Results for 'Quantum foundations'

1000+ found
Order:
  1. Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining the thermodynamic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Quantum Foundations of Free Will.Logan Carter - manuscript
    This paper is intended to persuade an uncommitted audience that free will is illusory. I examine free will through the lens of three interpretations of quantum theory: dynamical collapse theories, hidden variable theories, and many-worlds theories. Dynamical collapse theories, hereon called collapse theories, are the primary focus of this work since they are the most widely accepted in the current philosophy of physics climate. The core postulations and mechanics of the collapse theories are articulated. Accompanying these postulations are a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Probability and quantum foundation.Han Geurdes - manuscript
    A classical probabilistics explanation for a typical quantum effect in Hardy's paradox is demonstrated.
    Download  
     
    Export citation  
     
    Bookmark  
  4. Two Forms of Inconsistency in Quantum Foundations.Jer Steeger & Nicholas Teh - 2021 - British Journal for the Philosophy of Science 72 (4):1083-1110.
    Recently, there has been some discussion of how Dutch Book arguments might be used to demonstrate the rational incoherence of certain hidden variable models of quantum theory. In this paper, we argue that the 'form of inconsistency' underlying this alleged irrationality is deeply and comprehensively related to the more familiar 'inconsistency' phenomenon of contextuality. Our main result is that the hierarchy of contextuality due to Abramsky and Brandenburger corresponds to a hierarchy of additivity/convexity-violations which yields formal Dutch Books of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Reconsideration of Quantum Foundations. Vaxjo University conference ,15-18 June –2009 : A Clifford Algebraic Analysis and Explanation of Wave Function Reduction in Quantum Mechanics. [REVIEW]Elio Conte - forthcoming - In Vaxio University -Sweeden (ed.), Proceedings Vaxjo Conference on Foundations of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  6. On the Role of Inconsistency in Quantum Foundational Debate and Hilbert Space Formulation.Debajyoti Gangopadhyay - 2022 - Quanta 11 (Number 1):28-41.
    This article is intended mainly to develop an expository outline of an inherently inconsistent reasoning in the development of quantum mechanics during 1920s, which set up the background of proposing different variants of quantum logic a bit later. We will discuss here two of the quantum logical variants with reference to Hilbert space formulation, based on the proposals of Bohr and Schrödinger as a result of addressing the same kernel of difficulties and will give a relative comparison. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  94
    Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature.Michael Epperson & Elias Zafiris - 2013 - Lanham: Lexington Books. Edited by Elias Zafiris.
    Foundations of Relational Realism presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. -/- If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  8. Quantum Physics: an overview of a weird world: A primer on the conceptual foundations of quantum physics.Marco Masi - 2019 - Indy Edition.
    This is the first book in a two-volume series. The present volume introduces the basics of the conceptual foundations of quantum physics. It appeared first as a series of video lectures on the online learning platform Udemy.]There is probably no science that is as confusing as quantum theory. There's so much misleading information on the subject that for most people it is very difficult to separate science facts from pseudoscience. The goal of this book is to make (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Philosophical Foundations of Quantum Mechanics.Alireza Mansouri - 2016 - Tehran: Nashre Ney.
    The revolution brought about by quantum mechanics in the early 20th century was nothing short of remarkable. It shattered the foundational principles of classical physics, giving rise to a plethora of controversial and intriguing conceptual questions. Questions that still perplex and confound the scientific community today. Is the quantum mechanical description of physical reality complete? Are the objects of nature truly inseparable? And most importantly, do objects not have a specific position before measurement, and are there non-causal (...) jumps? These vital problems continue to garner more attention as time passes, particularly with the fading of positivism. If you're a student seeking to explore the fascinating philosophical foundations of quantum mechanics, this book might be just what you need. Written in Persian, brings you closer to the heart of quantum controversies and the fascinating world of quantum mechanics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Axiomatic foundations of Quantum Mechanics revisited: the case for systems.S. E. Perez-Bergliaffa, Gustavo E. Romero & H. Vucetich - 1996 - International Journal of Theoretical Phyisics 35:1805-1819.
    We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  12. A Quantum-Bayesian Route to Quantum-State Space.Christopher A. Fuchs & Rüdiger Schack - 2011 - Foundations of Physics 41 (3):345-356.
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  13. The dissipative approach to quantum field theory: conceptual foundations and ontological implications.Andrea Oldofredi & Hans Christian Öttinger - 2020 - European Journal for Philosophy of Science 11 (1):1-36.
    Many attempts have been made to provide Quantum Field Theory with conceptually clear and mathematically rigorous foundations; remarkable examples are the Bohmian and the algebraic perspectives respectively. In this essay we introduce the dissipative approach to QFT, a new alternative formulation of the theory explaining the phenomena of particle creation and annihilation starting from nonequilibrium thermodynamics. It is shown that DQFT presents a rigorous mathematical structure, and a clear particle ontology, taking the best from the mentioned perspectives. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  14. Standard Quantum Theory Derived from First Physical Principles.Mehran Shaghaghi - manuscript
    The mathematical formalism of quantum theory has been established for nearly a century, yet its physical foundations remain elusive. In recent decades, connections between quantum theory and information theory have garnered increasing attention. This study presents a physical derivation of the mathematical formalism quantum theory based on information-theoretic considerations in physical systems. We postulate that quantum systems are characterized by single independent adjustable variables. Utilizing this physical postulate along with the conservation of total probability, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. How Quantum is Quantum Counterfactual Communication?Jonte R. Hance, James Ladyman & John Rarity - 2021 - Foundations of Physics 51 (1):1-17.
    Quantum Counterfactual Communication is the recently-proposed idea of using quantum physics to send messages between two parties, without any matter/energy transfer associated with the bits sent. While this has excited massive interest, both for potential ‘unhackable’ communication, and insight into the foundations of quantum mechanics, it has been asked whether this process is essentially quantum, or could be performed classically. We examine counterfactual communication, both classical and quantum, and show that the protocols proposed so (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Quantum behavior of the systems with a single degree of freedom and the derivation of quantum theory.Mehran Shaghaghi - manuscript
    The number of independent messages a physical system can carry is limited by the number of its adjustable properties. In particular, systems that have only one adjustable property cannot carry more than a single message at a time. We demonstrate this is the case for the single photons in the double-slit experiment, and the root of the fundamental limit on measuring the complementary aspect of the photons. Next, we analyze the other ‘quantal’ behavior of the systems with a single adjustable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Quantum mechanics foundations.Bakytzhan Oralbekov - manuscript
    Gravity remains the most elusive field. Its relationship with the electromagnetic field is poorly understood. Relativity and quantum mechanics describe the aforementioned fields, respectively. Bosons and fermions are often credited with responsibility for the interactions of force and matter. It is shown here that fermions factually determine the gravitational structure of the universe, while bosons are responsible for the three established and described forces. Underlying the relationships of the gravitational and electromagnetic fields is a symmetrical probability distribution of fermions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Aristotle and the Foundation of Quantum Mechanics.Alfred Driessen - 2020 - Acta Philosophica 29 (II):395-414.
    The four antinomies of Zeno of Elea continue to be provoking issues that remain relevant for the foundation of science. Aristotle used this antinomy to arrive at a deeper understanding of movement : it is a fluent continuum that he considers to be a whole. The parts, if any, are only potentially present. Similarly, quantum mechanics states that movement is quantized ; things move or change in nonreducible steps, the so-called quanta. This view is in contrast to classical mechanics, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Conservation of information and the foundations of quantum mechanics.Giulio Chiribella & Carlo Maria Scandolo - 2015 - EPJ Web of Conferences 95:03003.
    We review a recent approach to the foundations of quantum mechanics inspired by quantum information theory. The approach is based on a general framework, which allows one to address a large class of physical theories which share basic information-theoretic features. We first illustrate two very primitive features, expressed by the axioms of causality and purity-preservation, which are satisfied by both classical and quantum theory. We then discuss the axiom of purification, which expresses a strong version of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. Quantum phenomenology as a “rigorous science”: the triad of epoché and the symmetries of information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (48):1-18.
    Husserl (a mathematician by education) remained a few famous and notable philosophical “slogans” along with his innovative doctrine of phenomenology directed to transcend “reality” in a more general essence underlying both “body” and “mind” (after Descartes) and called sometimes “ontology” (terminologically following his notorious assistant Heidegger). Then, Husserl’s tradition can be tracked as an idea for philosophy to be reinterpreted in a way to be both generalized and mathenatizable in the final analysis. The paper offers a pattern borrowed from the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Quantum Mechanics as Quantum Information, Mostly.Christopher A. Fuchs - 2003 - Journal of Modern Optics 50:987-1023.
    In this paper, I try to cause some good-natured trouble. The issue is, when will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations? The suspicion is expressed that no end will be in sight until a means is found to reduce quantum theory to two or three statements of crisp physical (rather than abstract, axiomatic) significance. In this regard, no tool appears better calibrated for a direct assault than quantum information theory. (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  22. Quantum Physics: An overview of a weird world: A guide to the 21st century quantum revolution.Marco Masi - 2019 - Indy Edition.
    This second volume is a continuation of the first volume’s 20th century conceptual foundations of quantum physics extending its view to the principles and research fields of the 21st century. A summary of the standard concepts, from modern advanced experimental tests of 'quantum ontology’ to the interpretations of quantum mechanics, the standard model of particle physics, and the mainstream quantum gravity theories. A state-of-the-art treatise that reports on the recent developments in quantum computing, classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. An Investigation on the Basic Conceptual Foundations of Quantum Mechanics by Using the Clifford Algebra.Elio Conte - 2011 - Advanced Studies in Theoretical Physics 5 (11):485-544.
    We review our approach to quantum mechanics adding also some new interesting results. We start by giving proof of two important theorems on the existence of the A(Si) and i,±1 N Clifford algebras. This last algebra gives proof of the von Neumann basic postulates on the quantum measurement explaining thus in an algebraic manner the wave function collapse postulated in standard quantum theory. In this manner we reach the objective to expose a self-consistent version of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. The Stochastic-Quantum Theorem.Jacob A. Barandes - manuscript
    This paper introduces several new classes of mathematical structures that have close connections with physics and with the theory of dynamical systems. The most general of these structures, called generalized stochastic systems, collectively encompass many important kinds of stochastic processes, including Markov chains and random dynamical systems. This paper then states and proves a new theorem that establishes a precise correspondence between any generalized stochastic system and a unitarily evolving quantum system. This theorem therefore leads to a new formulation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Microscopic and Macroscopic Quantum Realms.Moorad Alexanian - 2014 - Perspectives on Science and Christian Faith 66 (2):127-128.
    Quantum entanglement lies at the foundation of quantum mechanics. Witness Schrödinger highlighting entanglement with his puzzling cat thought experiment and Einstein deriding it as “spooky action at a distance.” Nonetheless, quantum entanglement has been verified experimentally and is essential for quantum information and quantum computing. The quantum superposition principle, together with entanglement, dramatically contrasts the quantum from the classical description of reality. We attempt to integrate physical reality with a Christian worldview.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Quantum propensities in the brain cortex and free will.Danko D. Georgiev - 2021 - Biosystems 208:104474.
    Capacity of conscious agents to perform genuine choices among future alternatives is a prerequisite for moral responsibility. Determinism that pervades classical physics, however, forbids free will, undermines the foundations of ethics, and precludes meaningful quantification of personal biases. To resolve that impasse, we utilize the characteristic indeterminism of quantum physics and derive a quantitative measure for the amount of free will manifested by the brain cortical network. The interaction between the central nervous system and the surrounding environment is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Bohr on EPR, the Quantum Postulate, Determinism, and Contextuality.Zachary Hall - 2024 - Foundations of Physics 54 (3):1-35.
    The famous EPR article of 1935 challenged the completeness of quantum mechanics and spurred decades of theoretical and experimental research into the foundations of quantum theory. A crowning achievement of this research is the demonstration that nature cannot in general consist in noncontextual pre-measurement properties that uniquely determine possible measurement outcomes, through experimental violations of Bell inequalities and Kochen-Specker theorems. In this article, I reconstruct an argument from Niels Bohr’s writings that the reality of the Einstein-Planck-de Broglie (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Quantum information theoretic approach to the mind–brain problem.Danko D. Georgiev - 2020 - Progress in Biophysics and Molecular Biology 158:16-32.
    The brain is composed of electrically excitable neuronal networks regulated by the activity of voltage-gated ion channels. Further portraying the molecular composition of the brain, however, will not reveal anything remotely reminiscent of a feeling, a sensation or a conscious experience. In classical physics, addressing the mind–brain problem is a formidable task because no physical mechanism is able to explain how the brain generates the unobservable, inner psychological world of conscious experiences and how in turn those conscious experiences steer the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. The Stochastic-Quantum Correspondence.Jacob A. Barandes - manuscript
    This paper introduces an exact correspondence between a general class of stochastic systems and quantum theory. This correspondence provides a new framework for using Hilbert-space methods to formulate highly generic, non-Markovian types of stochastic dynamics, with potential applications throughout the sciences. This paper also uses the correspondence in the other direction to reconstruct quantum theory from physical models that consist of trajectories in configuration spaces undergoing stochastic dynamics. The correspondence thereby yields a new formulation of quantum theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Quantum Field Theory: An Introduction.Ryan Reece - manuscript
    This document is a set of notes I took on QFT as a graduate student at the University of Pennsylvania, mainly inspired in lectures by Burt Ovrut, but also working through Peskin and Schroeder (1995), as well as David Tong’s lecture notes available online. They take a slow pedagogical approach to introducing classical field theory, Noether’s theorem, the principles of quantum mechanics, scattering theory, and culminating in the derivation of Feynman diagrams.
    Download  
     
    Export citation  
     
    Bookmark  
  32. From Time Asymmetry to Quantum Entanglement: The Humean Unification.Eddy Keming Chen - 2022 - Noûs 56 (1):227-255.
    Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. I propose a unified 'Humean' solution to the two problems. Humeanism allows us to incorporate the Past Hypothesis and the Statistical Postulate into the best system, which we then use to simplify the quantum state of the universe. This enables us to confer the nomological status to the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  33. The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. The Deep Metaphysics of Quantum Gravity: The Seventeenth Century Legacy and an Alternative Ontology Beyond Substantivalism and Relationism.Edward Slowik - 2013 - Studies in the History and Philosophy of Modern Physics 44 (4):490-499.
    This essay presents an alternative to contemporary substantivalist and relationist interpretations of quantum gravity hypotheses by means of an historical comparison with the ontology of space in the seventeenth century. Utilizing differences in the spatial geometry between the foundational theory and the theory derived from the foundational, in conjunction with nominalism and platonism, it will be argued that there are crucial similarities between seventeenth century and contemporary theories of space, and that these similarities reveal a host of underlying conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Information, physics, quantum: the search for links.John Archibald Wheeler - 1989 - In Wheeler John Archibald (ed.), Proceedings III International Symposium on Foundations of Quantum Mechanics. pp. 354-358.
    This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantum theory provide mere (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  37. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Reasonable Inferences From Quantum Mechanics: A Response to “Quantum Misuse in Psychic Literature”.Bernardo Kastrup - 2019 - Journal of Near-Death Studies 37 (3):185-200.
    This invited article is a response to the paper “Quantum Misuse in Psychic Literature,” by Jack A. Mroczkowski and Alexis P. Malozemoff, published in this issue of the Journal of Near-Death Studies. Whereas I sympathize with Mroczkowski’s and Malozemoff’s cause and goals, and I recognize the problem they attempted to tackle, I argue that their criticisms often overshot the mark and end up adding to the confusion. I address nine specific technical points that Mroczkowski and Malozemoff accused popular writers (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. New Prospects for a Causally Local Formulation of Quantum Theory.Jacob A. Barandes - manuscript
    It is difficult to extract reliable criteria for causal locality from the limited ingredients found in textbook quantum theory. In the end, Bell humbly warned that his eponymous theorem was based on criteria that “should be viewed with the utmost suspicion.” Remarkably, by stepping outside the wave-function paradigm, one can reformulate quantum theory in terms of old-fashioned configuration spaces together with ‘unistochastic’ laws. These unistochastic laws take the form of directed conditional probabilities, which turn out to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. A Synopsis of the Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We summarize a new realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory.Masanao Ozawa - 2016 - New Generation Computing 34 (1):125-152.
    The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of (...) theory to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Energy Non-conservation in Quantum Mechanics.Sean M. Carroll & Jackie Lodman - 2021 - Foundations of Physics 51 (4):1-15.
    We study the conservation of energy, or lack thereof, when measurements are performed in quantum mechanics. The expectation value of the Hamiltonian of a system changes when wave functions collapse in accordance with the standard textbook treatment of quantum measurement, but one might imagine that the change in energy is compensated by the measuring apparatus or environment. We show that this is not true; the change in the energy of a state after measurement can be arbitrarily large, independent (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Imprecise Probabilities in Quantum Mechanics.Stephan Hartmann - 2015 - In Colleen E. Crangle, Adolfo García de la Sienra & Helen E. Longino (eds.), Foundations and Methods From Mathematics to Neuroscience: Essays Inspired by Patrick Suppes. Stanford Univ Center for the Study. pp. 77-82.
    In his entry on "Quantum Logic and Probability Theory" in the Stanford Encyclopedia of Philosophy, Alexander Wilce (2012) writes that "it is uncontroversial (though remarkable) the formal apparatus quantum mechanics reduces neatly to a generalization of classical probability in which the role played by a Boolean algebra of events in the latter is taken over the 'quantum logic' of projection operators on a Hilbert space." For a long time, Patrick Suppes has opposed this view (see, for example, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Derivation of the Quantum Mechanical Momentum Operator in the Position Representation.Ryan Reece - manuscript
    I pedagogically show that the momentum operator in quantum mechanics, in the position representation, commonly known to be a derivative with respect to a spatial x-coordinate, can be derived by identifying momentum as the generator of space translations.
    Download  
     
    Export citation  
     
    Bookmark  
  46. The Quantum Revolution in Philosophy. [REVIEW]Eddy Keming Chen - 2020 - Philosophical Review 129 (2):302-308.
    In this thought-provoking book, Richard Healey proposes a new interpretation of quantum theory inspired by pragmatist philosophy. Healey puts forward the interpretation as an alternative to realist quantum theories on the one hand such as Bohmian mechanics, spontaneous collapse theories, and many-worlds interpretations, which are different proposals for describing what the quantum world is like and what the basic laws of physics are, and non-realist interpretations on the other hand such as quantum Bayesianism, which proposes to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  48.  62
    Quantum ontology de-naturalized: What we can't learn from quantum mechanics.Raoni Arroyo & Jonas R. B. Arenhart - forthcoming - Theoria. An International Journal for Theory, History and Foundations of Science.
    Philosophers of science commonly connect ontology and science, stating that these disciplines maintain a two-way relationship: on the one hand, we can extract ontology from scientific theories; on the other hand, ontology provides the realistic content of our scientific theories. In this article, we will critically examine the process of naturalizing ontology, i.e., confining the work of ontologists merely to the task of pointing out which entities certain theories commit themselves to. We will use non-relativistic quantum mechanics as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can't stop (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 1000