that the physical domain is causally closed. It is often thought that this leaves no room for mental states qua mental to have a causal influence upon the physical domain, leading to epiphenomenalism and the problem of mental causation. However, in recent philosophy of causation there has been growing interest in a line of thought that can be called causal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Cognition according to Quantum Information: Three Epistemological Puzzles Solved.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (20):1-15.
    The cognition of quantum processes raises a series of questions about ordering and information connecting the states of one and the same system before and after measurement: Quantum measurement, quantum in-variance and the non-locality of quantum information are considered in the paper from an epistemological viewpoint. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Does orthodox quantum theory undermine, or support, scientific realism?Nicholas Maxwell - 1994 - Philosophical Quarterly 44 (171):139-157.
    It is usually taken for granted that orthodox quantum theory poses a serious problem for scientific realism, in that the theory is empirically extraordinarily successful, and yet has instrumentalism built into it. This paper stand this view on its head. I argue that orthodox quantum theory suffers from a number of serious (if not always noticed) defects precisely because of its inbuilt instrumentalism. This defective character of orthdoox quantum theory thus undermines instrumentalism, and supports scientific realism. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  49. Addressing the Conflict Between Relativity and Quantum Theory: Models, Measurement and the Markov Property.Gareth Ernest Boardman - 2013 - Cosmos and History 9 (2):86-115.
    Twenty-first century science faces a dilemma. Two of its well-verified foundation stones - relativity and quantum theory - have proven inconsistent. Resolution of the conflict has resisted improvements in experimental precision leaving some to believe that some fundamental understanding in our world-view may need modification or even radical reform. Employment of the wave-front model of electrodynamics, as a propagation process with a Markov property, may offer just such a clarification.
    Download  
     
    Export citation  
     
    Bookmark  
  50. An Investigation on the Basic Conceptual Foundations of Quantum Mechanics by Using the Clifford Algebra.Elio Conte - 2011 - Advanced Studies in Theoretical Physics 5 (11):485-544.
    We review our approach to quantum mechanics adding also some new interesting results. We start by giving proof of two important theorems on the existence of the A(Si) and i,±1 N Clifford algebras. This last algebra gives proof of the von Neumann basic postulates on the quantum measurement explaining thus in an algebraic manner the wave function collapse postulated in standard quantum theory. In this manner we reach the objective to expose a self-consistent version of (...) mechanics. In detail we realize a bare bone skeleton of quantum mechanics recovering all the basic foundations of this theory on an algebraic framework. We give proof of the quantum like Heisenberg uncertainty relations using only the basic support of the Clifford algebra. In addition we demonstrate the well known phenomenon of quantum Mach Zender interference using the same algebraic framework, as well as we give algebraic proof of quantum collapse in some cases of physical interest by direct application of the theorem that we derive to elaborate the i,±1 N algebra. We also discuss the problem of time evolution of quantum systems as well as the changes in space location, in momentum and the linked invariance principles. We are also able to re-derive the basic wave function of standard quantum mechanics by using only the Clifford algebraic approach. In this manner we obtain a full exposition of standard quantum mechanics using only the basic axioms of Clifford algebra. We also discuss more advanced features of quantum mechanics. In detail, we give demonstration of the Kocken-Specher theorem, and also we give an algebraic formulation and explanation of the EPR paradox only using the Clifford algebra. By using the same approach we also derive Bell inequalities. Our formulation is strongly based on the use of idempotents that are contained in Clifford algebra. Their counterpart in quantum mechanics is represented by the projection operators that, as it is well known, are interpreted as logical statements, following the basic von Neumann results. Von Neumann realized a matrix logic on the basis of quantum mechanics. Using the Clifford algebra we are able to invert such result. According to the results previously obtained by Orlov in 1994, we are able to give proof that quantum mechanics derives from logic. We show that indeterminism and quantum interference have their origin in the logic. Therefore, it seems that we may conclude that quantum mechanics, as it appears when investigated by the Clifford algebra, is a two-faced theory in the sense that it looks from one side to “matter per se”, thus to objects but simultaneously also to conceptual entities. We advance the basic conclusion of the paper: There are stages of our reality in which we no more can separate the logic ( and thus cognition and thus conceptual entity) from the features of “matter per se”. In quantum mechanics the logic, and thus the cognition and thus the conceptual entity-cognitive performance, assume the same importance as the features of what is being described. We are at levels of reality in which the truths of logical statements about dynamic variables become dynamic variables themselves so that a profound link is established from its starting in this theory between physics and conceptual entities. Finally, in this approach there is not an absolute definition of logical truths. Transformations , and thus … “redefinitions”…. of truth values are permitted in such scheme as well as the well established invariance principles, clearly indicate . (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 999