Results for 'S. Boccaletti'

986 found
Order:
  1. Fair Allocation of GLP-1 and Dual GLP-1-GIP Receptor Agonists.Ezekiel J. Emanuel, Johan L. Dellgren, Matthew S. McCoy & Govind Persad - forthcoming - New England Journal of Medicine.
    Glucagon-like peptide-1 (GLP-1) receptor agonists, such as semaglutide, and dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists, such as tirzepatide, have been found to be effective for treating obesity and diabetes, significantly reducing weight and the risk or predicted risk of adverse cardiovascular events. There is a global shortage of these medications that could last several years and raises questions about how limited supplies should be allocated. We propose a fair-allocation framework that enables evaluation of the ethics of current (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Development and Evaluation of the Oracle Intelligent Tutoring System (OITS).Rami Aldahdooh & Samy S. Abu Naser - 2017 - European Academic Research 4 (10).
    This paper presents the design and development of intelligent tutoring system for teaching Oracle. The Oracle Intelligent Tutoring System (OITS) examined the power of a new methodology to supporting students in Oracle programming. The system presents the topic of Introduction to Oracle with automatically generated problems for the students to solve. The system is dynamically adapted at run time to the student’s individual progress. An initial evaluation study was done to investigate the effect of using the intelligent tutoring system on (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  3. ARDUINO Tutor: An Intelligent Tutoring System for Training on ARDUINO.Islam Albatish, Msbah J. Mosa & Samy S. Abu-Naser - 2018 - International Journal of Engineering and Information Systems (IJEAIS) 2 (1):236-245.
    This paper aims at helping trainees to overcome the difficulties they face when dealing with Arduino platform by describing the design of a desktop based intelligent tutoring system. The main idea of this system is a systematic introduction into the concept of Arduino platform. The system shows the circuit boards of Arduino that can be purchased at low cost or assembled from freely-available plans; and an open-source development environment and library for writing code to control the board topic of Arduino (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  4. Streamlined Book Rating Prediction with Neural Networks.Lana Aarra, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):7-13.
    Abstract: Online book review platforms generate vast user data, making accurate rating prediction crucial for personalized recommendations. This research explores neural networks as simple models for predicting book ratings without complex algorithms. Our novel approach uses neural networks to predict ratings solely from user-book interactions, eliminating manual feature engineering. The model processes data, learns patterns, and predicts ratings. We discuss data preprocessing, neural network design, and training techniques. Real-world data experiments show the model's effectiveness, surpassing traditional methods. This research can (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. An Intelligent Tutoring System for Cloud Computing.Hasan Abdulla Abu Hasanein & Samy S. Abu Naser - 2017 - International Journal of Academic Research and Development 2 (1):76-80.
    Intelligent tutoring system (ITS) is a computer system which aims to provide immediate and customized or reactions to learners, usually without the intervention of human teacher's instructions. Secretariats professional to have the common goal of learning a meaningful and effective manner through the use of a variety of computing technologies enabled. There are many examples of professional Secretariats used in both formal education and in professional settings that have proven their capabilities. There is a close relationship between private lessons intelligent, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  6. Smoke Detectors Using ANN.Marwan R. M. Al-Rayes & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):1-9.
    Abstract: Smoke detectors are critical devices for early fire detection and life-saving interventions. This research paper explores the application of Artificial Neural Networks (ANNs) in smoke detection systems. The study aims to develop a robust and accurate smoke detection model using ANNs. Surprisingly, the results indicate a 100% accuracy rate, suggesting promising potential for ANNs in enhancing smoke detection technology. However, this paper acknowledges the need for a comprehensive evaluation beyond accuracy. It discusses potential challenges, such as overfitting, dataset size, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Papaya Maturity Classifications using Deep Convolutional Neural Networks.Marah M. Al-Masawabe, Lamis F. Samhan, Amjad H. AlFarra, Yasmeen E. Aslem & Samy S. Abu-Naser - 2021 - International Journal of Engineering and Information Systems (IJEAIS) 5 (12):60-67.
    Papaya is a tropical fruit with a green cover, yellow pulp, and a taste between mango and cantaloupe, having commercial importance because of its high nutritive and medicinal value. The process of sorting papaya fruit based on maturely is one of the processes that greatly determine the mature of papaya fruit that will be sold to consumers. The manual grading of papaya fruit based on human visual perception is time-consuming and destructive. The objective of this paper is to the status (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  8. Alzheimer: A Neural Network Approach with Feature Analysis.Hussein Khaled Qarmout & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):10-18.
    Abstract Alzheimer's disease has spread insanely throughout the world. Early detection and intervention are essential to improve the chances of a positive outcome. This study presents a new method to predict a person's likelihood of developing Alzheimer's using a neural network model. The dataset includes 373 samples with 10 features, such as Group,M/F,Age,EDUC, SES,MMSE,CDR ,eTIV,nWBV,Oldpeak,ASF.. A four-layer neural network model (1 input, 2 hidden, 1 output) was trained on the dataset and achieved an accuracy of 98.10% and an average error (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Spotify Status Dataset.Mohammad Ayman Mattar & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):14-21.
    Abstract: The Spotify Status Dataset is a valuable resource that provides real-time insights into the operational status and performance of Spotify, a popular music streaming platform. This dataset contains a wide array of information related to server uptime, user activity, service disruptions, and more, serving as a critical tool for both Spotify's internal monitoring and the broader data analysis community. As digital services like Spotify continue to play a central role in music consumption, understanding the platform's status becomes crucial for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Unlocking Literary Insights: Predicting Book Ratings with Neural Networks.Mahmoud Harara & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):22-27.
    Abstract: This research delves into the utilization of Artificial Neural Networks (ANNs) as a powerful tool for predicting the overall ratings of books by leveraging a diverse set of attributes. To achieve this, we employ a comprehensive dataset sourced from Goodreads, enabling us to thoroughly examine the intricate connections between the different attributes of books and the ratings they receive from readers. In our investigation, we meticulously scrutinize how attributes such as genre, author, page count, publication year, and reader reviews (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Forecasting COVID-19 cases Using ANN.Ibrahim Sufyan Al-Baghdadi & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):22-31.
    Abstract: The COVID-19 pandemic has posed unprecedented challenges to global healthcare systems, necessitating accurate and timely forecasting of cases for effective mitigation strategies. In this research paper, we present a novel approach to predict COVID-19 cases using Artificial Neural Networks (ANNs), harnessing the power of machine learning for epidemiological forecasting. Our ANNs-based forecasting model has demonstrated remarkable efficacy, achieving an impressive accuracy rate of 97.87%. This achievement underscores the potential of ANNs in providing precise and data-driven insights into the dynamics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  84
    I didn’t Leave Inceldom; Inceldom Left me”: Examining Male Ex-Incel Navigations of Complex Masculinities Identity Rebuilding Following Rejection of Incel-Culture.Nicholas Norman Adams & David S. Smith - 2025 - Deviant Behavior.
    This study explores experiences of ex-incels—men who have withdrawn from incel communities—through eleven qualitative interviews analysed using R.W. Connell’s hegemonic masculinity (HM) framework. Findings reveal some ex-incels adopt flexible masculinities, while others struggle with prescriptive norms perpetuated by the anti-feminist ‘manosphere’. Findings spotlight identity reconstructions, where men both reject and remain influenced by rigid archetypes, performing hybrid masculinities. This study deepens understanding of incel ideology, its impact on identity, and interplay between inceldom and masculinities via contributing to hybrid masculinities theorising. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE.M. Arul Selvan & S. Miruna Joe Amali - 2024 - Journal of Science Technology and Research 5 (1):37-42.
    Rainfall prediction is one of the challenging tasks in weather forecasting. Accurate and timely rainfall prediction can be very helpful to take effective security measures in dvance regarding: on-going construction projects, transportation activities, agricultural tasks, flight operations and flood situation, etc. Data mining techniques can effectively predict the rainfall by extracting the hidden patterns among available features of past weather data. This research contributes by providing a critical analysis and review of latest data mining techniques, used for rainfall prediction. In (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  14. Predicting Heart Disease using Neural Networks.Ahmed Muhammad Haider Al-Sharif & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (9):40-46.
    Cardiovascular diseases, including heart disease, pose a significant global health challenge, contributing to a substantial burden on healthcare systems and individuals. Early detection and accurate prediction of heart disease are crucial for timely intervention and improved patient outcomes. This research explores the potential of neural networks in predicting heart disease using a dataset collected from Kaggle, consisting of 1025 samples with 14 distinct features. The study's primary objective is to develop an effective neural network model for binary classification, identifying the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Promote the Practice of Global Pioneering Orientation for Employees of the University of Palestine.Nader H. Abusharekh, Mazen J. Al Shobaki, Samy S. Abu-Naser & Suliman A. El Talla - 2020 - International Journal of Academic Multidisciplinary Research (IJAMR) 4 (9):34-47.
    This study aims to identify the strengthening of the global entrepreneurial orientation practice for employees at the University of Palestine, where the researchers used the descriptive and analytical approach, through a questionnaire distributed to a sample of employees at the University of Palestine, where the size of the study population is (234) employees and the sample size is (117) Employees, of whom (90) employees responded. The study found a set of results, the most important of which are: that there is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. FILIPINO TIKTOK INFLUENCERS AND PURCHASING BEHAVIOR OF YOUNG PROFESSIONALS.Rizza G. De La Luna, Al John A. Apana, Ivan Claude D. Aure, Joyce S. Catapang, Simon Jude A. Galut, Hazon B. Punongbayan & Jowenie A. Mangarin - 2024 - Get International Research Journal 2 (1):148–164.
    The traditional use of conventional media by businesses for audience targeting has shifted with the rise of influencer marketing, notably on platforms like TikTok, posing challenges in content adaptation and technological adaptation. Albert Bandura's Social Cognitive Theory examines factors shaping purchasing behavior, particularly relevant for young professionals. A quantitative correlational study focused on young professionals engaging with TikTok and influenced by Filipino TikTok creators, revealing education level as a key determinant of purchasing behavior. Extended TikTok engagement positively correlates with increased (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Predictive Analysis of Lottery Outcomes Using Deep Learning and Time Series Analysis.Asil Mustafa Alghoul & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):1-6.
    Abstract: Lotteries have long been a source of fascination and intrigue, offering the tantalizing prospect of unexpected fortunes. In this research paper, we delve into the world of lottery predictions, employing cutting-edge AI techniques to unlock the secrets of lottery outcomes. Our dataset, obtained from Kaggle, comprises historical lottery draws, and our goal is to develop predictive models that can anticipate future winning numbers. This study explores the use of deep learning and time series analysis to achieve this elusive feat. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Artificial Neural Network for Predicting COVID 19 Using JNN.Walaa Hasan, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):41-47.
    Abstract: The emergence of the novel coronavirus (COVID-19) in 2019 has presented the world with an unprecedented global health crisis. The rapid and widespread transmission of the virus has strained healthcare systems, disrupted economies, and challenged societies. In response to this monumental challenge, the intersection of technology and healthcare has become a focal point for innovation. This research endeavors to leverage the capabilities of Artificial Neural Networks (ANNs) to develop an advanced predictive model for forecasting the spread of COVID-19. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Predicting Fire Alarms in Smoke Detection using Neural Networks.Maher Wissam Attia, Baraa Akram Abu Zaher, Nidal Hassan Nasser, Ruba Raed Al-Hour, Aya Haider Asfour & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):26-33.
    Abstract: This research paper presents the development and evaluation of a neural network-based model for predicting fire alarms in smoke detection systems. Using a dataset from Kaggle containing 15 features and 3487 samples, we trained and validated a neural network with a three-layer architecture. The model achieved an accuracy of 100% and an average error of 0.0000003. Additionally, we identified the most influential features in predicting fire alarms.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Predicting Player Power In Fortnite Using Just Nueral Network.Al Fleet Muhannad Jamal Farhan & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (9):29-37.
    Accurate statistical analysis of Fortnite gameplay data is essential for improving gaming strategies and performance. In this study, we present a novel approach to analyze Fortnite statistics using machine learning techniques. Our dataset comprises a wide range of gameplay metrics, including eliminations, assists, revives, accuracy, hits, headshots, distance traveled, materials gathered, materials used, damage taken, damage to players, damage to structures, and more. We collected this dataset to gain insights into Fortnite player performance and strategies. The proposed model employs advanced (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Predicting Kidney Stone Presence from Urine Analysis: A Neural Network Approach using JNN.Amira Jarghon & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (9):32-39.
    Kidney stones pose a significant health concern, and early detection can lead to timely intervention and improved patient outcomes. This research endeavours to predict the presence of kidney stones based on urine analysis, utilizing a neural network model. A dataset of 552 urine specimens, comprising six essential physical characteristics (specific gravity, pH, osmolarity, conductivity, urea concentration, and calcium concentration), was collected and prepared. Our proposed neural network architecture, featuring three layers (input, hidden, output), was trained and validated, achieving an impressive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Neural Network-Based Water Quality Prediction.Mohammed Ashraf Al-Madhoun & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (9):25-31.
    Water quality assessment is critical for environmental sustainability and public health. This research employs neural networks to predict water quality, utilizing a dataset of 21 diverse features, including metals, chemicals, and biological indicators. With 8000 samples, our neural network model, consisting of four layers, achieved an impressive 94.22% accuracy with an average error of 0.031. Feature importance analysis revealed arsenic, perchlorate, cadmium, and others as pivotal factors in water quality prediction. This study offers a valuable contribution to enhancing water quality (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Chances of Survival in the Titanic using ANN.Udai Hamed Saeed Al-Hayik & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):17-21.
    Abstract: The sinking of the RMS Titanic in 1912 remains a poignant historical event that continues to captivate our collective imagination. In this research paper, we delve into the realm of data-driven analysis by applying Artificial Neural Networks (ANNs) to predict the chances of survival for passengers aboard the Titanic. Our study leverages a comprehensive dataset encompassing passenger information, demographics, and cabin class, providing a unique opportunity to explore the complex interplay of factors influencing survival outcomes. Our ANN-based predictive model (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Rice Classification using ANN.Abdulrahman Muin Saad & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):32-42.
    Abstract: Rice, as a paramount staple crop worldwide, sustains billions of lives. Precise classification of rice types holds immense agricultural, nutritional, and economic significance. Recent advancements in machine learning, particularly Artificial Neural Networks (ANNs), offer promise in enhancing rice type classification accuracy and efficiency. This research explores rice type classification, harnessing neural networks' power. Utilizing a rich dataset from Kaggle, containing 18,188 entries and key rice grain attributes, we develop and evaluate a neural network model. Our neural network, featuring a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Neural Network-Based Audit Risk Prediction: A Comprehensive Study.Saif al-Din Yusuf Al-Hayik & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):43-51.
    Abstract: This research focuses on utilizing Artificial Neural Networks (ANNs) to predict Audit Risk accurately, a critical aspect of ensuring financial system integrity and preventing fraud. Our dataset, gathered from Kaggle, comprises 18 diverse features, including financial and historical parameters, offering a comprehensive view of audit-related factors. These features encompass 'Sector_score,' 'PARA_A,' 'SCORE_A,' 'PARA_B,' 'SCORE_B,' 'TOTAL,' 'numbers,' 'marks,' 'Money_Value,' 'District,' 'Loss,' 'Loss_SCORE,' 'History,' 'History_score,' 'score,' and 'Risk,' with a total of 774 samples. Our proposed neural network architecture, consisting of three (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Predicting Audit Risk Using Neural Networks: An In-depth Analysis.Dana O. Abu-Mehsen, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):48-56.
    Abstract: This research paper presents a novel approach to predict audit risks using a neural network model. The dataset used for this study was obtained from Kaggle and comprises 774 samples with 18 features, including Sector_score, PARA_A, SCORE_A, PARA_B, SCORE_B, TOTAL, numbers, marks, Money_Value, District, Loss, Loss_SCORE, History, History_score, score, and Risk. The proposed neural network architecture consists of three layers, including one input layer, one hidden layer, and one output layer. The neural network model was trained and validated, achieving (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Heart attack analysis & Prediction: A Neural Network Approach with Feature Analysis.Majd N. Allouh & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (9):47-54.
    heart attack analysis & prediction dataset is a major cause of death worldwide. Early detection and intervention are essential for improving the chances of a positive outcome. This study presents a novel approach to predicting the likelihood of a person having heart failure using a neural network model. The dataset comprises 304 samples with 11 features, such as age, sex, chest pain type, Trtbps, cholesterol, fasting blood sugar, resting electrocardiogram results, maximum heart rate achieved, exercise-induced angina, oldpeak, ST_Slope, and HeartDisease. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Prediction Heart Attack using Artificial Neural Networks (ANN).Ibrahim Younis, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):36-41.
    Abstract Heart Attack is the Cardiovascular Disease (CVD) which causes the most deaths among CVDs. We collected a dataset from Kaggle website. In this paper, we propose an ANN model for the predicting whether a patient has a heart attack or not that. The dataset set consists of 9 features with 1000 samples. We split the dataset into training, validation, and testing. After training and validating the proposed model, we tested it with testing dataset. The proposed model reached an accuracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  85
    Revolutionizing Drug Discovery: The Role of Artificial Intelligence in Accelerating Pharmaceutical Innovation".Alaa Soliman Abu Mettleq, Alaa N. Akkila, Mohammed A. Alkahlout, Suheir H. A. ALmurshidi, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - Information Journal of Academic Engineering Research (Ijaer) 8 (10):45-53.
    Abstract: The integration of artificial intelligence (AI) into drug discovery is revolutionizing the pharmaceutical industry by accelerating the development of novel therapeutics. AI-powered tools enable researchers to process vast datasets, identify drug candidates, and predict their efficacy and safety with unprecedented speed and accuracy. This paper explores the transformative impact of AI on drug discovery, highlighting key advancements in machine learning algorithms, deep learning, and predictive modeling. Additionally, it addresses the challenges associated with AI implementation, including data quality, regulatory hurdles, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Google Stock Price Prediction Using Just Neural Network.Mohammed Mkhaimar AbuSada, Ahmed Mohammed Ulian & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):10-16.
    Abstract: The aim behind analyzing Google Stock Prices dataset is to get a fair idea about the relationships between the multiple attributes a day might have, such as: the opening price for each day, the volume of trading for each day. With over a hundred thousand days of trading data, there are some patterns that can help in predicting the future prices. We proposed an Artificial Neural Network (ANN) model for predicting the closing prices for future days. The prediction is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Predicting Carbon Dioxide Emissions in the Oil and Gas Industry.Yousef Mohammed Meqdad & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):34-40.
    Abstract: This study has effectively tackled the critical challenge of accurate calorie prediction in dishes by employing a robust neural network-based model. With an outstanding accuracy rate of 99.32% and a remarkably low average error of 0.009, our model has showcased its proficiency in delivering precise calorie estimations. This achievement equips individuals, healthcare practitioners, and the food industry with a powerful tool to promote healthier dietary choices and elevate awareness of nutrition. Furthermore, our in-depth feature importance analysis has shed light (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Colon Cancer Knowledge-Based System.Rawan N. A. Albanna, Dina F. Alborno, Raja E. Altarazi, Malak S. Hamad & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems 7 (6):27-36.
    Abstract: Colon cancer is a prevalent and life-threatening disease, necessitating accurate and timely diagnosis for effective treatment and improved patient outcomes. This research paper presents the development of a knowledge-based system for diagnosing colon cancer using the CLIPS language. Knowledge-based systems offer the potential to assist healthcare professionals in making informed diagnoses by leveraging expert knowledge and reasoning mechanisms. The methodology involves acquiring and structuring medical knowledge specific to colon cancer, followed by the implementation of a knowledge- based system using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Breast Cancer Knowledge Based System.Mohammed H. Aldeeb & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems 7 (6):46-51.
    Abstract: The Knowledge-Based System for Diagnosing Breast Cancer aims to support medical students in enhancing their education regarding diagnosis and counseling. The system facilitates the analysis of biopsy images under a microscope, determination of tumor type, selection of appropriate treatment methods, and identification of disease-related questions. According to the Ministry of Health's annual report in Gaza, there were 7,069 cases of breast cancer between 2009 and 2014, with 1,502 cases reported in 2014. In an era dominated by visual information, where (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. AI-Driven Learning: Advances and Challenges in Intelligent Tutoring Systems.Amjad H. Alfarra, Lamis F. Amhan, Msbah J. Mosa, Mahmoud Ali Alajrami, Faten El Kahlout, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):24-29.
    Abstract: The incorporation of Artificial Intelligence (AI) into educational technology has dramatically transformed learning through Intelligent Tutoring Systems (ITS). These systems utilize AI to offer personalized, adaptive instruction tailored to each student's needs, thereby improving learning outcomes and engagement. This paper examines the development and impact of ITS, focusing on AI technologies such as machine learning, natural language processing, and adaptive algorithms that drive their functionality. Through various case studies and applications, it illustrates how ITS have revolutionized traditional educational methods (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Classification of Chicken Diseases Using Deep Learning.Mohammed Al Qatrawi & Samy S. Abu-Naser - 2024 - Information Journal of Academic Information Systems Research (Ijaisr) 8 (4):9-17.
    Abstract: In recent years, the outbreak of various poultry diseases has posed a significant threat to the global poultry industry. Therefore, the accurate and timely detection of chicken diseases is critical to reduce economic losses and prevent the spread of diseases. In this study, we propose a method for classifying chicken diseases using a convolutional neural network (CNN). The proposed method involves preprocessing the chicken images, building and training a CNN model, and evaluating the performance of the model. The dataset (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Fish Classification Using Deep Learning.M. N. Ayyad & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):51-58.
    Abstract: Fish are important for both nutritional and economic reasons. They are a good source of protein, vitamins, and minerals and play a significant role in human diets, especially in coastal and island communities. In addition, fishing and fish farming are major industries that provide employment and income for millions of people worldwide. Moreover, fish play a critical role in marine ecosystems, serving as prey for larger predators and helping to maintain the balance of aquatic food chains. Overall, fish play (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Credit Score Classification Using Machine Learning.Mosa M. M. Megdad & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (5):1-10.
    Abstract: Ensuring the proactive detection of transaction risks is paramount for financial institutions, particularly in the context of managing credit scores. In this study, we compare different machine learning algorithms to effectively and efficiently. The algorithms used in this study were: MLogisticRegressionCV, ExtraTreeClassifier,LGBMClassifier,AdaBoostClassifier, GradientBoostingClassifier,Perceptron,RandomForestClassifier,KNeighborsClassifier,BaggingClassifier, DecisionTreeClassifier, CalibratedClassifierCV, LabelPropagation, Deep Learning. The dataset was collected from Kaggle depository. It consists of 164 rows and 8 columns. The best classifier with unbalanced dataset was the LogisticRegressionCV. The Accuracy 100.0%, precession 100.0%,Recall100.0% and the F1-score (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. The Fast Food Image Classification using Deep Learning.Jehad El-Tantawi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):37-43.
    Abstract: Fast food refers to quick, convenient, and ready-to-eat meals that are usually sold at chain restaurants or take-out establishments. Fast food is often criticized for its unhealthy ingredients, such as high levels of salt, sugar, and unhealthy fats, and its contribution to the growing obesity epidemic. Despite this, fast food remains popular due to its affordability, convenience, and widespread availability. Many fast food chains have attempted to respond to these criticisms by offering healthier options, such as salads and grilled (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Classification of Apple Diseases Using Deep Learning.Ola I. A. Lafi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):1-9.
    Abstract: In this study, we explore the challenge of identifying and preventing diseases in apple trees, which is a popular activity but can be difficult due to the susceptibility of these trees to various diseases. To address this challenge, we propose the use of Convolutional Neural Networks, which have proven effective in automatically detecting plant diseases. To validate our approach, we use images of apple leaves, including Apple Rot Leaves, Leaf Blotch, Healthy Leaves, and Scab Leaves collected from Kaggle which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Stop agonising over informed consent when researchers use crowdsourcing platforms to conduct survey research.Jonathan Lewis, Vilius Dranseika & Søren Holm - 2023 - Clinical Ethics 18 (4):343-346.
    Research ethics committees and institutional review boards spend considerable time developing, scrutinising, and revising specific consent processes and materials for survey-based studies conducted on crowdsourcing and online recruitment platforms such as MTurk and Prolific. However, there is evidence to suggest that many users of ICT services do not read the information provided as part of the consent process and they habitually provide or refuse their consent without adequate reflection. In principle, these practices call into question the validity of their consent. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Fine-tuning MobileNetV2 for Sea Animal Classification.Mohammed Marouf & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):44-50.
    Abstract: Classifying sea animals is an important problem in marine biology and ecology as it enables the accurate identification and monitoring of species populations, which is crucial for understanding and protecting marine ecosystems. This paper addresses the problem of classifying 19 different sea animals using convolutional neural networks (CNNs). The proposed solution is to use a pretrained MobileNetV2 model, which is a lightweight and efficient CNN architecture, and fine-tune it on a dataset of sea animals. The results of the study (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Tomato Leaf Diseases Classification using Deep Learning.Mohammed F. El-Habibi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):73-80.
    Abstract: Tomatoes are among the most popular vegetables in the world due to their frequent use in many dishes, which fall into many varieties in common and traditional foods, and due to their rich ingredients such as vitamins and minerals, so they are frequently used on a daily basis, When we focus our attention on this vegetable, we must also focus and take into consideration the diseases that affect this vegetable, a deep learning model that classifies tomato diseases has been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Using Deep Learning to Classify Corn Diseases.Mohanad H. Al-Qadi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems (Ijaisr) 8 (4):81-88.
    Abstract: A corn crop typically refers to a large-scale cultivation of corn (also known as maize) for commercial purposes such as food production, animal feed, and industrial uses. Corn is one of the most widely grown crops in the world, and it is a major staple food for many cultures. Corn crops are grown in various regions of the world with different climates, soil types, and farming practices. In the United States, for example, the Midwest is known as the "Corn (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Predicting Students' end-of-term Performances using ML Techniques and Environmental Data.Ahmed Mohammed Husien, Osama Hussam Eljamala, Waleed Bahgat Alwadia & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):19-25.
    Abstract: This study introduces a machine learning-based model for predicting student performance using a comprehensive dataset derived from educational sources, encompassing 15 key features and comprising 62,631 student samples. Our five-layer neural network demonstrated remarkable performance, achieving an accuracy of 89.14% and an average error of 0.000715, underscoring its effectiveness in predicting student outcomes. Crucially, this research identifies pivotal determinants of student success, including factors such as socio-economic background, prior academic history, study habits, and attendance patterns, shedding light on the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Students' Economic Status and Access to Technology in Relation to Their Academic Stress on Online Learning at the University of Bohol.Kim B. Penaflor, Mae Arcely P. Acera, Esther Jay P. Melencion, Ma Ella May R. Ampac, Angela T. Toribio, Karla Mari S. Gaterin, Marian O. Agan, Glenn Lawrence P. Doloritos, Xenita Vera P. Oracion, Bonnibella L. Jamora & Kristine Mae V. Lumanas - 2023 - Academe University of Bohol, Graduate School and Professional Studies 22 (1):25-38.
    Socioeconomic status refers to the family's social and economic standing in society. It is measured by combining an individual or group's economic and social position, which is often based on income, education, and occupation. It significantly affects academic performance and even one's health status. The pandemic changed the educational system, causing a huge transition from traditional learning methods to online learning. This shift resulted in confusion, burden, and difficulty among students from different walks of life. This study was conducted to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46.  50
    Power Stretch Warm- up Exercise: The Impact of Modified Stretching Routine on Students’ Performance.Vincent Arnie P. Amistad, Shiela Mae S. Alao, Rassel Lou G. Gamalo & Domineque James A. Pastoril - 2024 - International Journal of Multidisciplinary Educational Research and Innovation 2 (4):324-333.
    Stretching is one of the important things to do before doing a physical activity. Stretching helps you to avoid possible injuries, muscle soreness and even improve overall performance. The researcher came up with an idea to create a modified stretching routine to assess if our created modified stretching is better than the traditional stretching. This study aims to assess the impact or the effect of the created modified stretching routine to the performance of students. This study utilizes the quasi-experimental research (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. BATTERY-POWERED DEVICE FOR MONITORING PHYSICAL DISTANCING THROUGH WIRELESS TECHNOLOGY.Angelica A. Cabaya, Rachel Grace B. Rizardo, Clesphsyche April O. Magno, Aubrey Madar B. Magno, Fredolen A. Causing, Steven V. Batislaong & Raffy S. Virtucio - 2023 - Get International Research Journal 1 (2).
    One method for preventing the spread of the coronavirus and other contagious diseases is through social distancing. Therefore, creating a tool to measure and quickly discover the precise distance is necessary. In order to prevent physical contact between individuals, this study aimed to detects individuals’ physical distance, through an inaugurated battery-powered device that monitors physical distance through wireless technology. Specifically, in public or crowded areas, to lessen the spread of the virus. This study focuses on detecting people’s physical distance in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Predictive Modeling of Smoke Potential Using Neural Networks and Environmental Data.Abu Al-Reesh Kamal Ali, Al-Safadi Muhammad Nidal, Al-Tanani Waleed Sami & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (9):38-46.
    This study presents a neural network-based model for predicting smoke potential in a specific area using a Kaggle-derived dataset with 15 environmental features and 62,631 samples. Our five-layer neural network achieved an accuracy of 89.14% and an average error of 0.000715, demonstrating its effectiveness. Key influential features, including temperature, humidity, crude ethanol, pressure, NC1.0, NC2.5, SCNT, and PM2.5, were identified, providing insights into smoke occurrence. This research aids in proactive smoke mitigation and public health protection. The model's accuracy and feature (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Predicting Books’ Rating Using Just Neural Network.Raghad Fattouh Baraka & Samy S. Abu-Naser - 2023 - Predicting Books’ Rating Using Just Neural Network 7 (9):14-19.
    The aim behind analyzing the Goodreads dataset is to get a fair idea about the relationships between the multiple attributes a book might have, such as: the aggregate rating of each book, the trend of the authors over the years and books with numerous languages. With over a hundred thousand ratings, there are books which just tend to become popular as each day seems to pass. We proposed an Artificial Neural Network (ANN) model for predicting the overall rating of books. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  85
    ANALYSIS OF REGIONAL COMPREHENSIVE FACTORS ON TALENT ACQUISITION BASED ON ASA THEORY: A STRUCTURAL EQUATION MODEL.Bin Wang, Rodrigo J. Ponce Jr, Johnn C. Teope, Dionito S. Ursua, Juan Migual P. Gonzalez, Rizardo J. Opido, Honeylette D. C. Villanueva & Ericson Z. Matias - 2024 - Guild of Educators in Tesol International Research Journal 2 (4):16-35.
    This study explores the impact of regional comprehensive factors on talent acquisition using the ASA (Attraction-Selection-Attrition) theory within the context of the automotive industry, employing a structural equation modeling approach. Analyzing data from 308 respondents, the study identifies significant relationships between regional development pole, industry agglomeration, and regional incentives with various dimensions of talent acquisition, including attraction, selection, and retention. The findings reveal that regional development pole and incentives positively influence talent management processes, whereas industry agglomeration has a detrimental effect. (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 986