Order:
Disambiguations
Yang Wang [4]Yanjing Wang [2]
  1. A comprehensive update on CIDO: the community-based coronavirus infectious disease ontology.Yongqun He, Hong Yu, Anthony Huffman, Asiyah Yu Lin, Darren A. Natale, John Beverley, Ling Zheng, Yehoshua Perl, Zhigang Wang, Yingtong Liu, Edison Ong, Yang Wang, Philip Huang, Long Tran, Jinyang Du, Zalan Shah, Easheta Shah, Roshan Desai, Hsin-hui Huang, Yujia Tian, Eric Merrell, William D. Duncan, Sivaram Arabandi, Lynn M. Schriml, Jie Zheng, Anna Maria Masci, Liwei Wang, Hongfang Liu, Fatima Zohra Smaili, Robert Hoehndorf, Zoë May Pendlington, Paola Roncaglia, Xianwei Ye, Jiangan Xie, Yi-Wei Tang, Xiaolin Yang, Suyuan Peng, Luxia Zhang, Luonan Chen, Junguk Hur, Gilbert S. Omenn, Brian Athey & Barry Smith - 2022 - Journal of Biomedical Semantics 13 (1):25.
    The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. CIDO, a community-based ontology for coronavirus disease knowledge and data integration, sharing, and analysis.Oliver He, John Beverley, Gilbert S. Omenn, Barry Smith, Brian Athey, Luonan Chen, Xiaolin Yang, Junguk Hur, Hsin-hui Huang, Anthony Huffman, Yingtong Liu, Yang Wang, Edison Ong & Hong Yu - 2020 - Scientific Data 181 (7):5.
    Ontologies, as the term is used in informatics, are structured vocabularies comprised of human- and computer-interpretable terms and relations that represent entities and relationships. Within informatics fields, ontologies play an important role in knowledge and data standardization, representation, integra- tion, sharing and analysis. They have also become a foundation of artificial intelligence (AI) research. In what follows, we outline the Coronavirus Infectious Disease Ontology (CIDO), which covers multiple areas in the domain of coronavirus diseases, including etiology, transmission, epidemiology, pathogenesis, diagnosis, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Hidden protocols: Modifying our expectations in an evolving world.Hans van Ditmarsch, Sujata Ghosh, Rineke Verbrugge & Yanjing Wang - 2014 - Artificial Intelligence 208 (1):18--40.
    When agents know a protocol, this leads them to have expectations about future observations. Agents can update their knowledge by matching their actual observations with the expected ones. They eliminate states where they do not match. In this paper, we study how agents perceive protocols that are not commonly known, and propose a semantics-driven logical framework to reason about knowledge in such scenarios. In particular, we introduce the notion of epistemic expectation models and a propositional dynamic logic-style epistemic logic for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. CIDO: The Community-Based Coronavirus Infectious Disease Ontology.Yongqun He, Hong Yu, Edison Ong, Yang Wang, Yingtong Liu, Anthony Huffman, Hsin-hui Huang, Beverley John, Asiyah Yu Lin, Duncan William D., Sivaram Arabandi, Jiangan Xie, Junguk Hur, Xiaolin Yang, Luonan Chen, Gilbert S. Omenn, Brian Athey & Barry Smith - 2021 - Proceedings of the 11th International Conference on Biomedical Ontologies (ICBO) and 10th Workshop on Ontologies and Data in Life Sciences (ODLS).
    Current COVID-19 pandemic and previous SARS/MERS outbreaks have caused a series of major crises to global public health. We must integrate the large and exponentially growing amount of heterogeneous coronavirus data to better understand coronaviruses and associated disease mechanisms, in the interest of developing effective and safe vaccines and drugs. Ontologies have emerged to play an important role in standard knowledge and data representation, integration, sharing, and analysis. We have initiated the development of the community-based Coronavirus Infectious Disease Ontology (CIDO). (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Weakly Aggregative Modal Logic: Characterization and Interpolation.Jixin Liu, Yanjing Wang & Yifeng Ding - 2019 - In Patrick Blackburn, Emiliano Lorini & Meiyun Guo (eds.), Logic, Rationality, and Interaction 7th International Workshop, LORI 2019, Chongqing, China, October 18–21, 2019, Proceedings. Springer. pp. 153-167.
    Weakly Aggregative Modal Logic (WAML) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. WAML has some interesting applications on epistemic logic and logic of games, so we study some basic model theoretical aspects of WAML in this paper. Specifically, we give a van Benthem-Rosen characterization theorem of WAML based on an intuitive notion of bisimulation and show that each basic WAML system Kn lacks Craig Interpolation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. A new framework for host-pathogen interaction research.Hong Yu, Li Li, Anthony Huffman, John Beverley, Junguk Hur, Eric Merrell, Hsin-hui Huang, Yang Wang, Yingtong Liu, Edison Ong, Liang Cheng, Tao Zeng, Jingsong Zhang, Pengpai Li, Zhiping Liu, Zhigang Wang, Xiangyan Zhang, Xianwei Ye, Samuel K. Handelman, Jonathan Sexton, Kathryn Eaton, Gerry Higgins, Gilbert S. Omenn, Brian Athey, Barry Smith, Luonan Chen & Yongqun He - 2022 - Frontiers in Immunology 13.
    COVID-19 often manifests with different outcomes in different patients, highlighting the complexity of the host-pathogen interactions involved in manifestations of the disease at the molecular and cellular levels. In this paper, we propose a set of postulates and a framework for systematically understanding complex molecular host-pathogen interaction networks. Specifically, we first propose four host-pathogen interaction (HPI) postulates as the basis for understanding molecular and cellular host-pathogen interactions and their relations to disease outcomes. These four postulates cover the evolutionary dispositions involved (...)
    Download  
     
    Export citation  
     
    Bookmark