Results for 'Thoraf Skolem'

16 found
Order:
  1. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Higher-Order Skolem’s Paradoxes.Davood Hosseini & Mansooreh Kimiagari - manuscript
    Some analogous higher-order versions of Skolem’s paradox will be introduced. The generalizability of two solutions for Skolem’s paradox will be assessed: the course-book approach and Bays’ one. Bays’ solution to Skolem’s paradox, unlike the course-book solution, can be generalized to solve the higher-order paradoxes without any implication about the possibility or order of a language in which mathematical practice is to be formalized.
    Download  
     
    Export citation  
     
    Bookmark  
  3. INVENTING LOGIC: THE LÖWENHEIM-SKOLEM THEOREM AND FIRST- AND SECOND-ORDER LOGIC.Valérie Lynn Therrien - 2012 - Pensées Canadiennes 10.
    Download  
     
    Export citation  
     
    Bookmark  
  4. A Decision Procedure for Herbrand Formulas without Skolemization.Timm Lampert - manuscript
    This paper describes a decision procedure for disjunctions of conjunctions of anti-prenex normal forms of pure first-order logic (FOLDNFs) that do not contain V within the scope of quantifiers. The disjuncts of these FOLDNFs are equivalent to prenex normal forms whose quantifier-free parts are conjunctions of atomic and negated atomic formulae (= Herbrand formulae). In contrast to the usual algorithms for Herbrand formulae, neither skolemization nor unification algorithms with function symbols are applied. Instead, a procedure is described that rests on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Парадоксът на Скулем и квантовата информация. Относителност на пълнота по Гьодел.Vasil Penchev - 2011 - Philosophical Alternatives 20 (2):131-147.
    In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Brains in vats and model theory.Tim Button - 2015 - In Sanford Goldberg (ed.), The Brain in a Vat. United Kingdom: Cambridge University Press. pp. 131-154.
    Hilary Putnam’s BIV argument first occurred to him when ‘thinking about a theorem in modern logic, the “Skolem–Löwenheim Theorem”’ (Putnam 1981: 7). One of my aims in this paper is to explore the connection between the argument and the Theorem. But I also want to draw some further connections. In particular, I think that Putnam’s BIV argument provides us with an impressively versatile template for dealing with sceptical challenges. Indeed, this template allows us to unify some of Putnam’s most (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  7. Mathematical Internal Realism.Tim Button - 2022 - In Sanjit Chakraborty & James Ferguson Conant (eds.), Engaging Putnam. Berlin, Germany: De Gruyter. pp. 157-182.
    In “Models and Reality” (1980), Putnam sketched a version of his internal realism as it might arise in the philosophy of mathematics. Here, I will develop that sketch. By combining Putnam’s model-theoretic arguments with Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call) the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly precise; however, these perfectly precise mathematical concepts are manifested and acquired via a formal theory, which is understood in terms of a computable system of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  8. Heinrich Behmann’s 1921 lecture on the decision problem and the algebra of logic.Paolo Mancosu & Richard Zach - 2015 - Bulletin of Symbolic Logic 21 (2):164-187.
    Heinrich Behmann (1891-1970) obtained his Habilitation under David Hilbert in Göttingen in 1921 with a thesis on the decision problem. In his thesis, he solved - independently of Löwenheim and Skolem's earlier work - the decision problem for monadic second-order logic in a framework that combined elements of the algebra of logic and the newer axiomatic approach to logic then being developed in Göttingen. In a talk given in 1921, he outlined this solution, but also presented important programmatic remarks (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  9. The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  10. Sets, Logic, Computation: An Open Introduction to Metalogic.Richard Zach - 2019 - Open Logic Project.
    An introductory textbook on metalogic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. The audience is undergraduate students with some background in formal logic.
    Download  
     
    Export citation  
     
    Bookmark  
  11. Minimal inconsistency-tolerant logics: a quantitative approach.Christian Strasser & Sanderson Molick - forthcoming - Australasian Journal of Logic.
    In order to reason in a non-trivializing way with contradictions, para- consistent logics reject some classically valid inferences. As a way of re- covering some of these inferences, Graham Priest ([Priest, 1991]) proposed to nonmonotonically strengthen the Logic of Paradox by allowing the se- lection of “less inconsistent” models via a comparison of their respective inconsistent parts. This move recaptures a good portion of classical logic in that it does not block, e.g., disjunctive syllogism, unless it is applied to contradictory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Dos Tópicos de Lógica Matemática y sus Fundamentos.Franklin Galindo - 2014 - Episteme NS: Revista Del Instituto de Filosofía de la Universidad Central de Venezuela 34 (1):41-66..
    El objetivo de este artículo es presentar dos tópicos de Lógica matemática y sus fundamentos: El primer tópico es una actualización de la demostración de Alonzo Church del Teorema de completitud de Gödel para la Lógica de primer orden, la cual aparece en su texto "Introduction to Mathematical Logic" (1956) y usa el procedimientos efectivos de Forma normal prenexa y Forma normal de Skolem; y el segundo tópico es una demostración de que la propiedad de partición (tipo Ramsey) del (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can search for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  15. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Librationist cum classical theories of sets.Frode Bjørdal - manuscript
    The focus in this essay will be upon the paradoxes, and foremostly in set theory. A central result is that the librationist set theory £ extension \Pfund $\mathscr{HR}(\mathbf{D})$ of \pounds \ accounts for \textbf{Neumann-Bernays-Gödel} set theory with the \textbf{Axiom of Choice} and \textbf{Tarski's Axiom}. Moreover, \Pfund \ succeeds with defining an impredicative manifestation set $\mathbf{W}$, \emph{die Welt}, so that \Pfund$\mathscr{H}(\mathbf{W})$ %is a model accounts for Quine's \textbf{New Foundations}. Nevertheless, the points of view developed support the view that the truth-paradoxes and (...)
    Download  
     
    Export citation  
     
    Bookmark