Results for 'Quantum field'

957 found
Order:
  1. Quantum Field Theory: An Introduction.Ryan Reece - manuscript
    This document is a set of notes I took on QFT as a graduate student at the University of Pennsylvania, mainly inspired in lectures by Burt Ovrut, but also working through Peskin and Schroeder (1995), as well as David Tong’s lecture notes available online. They take a slow pedagogical approach to introducing classical field theory, Noether’s theorem, the principles of quantum mechanics, scattering theory, and culminating in the derivation of Feynman diagrams.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. The Quantum Field Theory on Which the Everyday World Supervenes.Sean M. Carroll - 2022 - In Meir Hemmo, Stavros Ioannidis, Orly Shenker & Gal Vishne, Levels of Reality in Science and Philosophy: Re-Examining the Multi-Level Structure of Reality. Springer. pp. 27-46.
    Effective Field Theory (EFT) is the successful paradigm underlying modern theoretical physics, including the "Core Theory" of the Standard Model of particle physics plus Einstein's general relativity. I will argue that EFT grants us a unique insight: each EFT model comes with a built-in specification of its domain of applicability. Hence, once a model is tested within some domain (of energies and interaction strengths), we can be confident that it will continue to be accurate within that domain. Currently, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  3. The Ontology of Quantum Field Theory: Structural Realism Vindicated?David Glick - 2016 - Studies in History and Philosophy of Science Part A 59:78-86.
    In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  4. The Elementary Particles of Quantum Fields.Gregg Jaeger - 2021 - Entropy 11 (23):1416.
    The elementary particles of relativistic quantum field theory are not simple field quanta, as has long been assumed. Rather, they supplement quantum fields, on which they depend but to which they are not reducible, as shown here with particles defined instead as a unified collection of properties that appear in both physical symmetry group representations and field propagators. This notion of particle provides consistency between the practice of particle physics and its basis in quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. (1 other version)The correspondence principle in quantum field theory and quantum gravity.Damiano Anselmi - manuscript
    We discuss the fate of the correspondence principle beyond quantum mechanics, specifically in quantum field theory and quantum gravity, in connection with the intrinsic limitations of the human ability to observe the external world. We conclude that the best correspondence principle is made of unitarity, locality, proper renormalizability (a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially unique (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Pure Consciousness and Quantum Field Theory.Markus E. Schlosser - manuscript
    In the first part I argue that Buddhism and Hinduism can be unified by a Pure Consciousness thesis, which says that the nature of ultimate reality is an unconditioned and pure consciousness and that the phenomenal world is a mere appearance of pure consciousness. In the second part I argue that the Pure Consciousness thesis can be supported by an argument from quantum physics. According to our best scientific theories, the fundamental nature of reality consists of quantum fields, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. The dissipative approach to quantum field theory: conceptual foundations and ontological implications.Andrea Oldofredi & Hans Christian Öttinger - 2020 - European Journal for Philosophy of Science 11 (1):1-36.
    Many attempts have been made to provide Quantum Field Theory with conceptually clear and mathematically rigorous foundations; remarkable examples are the Bohmian and the algebraic perspectives respectively. In this essay we introduce the dissipative approach to QFT, a new alternative formulation of the theory explaining the phenomena of particle creation and annihilation starting from nonequilibrium thermodynamics. It is shown that DQFT presents a rigorous mathematical structure, and a clear particle ontology, taking the best from the mentioned perspectives. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  8. Can A Quantum Field Theory Ontology Help Resolve the Problem of Consciousness?Anand Rangarajan - 2019 - In Siddheshwar Rameshwar Bhatt, Quantum Reality and Theory of Śūnya. Springer. pp. 13-26.
    The hard problem of consciousness arises in most incarnations of present day physicalism. Why should certain physical processes necessarily be accompanied by experience? One possible response is that physicalism itself should be modified in order to accommodate experience: But, modified how? In the present work, we investigate whether an ontology derived from quantum field theory can help resolve the hard problem. We begin with the assumption that experience cannot exist without being accompanied by a subject of experience (SoE). (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. The Ontology of Compositeness Within Quantum Field Theory.T. Peterken - manuscript
    In this work, we attempt to define a notion of compositeness compatible with Quantum Field Theory. Considering the analytic properties of the S-matrix, we conclude that there is no satisfactory definition of compositeness compatible with Quantum Field Theory. Without this notion, one must claim that all bound states are equally fundamental, that is, one cannot rigorously claim that everyday objects are made of atoms or that atoms are made of protons and neutrons. I then show how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. On the concept of (quantum) fields.Sydney Ernest Grimm - manuscript
    The main concept of quantum field theory is the conviction that all the phenomena in the universe are created by the underlying structure of the quantum fields. Fields represent dynamical spatial properties that can be described with the help of geometrical concepts. Therefore it is possible to describe the mathematical origin of the structure of the creating fields and show the mathematical origin of the law of conservation of energy, Planck’s constant and the constant speed of light (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  11. Are perceptual fields quantum fields?Brian Flanagan - 2003 - Neuroquantology 3:334-364.
    I argue that our sensory fields are photon fields. The philosophical foundation here is informed by mind/brain identity theory, such as we find in Russell, Feigl, Lockwood and Chalmers. In brief, given Dyson's observation that all material things consist of quantum fields, and given an identity of mind and brain, our sensory fields are then most plausibly photon fields.
    Download  
     
    Export citation  
     
    Bookmark  
  12.  40
    "Dark Matter" and “Black holes” in the Infinite Quantum Field.Đulijano Đulić - manuscript
    This paper explores the phenomena of "dark matter" and "black holes" within the framework of infinite quantum field theory, presenting them as interconnected and complementary aspects of cosmic dynamics. "Dark matter" arises from the interference between discrete particle orbits and indiscernible distant energy states, manifesting as a diffuse yet pervasive energetic presence. Its continuous growth reflects the expansive nature of the quantum field's self-modifying processes. Conversely, "black holes" are portrayed as loci of energy concentration and reintegration, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  33
    The Unified Foundation of Reality: Transcendental Idealism in the Light of the Infinite Quantum Field and Noetic-Noematic Activity.Đulijano Đulić - manuscript
    This paper explores transcendental idealism through the dual perspectives of the infinite quantum field and noetic-noematic activity, presenting a unified foundation of reality that integrates external and internal approaches. The infinite quantum field represents the dynamic, self-modifying structure of reality observed externally, while noetic-noematic activity emphasizes the inner, qualitative transformations of consciousness experienced through immersion with reality's essence. By critiquing the limitations of classical scientific paradigms, such as reductionism and linear causality, this study highlights the need (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Transaction and Non Locality in Quantum Field Theory.Ignazio Licata - forthcoming - Europ. Phys. J.
    The most part of the debates on Quantum Mechanics (QM) interpretation come out from the remains of a classical language based upon waves and particles. Such problems can find a decisive clarification in Quantum Field Theory (QFT), where the concept of “classical object” is replaced by an interaction networks. On the other hand, it is simpler to discuss about non-locality in QM than in QFT. We propose here the concept of transaction as a connection between theQM and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Spacetime and quantum fields.Sydney Ernest Grimm - 2024 - Philosophy of the Mathematical Nature of Reality 2024 (08-04):2.
    Einstein's theory of Relativity describes variances of the volume of our universe in a model that is known as "spacetime". Quantum field theory describes the volume of our universe as a composition of a limited number of basic quantum fields. Both models exclude each other.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Quantum Mechanics, Fields, Black Holes, and Ontological Plurality.Gustavo E. Romero - 2024 - Philosophies 9 (4):97-121.
    The ontology behind quantum mechanics has been the subject of endless debate since the theory was formulated some 100 years ago. It has been suggested, at one time or another, that the objects described by the theory may be individual particles, waves, fields, ensembles of particles, observers, and minds, among many other possibilities. I maintain that these disagreements are due in part to a lack of precision in the use of the theory’s various semantic designators. In particular, there is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Structural Realism and the Problem of Inequivalent Representations in Quantum Field Theory.Iulian D. Toader - manuscript
    This unpublished paper, written in 2005 in the PhD philosophy program at Notre Dame, argues that algebraic structural realism faces a potentially fatal difficulty raised by the existence of inequivalent representations in quantum field theory.
    Download  
     
    Export citation  
     
    Bookmark  
  18. (1 other version)Model λ(φ^2n )_4,n≥2 Quantum Field Theory: A Nonstandard Approach Based on Nonstandard Pointwise-Defined Quantum Fields.Jaykov Foukzon - forthcoming - Journal of Physics: Conference Series:35. Translated by Jaykov Foukzon.
    A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field operator φ(x,t) no longer a standard tempered operator-valued distribution, but a non-classical operator-valued function. We prove using this novel approach that the quantum field theory with Hamiltonian P(φ)_4 exists and that the corresponding C^*­ algebra of bounded observables satisfies all the Haag-Kastler axioms except Lorentz covariance. We prove that the λ(φ^2n )_4,n≥2 quantum field theory models are Lorentz covariant.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Basic non-Archimedean functional analysis over non-Archimedean field c #. Applications to constructive quantum field theory.Jaykov Foukzon - 2024 - HAL Id: hal-04583394.
    Functional analysis works with TVS (Topological Vector Spaces), classically over archimedean fields like  and .Canonical non-Archimedean functional analysis, where alternative but equally valid number systems such as p-adic numbers p etc. are fundamental, is a fast-growing discipline. This paper deals with TVS over non-classical non-Archimedean fields.
    Download  
     
    Export citation  
     
    Bookmark  
  20. Beyond spacetime and quantum fields.Sydney Ernest Grimm - manuscript
    During the 20th century there were a couple of scientists who announced the observation of exceptional heat during the electrolysis of water with the help of Palladium electrodes. In spite of the opinion of the community of nuclear physicists that low energy generated nuclear fusion is a hoax there is a lot of research to understand and create the observed emission of exceptional electromagnetic radiation. This paper explains with the help of the concept of quantized space the simple mechanism that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Equivalence of the Frame and Halting Problems.Eric Dietrich & Chris Fields - 2020 - Algorithms 13 (175):1-9.
    The open-domain Frame Problem is the problem of determining what features of an open task environment need to be updated following an action. Here we prove that the open-domain Frame Problem is equivalent to the Halting Problem and is therefore undecidable. We discuss two other open-domain problems closely related to the Frame Problem, the system identification problem and the symbol-grounding problem, and show that they are similarly undecidable. We then reformulate the Frame Problem as a quantum decision problem, and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23. Science Generates Limit Paradoxes.Eric Dietrich & Chris Fields - 2015 - Axiomathes 25 (4):409-432.
    The sciences occasionally generate discoveries that undermine their own assumptions. Two such discoveries are characterized here: the discovery of apophenia by cognitive psychology and the discovery that physical systems cannot be locally bounded within quantum theory. It is shown that such discoveries have a common structure and that this common structure is an instance of Priest’s well-known Inclosure Schema. This demonstrates that science itself is dialetheic: it generates limit paradoxes. How science proceeds despite this fact is briefly discussed, as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  99
    Exploring Quantum Mechanics through Advaita Vedānta and Śūnyavāda: A Clarification on the Interaction between Two Seemingly Unrelated Fields – Physical Science and Philosophy.R. L. Tripathi - 2024 - Physical Sciences and Biophysics Journal 8 (2):3.
    This paper aims to reveal the point of contact between modern science and ancient Indian philosophy, namely quantum mechanics and Advaita Vedanta and Sunyavada in particular. Modern quantum research discloses the essential characteristics of quantum mechanics that disprove classical determinism and find out the relations between energy, entropy, and observations, wave-particle duality, and entanglement. These ideas have some similarity with Advaita Vedanta’s non-dualism (Maya) and Buddhism’s relational existence (Sunyavada) yet there lacks investigation of how either paradigms interface (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Edge Modes and Dressing Fields for the Newton–Cartan Quantum Hall Effect.William J. Wolf, James Read & Nicholas J. Teh - 2022 - Foundations of Physics 53 (1):1-24.
    It is now well-known that Newton–Cartan theory is the correct geometrical setting for modelling the quantum Hall effect. In addition, in recent years edge modes for the Newton–Cartan quantum Hall effect have been derived. However, the existence of these edge modes has, as of yet, been derived using only orthodox methodologies involving the breaking of gauge-invariance; it would be preferable to derive the existence of such edge modes in a gauge-invariant manner. In this article, we employ recent work (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  26.  61
    Quantum Entanglement.Đulijano Đulić - manuscript
    Quantum entanglement, a phenomenon where two or more particles remain interconnected such that the state of one instantly influences the state of the other regardless of distance, challenges classical notions of locality and causality. From the perspective of the theory of the infinite quantum field, entanglement arises as a natural consequence of the harmonized auto-irritation of this field, where all particles are manifestations of an indivisible and unified reality. This theory posits that the infinite quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Instead of Particles and Fields: A Micro Realistic Quantum "Smearon" Theory.Nicholas Maxwell - 1982 - Foundatioins of Physics 12 (6):607-631.
    A fully micro realistic, propensity version of quantum theory is proposed, according to which fundamental physical entities - neither particles nor fields - have physical characteristics which determine probabilistically how they interact with one another . The version of quantum "smearon" theory proposed here does not modify the equations of orthodox quantum theory: rather, it gives a radically new interpretation to these equations. It is argued that there are strong general reasons for preferring quantum "smearon" theory (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  28.  22
    The Dynamic Harmony of Quantum Idealism.Đulijano Đulic - manuscript
    This work explores Quantum Idealism, a transformative framework that unites the infinite quantum field, noematic identity, and Great Noema in a dynamic, self-reflective model of reality. The text examines how particles emerge as transient manifestations of the field's auto-solicitation and how their existence depends on the preservation of their noematic identity within the Great Noema. The concept of Logos as a living code further emphasizes the interconnectedness and adaptability of the quantum field, harmonizing the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. A Quantum-Theoretic Argument Against Naturalism.Bruce L. Gordon - 2011 - In Bruce Gordon & William A. Dembski, The nature of nature: examining the role of naturalism in science. Wilmington, DE: ISI Books. pp. 179-214.
    Quantum theory offers mathematical descriptions of measurable phenomena with great facility and accuracy, but it provides absolutely no understanding of why any particular quantum outcome is observed. It is the province of genuine explanations to tell us how things actually work—that is, why such descriptions hold and why such predictions are true. Quantum theory is long on the what, both mathematically and observationally, but almost completely silent on the how and the why. What is even more interesting (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  30. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  37
    BREAKING THROUGH: Fundamental Principles of Meta-Quantum Idealism.Đulijano Đulić - manuscript - Translated by Đulijano Đulić Đulijano.
    Meta-quantum idealism (MQI) proposes a novel framework for understanding the fundamental nature of reality. Rooted in the interplay of quantum field theory, geometry, and idealist metaphysics, MQI challenges traditional ontological assumptions by reimagining space, time, and matter as emergent phenomena arising from the dynamic self-modifications of an infinite quantum field. This paper articulates the foundational principles of MQI and explores its implications for physics, metaphysics, and mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  32.  56
    Symbolic AI Over Quantum Tensor Fields in Non-Commutative Domains.Parker Emmerson - 2025 - Journal of Liberated Mathematics 1.
    In this paper, we extend the mathematical framework of **non-commutative scalar fields** and numerical techniques discussed previously to build a foundation for **AI-based reasoning systems**. The goal is to enable AI to operate over **symbolic hierarchies, semantic transformations**, and **large-scale infinite or non-commutative domains**. Inspired by quantum tensor field operations, we integrate reasoning over symbolic, numeric, and approximate representations into machine learning pipelines. This work leverages concepts from numerical techniques for non-commutative mixed derivatives, recur- sive tensor calculus, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Field equations, quantum mechanics and geotropism.Han J. F. Geurdes - manuscript
    The biochemistry of geotropism in plants and gravisensing in e.g. cyanobacteria or paramacia is still not well understood today [1]. Perhaps there are more ways than one for organisms to sense gravity. The two best known relatively old explanations for gravity sensing are sensing through the redistribution of cellular starch statoliths and sensing through redistribution of auxin. The starch containing statoliths in a gravity field produce pressure on the endoplasmic reticulum of the cell. This enables the cell to sense (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34.  55
    Glossary of Quantum Idealism.Đulijano Đulić - manuscript
    This glossary presents the foundational concepts and terminology of Quantum Idealism, an integrative philosophical and scientific framework grounded in the concept of the infinite quantum field as the ultimate basis of reality. The terms elucidated herein span from fundamental principles such as "Absolute Consciousness" and "Auto-modification" to more specific concepts like "Noematic Identity" and "Quantum Entanglement." Each entry reflects the theoretical structure and ontological implications of Quantum Idealism, providing a detailed map of its dynamic, interconnected (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35.  37
    Quantum Cluster: A Dynamic Structure of Potentiality.Đulijano Đulić - manuscript
    The concept of the "quantum cluster" introduces a transformative framework that reimagines the fundamental structure of reality by uniting quantum physics, ontology, and epistemology. This concept describes the quantum cluster as a dynamic form of potentiality, where particles oscillate between wave and particle modalities, existing in a superposed state symbolized as "0&1." Unlike traditional static interpretations of atomic nuclei, the quantum cluster is a harmonious structure of energetic potential, maintained by proton-neutron polarization and characterized by its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. On an intrinsic quantum theoretical structure inside Einstein's gravity field equations.Han Geurdes - manuscript
    As is well known, Einstein was dissatisfied with the foundation of quantum theory and sought to find a basis for it that would have satisfied his need for a causal explanation. In this paper this abandoned idea is investigated. It is found that it is mathematically not dead at all. More in particular: a quantum mechanical U(1) gauge invariant Dirac equation can be derived from Einstein's gravity field equations. We ask ourselves what it means for physics, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Why Interpret Quantum Physics?Edward MacKinnon - 2016 - Open Journal of Philosophy 6 (1):86-102.
    This article probes the question of what interpretations of quantum mechanics actually accomplish. In other domains, which are briefly considered, interpretations serve to make alien systematizations intelligible to us. This often involves clarifying the status of their implicit ontology. A survey of interpretations of non-relativistic quantum mechanics supports the evaluation that these interpretations make a contribution to philosophy, but not to physics. Interpretations of quantum field theory are polarized by the divergence between the Lagrangian field (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. The Particle of Haag's Local Quantum Physics: A critical assessment.Gregg Jaeger - 2024 - Entropy 26:748.
    Rudolf Haag’s Local Quantum Physics (LQP) is an alternative framework to conventional relativistic quantum field theory for combining special relativity and quantum theory based on first principles, making it of great interest for the purposes of conceptual analysis despite currently being relatively limited as a tool for making experimental predictions. In LQP, the elementary particles are defined as species of causal link between interaction events, together with which they comprise its most fundamental entities. This notion of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Reverse Quantum Mechanics: Ontological Path.Michele Caponigro - manuscript
    This paper is essentially a quantum philosophical challenge: starting from simple assumptions, we argue about an ontological approach to quantum mechanics. In this paper, we will focus only on the assumptions. While these assumptions seems to solve the ontological aspect of theory many others epistemological problems arise. For these reasons, in order to prove these assumptions, we need to find a consistent mathematical context (i.e. time reverse problem, quantum entanglement, implications on quantum fields, Schr¨odinger cat states, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Fakeons, quantum gravity and the correspondence principle.Damiano Anselmi - manuscript
    The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41.  36
    Quantum-Dynamic Theory of Musical Forms.Đulijano Đulić - manuscript
    The quantum-dynamic theory of musical forms redefines music as an ontological and noematic phenomenon, extending beyond its traditional auditory interpretation. This theory proposes that music represents the acoustic expression of thought vibrations, where each melody and harmony serves as a direct manifestation of universal noetic structures. Tonal forms are conceptualized as carriers of metaphysical and philosophical truths, bridging the gap between human discursiveness and the divine. Through specific examples, such as Bach's Toccata and Fugue in D Minor and Beethoven's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42.  34
    Quantum-dynamic geometry.Đulijano Đulić - manuscript
    This document presents a groundbreaking framework for understanding space and geometry within the quantum-dynamic model of reality. It rejects the traditional concept of infinite space, proposing two fundamental concepts: undifferentiated spatiality, a state of pure potentiality, and discrete spaces, concrete manifestations of spatiality generated through the auto-modification processes of the infinite quantum field. Key elements include the "POINT-MOMENT," the basic unit of space-time integration, and fundamental geometric forms like spheres, line-intervals, and circles, each characterized by unique internal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43.  36
    The Phenomenon of Death in the Light of Quantum-Idealist Theory.Đulijano Đulić - manuscript
    This essay explores the phenomenon of death through the lens of quantum-idealist theory, presenting it not as an end but as a transformative event—a reintegration of individual consciousness into the infinite quantum field. Death is conceptualized as a moment of absolute extension where particularized consciousness dissolves into universal plenitude, achieving harmony between the original modality (absolute plenitude) and the modificational modality (individual consciousness). The theory highlights the teleological nature of death, emphasizing its role in reconciling the individual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44.  37
    The Concept of PHENOMENON in the Context of Quantum-Noetic Idealism.Đulijano Đulić - manuscript
    This paper explores the concept of phenomenon within the framework of quantum-noetic idealism and the theory of the infinite quantum field. It redefines the phenomenon as a dynamic process rooted in hyper-structural modifications of the field, rather than as a static object of observation. Light is presented as the fundamental medium of visibility, conveying information about the noematic patterns that govern these modifications. The role of transcendental imagination is analyzed as a microcosmic reflection of the (...) field, operating under strictly defined idealities and enabling the theoretical re-creation of phenomena through intuition and transcendental deduction. Knowledge is reinterpreted as an active process of re-creating phenomena in harmony with noematic patterns and universal laws. This framework emphasizes the phenomenon as a bridge between the visible (radiations) and the invisible (field modifications), offering a coherent philosophical vision that integrates theoretical and ontological dimensions of reality. The study opens avenues for further exploration of the ontological nature of the quantum field and the epistemological boundaries of human understanding. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Does Quantum Gravity Happen at the Planck Scale?Caspar Jacobs - forthcoming - Philosophy of Physics.
    The claim that at the so-called Planck scale our current physics breaks down and a new theory of quantum gravity is required is ubiquitous, but the evidence is shakier than the confidence of those assertions warrants. In this paper, I survey five arguments in favour of this claim - based on dimensional analysis, quantum black holes, generalised uncertainty principles, the nonrenormalisability of quantum gravity, and theories beyond the standard model - but find that none of them succeeds. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. From Quantum Entanglement to Spatiotemporal Distance.Alyssa Ney - 2021 - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett, Philosophy Beyond Spacetime: Implications From Quantum Gravity. Oxford: Oxford University Press.
    Within the field of quantum gravity, there is an influential research program developing the connection between quantum entanglement and spatiotemporal distance. Quantum information theory gives us highly refined tools for quantifying quantum entanglement such as the entanglement entropy. Through a series of well-confirmed results, it has been shown how these facts about the entanglement entropy of component systems may be connected to facts about spatiotemporal distance. Physicists are seeing these results as yielding promising methods for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  47. Inter-theory Relations in Quantum Gravity: Correspondence, Reduction and Emergence.Karen Crowther - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:74-85.
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  48. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  49. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  50. Is the quantum world composed of propensitons?Nicholas Maxwell - 2010 - In Mauricio Suárez, Probabilities, Causes and Propensities in Physics. New York: Springer. pp. 221-243.
    In this paper I outline my propensiton version of quantum theory (PQT). PQT is a fully micro-realistic version of quantum theory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantum theory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet tested). I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 957