Results for 'classical, quantum and cosmic times'

919 found
Order:
  1. The Physics of Timelessness.Varanasi Ramabrahmam - 2018 - Cosmos and History 14 (2):74-115.
    The nature of time is yet to be fully grasped and finally agreed upon among physicists, philosophers, psychologists and scholars from various disciplines. Present paper takes clue from the known assumptions of time as - movement, change, becoming - and the nature of time will be thoroughly discussed. -/- The real and unreal existences of time will be pointed out and presented. The complex number notation of nature of time will be put forward. Natural scientific systems and various cosmic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Time and Relativity: The mathematical constructions.Varanasi Ramabrahmam - 2013 - Time and Relativity Theories.
    The mathematical constructions, physical structure and manifestations of physical time are reviewed. The nature of insight and mathematics used to understand and deal with physical time associated with classical, quantum and cosmic processes is contemplated together with a comprehensive understanding of classical time. Scalar time (explicit time or quantitative time), vector time (implicit time or qualitative time), biological time, time of and in conscious awareness are discussed. The mathematical understanding of time in special and general theories of relativity (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. On mathematical constructions of time and relativity.Varanasi Ramabrahmam - manuscript
    The mathematical constructions, physical structure and manifestations of physical time are reviewed. The nature of insight and mathematics used to understand and deal with physical time associated with classical, quantum and cosmic processes is contemplated together with a comprehensive understanding of classical time. Scalar time (explicit time or quantitative time), vector time (implicit time or qualitative time), biological time, time of and in conscious awareness are discussed. The mathematical understanding of time in special and general theories of relativity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. (1 other version)Relativity Theory may not have the last Word on the Nature of Time: Quantum Theory and Probabilism.Nicholas Maxwell - 2016 - In Giancarlo Ghirardi & Shyam Wuppuluri (eds.), Space, Time and the Limits of Human Understanding. Cham: Imprint: Springer. pp. 109-124.
    Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both space and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Both Classical & Quantum Information; Both Bit & Qubit: Both Physical & Transcendental Time.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (22):1-24.
    Information can be considered as the most fundamental, philosophical, physical and mathematical concept originating from the totality by means of physical and mathematical transcendentalism (the counterpart of philosophical transcendentalism). Classical and quantum information, particularly by their units, bit and qubit, correspond and unify the finite and infinite. As classical information is relevant to finite series and sets, as quantum information, to infinite ones. A fundamental joint relativity of the finite and infinite, of the external and internal is to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Cosmic Skepticism and the Beginning of Physical Reality (Doctoral Dissertation).Linford Dan - 2022 - Dissertation, Purdue University
    This dissertation is concerned with two of the largest questions that we can ask about the nature of physical reality: first, whether physical reality begin to exist and, second, what criteria would physical reality have to fulfill in order to have had a beginning? Philosophers of religion and theologians have previously addressed whether physical reality began to exist in the context of defending the Kal{\'a}m Cosmological Argument (KCA) for theism, that is, (P1) everything that begins to exist has a cause (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  8. Thoughts on Artificial Intelligence and the Origin of Life Resulting from General Relativity, with Neo-Darwinist Reference to Human Evolution and Mathematical Reference to Cosmology.Rodney Bartlett - manuscript
    When this article was first planned, writing was going to be exclusively about two things - the origin of life and human evolution. But it turned out to be out of the question for the author to restrict himself to these biological and anthropological topics. A proper understanding of them required answering questions like “What is the nature of the universe – the home of life – and how did it originate?”, “How can time travel be removed from fantasy and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. A COMPLEX NUMBER NOTATION OF NATURE OF TIME: AN ANCIENT INDIAN INSIGHT.Varanasi Ramabrahmam - 2013 - In Veda Vijnaana Sudha, Proceedings of 5th International Conference on Vedic Sciences on “Applications and Challenges in Vedic / Ancient Indian Mathematics" on 20, 21 and 22nd of Dec 2013 at Maharani Arts, Commerce and Management College for Women, Bang. pp. 386-399.
    The nature of time is perceived by intellectuals variedly. An attempt is made in this paper to reconcile such varied views in the light of the Upanishads and related Indian spiritual and philosophical texts. The complex analysis of modern mathematics is used to represent the nature and presentation physical and psychological times so differentiated. Also the relation between time and energy is probed using uncertainty relations, forms of energy and phases of matter. Implications to time-dependent Schrodinger wave equation and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. “Shut The Front Door!”: Obviating the Challenge of Large-Scale Extra Dimensions and Psychophysical Bridging.Richard L. Amoroso - 2013 - In Richard L. Amoroso, Louis H. Kauffman & Peter Rowlands (eds.), The Physics of Reality: Space, Time, Matter, Cosmos. London: World Scientific Publishers. pp. 510-522.
    Physics has been slowly and reluctantly beginning to address the role and fundamental basis of the ‘observer’ which has until now also been considered metaphysical and beyond the mandate empirical rigor. It is suggested that the fundamental premise of the currently dominant view of ‘Cognitive Theory’ - “Mind Equals Brain” is erroneous; and the associated belief that the ‘Planck scale, ‘the so-called basement level of reality’, as an appropriate arena from which to model psycho-physical bridging is also in error. In (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. The time asymmetry of quantum mechanics and concepts of physical directionality of time Part 1.Andrew Thomas Holster - manuscript
    This is Part 1 of a four part paper, intended to redress some of the most fundamental confusions in the subject of physical time directionality, and represent the concepts accurately. There are widespread fallacies in the subject that need to be corrected in introductory courses for physics students and philosophers. We start in Part 1 by analysing the time reversal symmetry of quantum probability laws. Time reversal symmetry is defined as the property of invariance under the time reversal transformation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  13. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the newly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. (1 other version) “Fuzzy time”, from paradox to paradox (Does it solve the contradiction between Quantum Mechanics & General Relativity?).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. New Insights on Time and Quantum Gravity.Ozer Oztekin - 2020 - Advances in Physics Theories and Applications 83 (DOI: 10.7176/APTA/83-08).
    According to Einstein, a universal time does not exist. But what if time is different than what we think of it? Cosmic Microvawe Background Radiation was accepted as a reference for a universal clock and a new time concept has been constructed. According to this new concept, time was tackled as two-dimensional having both a wavelength and a frequency. What our clocks measure is actually a derivation of the frequency of time. A relativistic time dilation actually corresponds to an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Time and the Quantum Measurement Problem.Ted Dace - 2021 - International Journal of Quantum Foundations Supplement 3 (1):32-43.
    The quantum measurement problem resolves according to the twofold nature of time. Whereas the continuous evolution of the wave function reflects the fundamental nature of time as continuous presence, the collapse of the wave function indicates the subsidiary aspect of time as the projection of instantaneity from the ongoing present. Each instant irreversibly emerges from the reversible temporal continuum implicit in the smoothly propagating wave function. The basis of this emergence is periodic conflict between quantum systems, the definitive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. About Fuzzy time-Particle interpretation of Quantum Mechanics (it is not an innocent one!) version one.Farzad Didehvar - manuscript
    The major point in [1] chapter 2 is the following claim: “Any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction.” So, in the case we wish to save Classical Logic we should change our Computational Model. As we see in chapter two, the mentioned contradiction is about and around the concept of time, as it is in the contradiction of modified version of paradox. It is natural to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Quantum Mechanics, Fields, Black Holes, and Ontological Plurality.Gustavo E. Romero - 2024 - Philosophies 9 (4):97-121.
    The ontology behind quantum mechanics has been the subject of endless debate since the theory was formulated some 100 years ago. It has been suggested, at one time or another, that the objects described by the theory may be individual particles, waves, fields, ensembles of particles, observers, and minds, among many other possibilities. I maintain that these disagreements are due in part to a lack of precision in the use of the theory’s various semantic designators. In particular, there is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Quantity in Quantum Mechanics and the Quantity of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (47):1-10.
    The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a particular case (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. The Structure of Space and Time and the Indeterminacy of Classical Physics.Hanoch Ben-Yami - manuscript
    I explain in what sense the structure of space and time is probably vague or indefinite, a notion I define. This leads to the mathematical representation of location in space and time by a vague interval. From this, a principle of complementary inaccuracy between spatial location and velocity is derived, and its relation to the Uncertainty Principle discussed. In addition, even if the laws of nature are deterministic, the behaviour of systems will be random to some degree. These and other (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Time Remains.Sean Gryb & Karim P. Y. Thébault - 2016 - British Journal for the Philosophy of Science 67 (3):663-705.
    On one popular view, the general covariance of gravity implies that change is relational in a strong sense, such that all it is for a physical degree of freedom to change is for it to vary with regard to a second physical degree of freedom. At a quantum level, this view of change as relative variation leads to a fundamentally timeless formalism for quantum gravity. Here, we will show how one may avoid this acute ‘problem of time’. Under (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  23. Two deductions: (1) from the totality to quantum information conservation; (2) from the latter to dark matter and dark energy.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (28):1-47.
    The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” are two successive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. The Quantity of Quantum Information and Its Metaphysics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (18):1-6.
    The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Persistence and Nonpersistence as Complementary Models of Identical Quantum Particles.Philip Goyal - 2019 - New Journal of Physics 21.
    According to our understanding of the everyday physical world, observable phenomena are underpinned by persistent objects that can be reidentified across time by observation of their distinctive properties. This understanding is reflected in classical mechanics, which posits that matter consists of persistent, reidentifiable particles. However, the mathematical symmetrization procedures used to describe identical particles within the quantum formalism have led to the widespread belief that identical quantum particles lack either persistence or reidentifiability. However, it has proved difficult to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Heisenberg quantum mechanics, numeral set-theory and.Han Geurdes - manuscript
    In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. The Cosmic Void.Eddy Keming Chen - 2021 - In Sara Bernstein & Tyron Goldschmidt (eds.), Non-Being: New Essays on the Metaphysics of Nonexistence. Oxford: Oxford University Press.
    What exists at the fundamental level of reality? On the standard picture, the fundamental reality contains (among other things) fundamental matter, such as particles, fields, or even the quantum state. Non-fundamental facts are explained by facts about fundamental matter, at least in part. In this paper, I introduce a non-standard picture called the "cosmic void” in which the universe is devoid of any fundamental material ontology. Facts about tables and chairs are recovered from a special kind of laws (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  29. The Self and Its World: Husserlian Contributions to a Metaphysics of Einstein’s Theory of Relativity and Heisenberg’s Indeterminacy Principle in Quantum Physics.Maria Eliza Cruz - manuscript
    This paper centers on the implicit metaphysics beyond the Theory of Relativity and the Principle of Indeterminacy – two revolutionary theories that have changed 20th Century Physics – using the perspective of Husserlian Transcedental Phenomenology. Albert Einstein (1879-1955) and Werner Heisenberg (1901-1976) abolished the theoretical framework of Classical (Galilean- Newtonian) physics that has been complemented, strengthened by Cartesian metaphysics. Rene Descartes (1596- 1850) introduced a separation between subject and object (as two different and self- enclosed substances) while Galileo and Newton (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Godel, Escherian Staircase and Possibility of Quantum Wormhole With Liquid Crystalline Phase of Iced-Water - Part II: Experiment Description.Victor Christianto, T. Daniel Chandra & Florentin Smarandache - 2023 - Bulletin of Pure and Applied Sciences 42 (2):85-100.
    The present article was partly inspired by G. Pollack’s book, and also Dadoloff, Saxena & Jensen (2010). As a senior physicist colleague and our friend, Robert N. Boyd, wrote in a journal (JCFA, Vol. 1, No. 2, 2022), for example, things and Beings can travel between Universes, intentionally or unintentionally [4]. In this short remark, we revisit and offer short remark to Neil Boyd’s ideas and trying to connect them with geometry of musical chords as presented by D. Tymoczko and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Godel, Escherian Staircase and Possibility of Quantum Wormhole With Liquid Crystalline Phase of Iced-Water - Part I: Theoretical Underpinning.Victor Christianto, T. Daniel Chandra & Florentin Smarandache - 2023 - Bulletin of Pure and Applied Sciences 42 (2):70-75.
    As a senior physicist colleague and our friend, Robert N. Boyd, wrote in a journal (JCFA, Vol. 1,. 2, 2022), Our universe is but one page in a large book [4]. For example, things and Beings can travel between Universes, intentionally or unintentionally. In this short remark, we revisit and offer short remark to Neil’s ideas and trying to connect them with geometrization of musical chords as presented by D. Tymoczko and others, then to Escher staircase and then to Jacob’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Maxwell’s Demon in Quantum Mechanics.Orly Shenker & Meir Hemmo - 2020 - Entropy 22 (3):269.
    Maxwell’s Demon is a thought experiment devised by J. C. Maxwell in 1867 in order to show that the Second Law of thermodynamics is not universal, since it has a counter-example. Since the Second Law is taken by many to provide an arrow of time, the threat to its universality threatens the account of temporal directionality as well. Various attempts to “exorcise” the Demon, by proving that it is impossible for one reason or another, have been made throughout the years, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. The 'Noncausal Causality' of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (45):1-7.
    The paper is concentrated on the special changes of the conception of causality from quantum mechanics to quantum information meaning as a background the revolution implemented by the former to classical physics and science after Max Born’s probabilistic reinterpretation of wave function. Those changes can be enumerated so: (1) quantum information describes the general case of the relation of two wave functions, and particularly, the causal amendment of a single one; (2) it keeps the physical description to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Manifestly Covariant Lagrangians, Classical Particles with Spin, and the Origins of Gauge Invariance.Jacob Barandes - manuscript
    In this paper, we review a general technique for converting the standard Lagrangian description of a classical system into a formulation that puts time on an equal footing with the system's degrees of freedom. We show how the resulting framework anticipates key features of special relativity, including the signature of the Minkowski metric tensor and the special role played by theories that are invariant under a generalized notion of Lorentz transformations. We then use this technique to revisit a classification of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  36. A Complex Number Notation of Nature of Time: An Ancient Indian Insight.R. B. Varanasi Varanasi Varanasi Ramabrahmam, Ramabrahmam Varanasi, V. Ramabrahmam - 2013 - In Varanasi Ramabrahmam Ramabrahmam Varanasi V. Ramabrahmam R. B. Varanasi Varanasi (ed.), Proceedings of 5th International Conference on Vedic Sciences on “Applications and Challenges in Vedic / Ancient Indian Mathematics". Veda Vijnaana Sudha. pp. 386-399.
    The nature of time is perceived by intellectuals variedly. An attempt is made in this paper to reconcile such varied views in the light of the Upanishads and related Indian spiritual and philosophical texts. The complex analysis of modern mathematics is used to represent the nature and presentation physical and psychological times so differentiated. Also the relation between time and energy is probed using uncertainty relations, forms of energy and phases of matter.
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Solution Cosmological Constant Problem.Jaykov Foukzon - 2019 - Journal of Modern Physics 10 (7):729-794.
    The cosmological constant problem arises because the magnitude of vacuum energy density predicted by the Quantum Field Theory is about 120 orders of magnitude larger then the value implied by cosmological observations of accelerating cosmic expansion. We pointed out that the fractal nature of the quantum space-time with negative Hausdorff-Colombeau dimensions can resolve this tension. The canonical Quantum Field Theory is widely believed to break down at some fundamental high-energy cutoff ∗ Λ and therefore the (...) fluctuations in the vacuum can be treated classically seriously only up to this high-energy cutoff. In this paper we argue that the Quantum Field Theory in fractal space-time with negative Hausdorff-Colombeau dimensions gives high-energy cutoff on natural way. We argue that there exists hidden physical mechanism which cancels divergences in canonical QED4 ,QCD4 , Higher-Derivative-Quantum gravity, etc. In fact we argue that corresponding supermassive Pauli-Villars ghost fields really exist. It means that there exists the ghost-driven acceleration of the universe hidden in cosmological constant. In order to obtain the desired physical result we apply the canonical Pauli-Villars regularization up to ∗ Λ . This would fit in the observed value of the dark energy needed to explain the accelerated expansion of the universe if we choose highly symmetric masses distribution between standard matter and ghost matter below the scale ∗ Λ , i.e. , ( ) ( ) . . eff eff s m g m , , , f μ f μ μ mc μ μ μ c ∗  − = ≤ < Λ The small value of the cosmological constant is explained by tiny violation of the symmetry between standard matter and ghost matter. Dark matter nature is also explained using a common origin of the dark energy and dark matter phenomena. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  38. (1 other version)Transcendental Philosophy and Quantum Theory.Patricia Kauark-Leite - 2010 - Manuscrito – Rev. Int. Fil 33 (1):243-267.
    In the Critique of Pure Reason Kant argues that the empirical knowledge of the world depends on a priori conditions of human sensibility and understanding, i. e., our capacities of sense experience and concept formation. The objective knowledge presupposes, on one hand, space and time as a priori conditions of sensibility and, on another hand, a priori judgments, like the principle of causality, as constitutive conditions of understanding. The problem is that in the XX century the physical science completely changed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. The Numinous and the Archetypes as Timeless, Cosmic Ordering and Regulating Principles in Evolution.P. B. Todd - 2011 - C. G. Jung Society of Sydney Presentations.
    Psychoanalytic self-psychology as outlined by such depth psychologists as Jung, Fordham, Winnicott and Kohut provide a framework for conceptualizing a relationship of complementarity between psychic and immune defence as well as loss of bodily and self integration in disease. Physicist Erwin Schrödinger’s thesis that the so-called “arrow of time” does not necessarily deal a mortal blow to its creator is reminiscent of the concept of timeless dimensions of the unconscious mind and the Self in Analytical Psychology, manifest for instance, in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Dark Matter and Dark Energy, Space and Time, and Other Pseudo-Notions in Cosmology.Gabriel Vacariu & Mihai Vacariu - 2016 - Datagroup on Amazon now.
    Dark matter and dark energy. Two notions that have troubled cosmologists for a long time. Why? Because they don’t have a “satisfactory” definition, and nobody can identify the “matter” or “forces” that govern them. Currently, we can only deduce the existence of these two notions from the strange movement of the galaxies and the manner they move away from one another, with increasing speed. However, these are not the only mysteries that cosmology cannot yet explain. What happened before the Big (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The principles of quantum mechanics.Paul Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  43. Is Mass at Rest One and the Same? A Philosophical Comment: on the Quantum Information Theory of Mass in General Relativity and the Standard Model.Vasil Penchev - 2014 - Journal of SibFU. Humanities and Social Sciences 7 (4):704-720.
    The way, in which quantum information can unify quantum mechanics (and therefore the standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that of a bit. The invariance (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. From Yijing to Copenhagen Interpretation of Quantum Physics.David Leong - manuscript
    In the quest and search for a physical theory of everything from the macroscopic large body matter to the microscopic elementary particles, with strange and weird concepts springing from quantum physics discovery, irreconcilable positions and inconvenient facts complicated physics – from Newtonian physics to quantum science, the question is- how do we close the gap? Indeed, there is a scientific and mathematical fireworks when the issue of quantum uncertainties and entanglements cannot be explained with classical physics. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. (1 other version)Between Physics and Metaphysics — on Determinism, Arrow of Time and Causality.Grzegorz P. Karwasz - 2020 - Filosofiâ I Kosmologiâ 24:15-28.
    Contemporary physics, with two Einstein’s theories and with Heisenberg’s principle of indeterminacy are frequently interpreted as a removal of the causality from physics. We argue that this is wrong. There are no indications in physics, either classical or quantum, that physical laws are indeterministic, on the ontological level. On the other hand, both classical and quantum physics are, practically, indeterministic on the epistemic level: there are no means for us to predict the detailed future of the world. Additionally, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Negative-Energy Matter and the Direction of Time.J. C. Lindner - forthcoming
    This report offers a modern perspective on the problem of negative energy, based on a reexamination of the concept of time direction as it arises in a classical and quantum-mechanical context. From this analysis emerges an improved understanding of the general-relativistic stress-energy of matter as being a manifestation of local variations in the energy density of zero-point vacuum fluctuations. Based on those developments, a set of axioms is proposed from which are derived generalized gravitational field equations which actually constitute (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Do the Laws of Physics Forbid the Operation of Time Machines?John Earman, Chris Smeenk & Christian Wüthrich - 2009 - Synthese 169 (1):91 - 124.
    We address the question of whether it is possible to operate a time machine by manipulating matter and energy so as to manufacture closed timelike curves. This question has received a great deal of attention in the physics literature, with attempts to prove no- go theorems based on classical general relativity and various hybrid theories serving as steps along the way towards quantum gravity. Despite the effort put into these no-go theorems, there is no widely accepted definition of a (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  49. Unification of Science - Einstein's Missing Steps in E=mc2 and His Missing Link to Quantum Gravity.Rodney Bartlett - 2018 - Beau Bassin, Mauritius: Lambert Academic Publishing.
    A Monograph Dealing With Unification In Relation To Dark Energy, Dark Matter, Cosmic Expansion, E=mc2, Quantum Gravity, "Imaginary" Computers, Creation Of The Infinite And Eternal Universe Using Electronic BITS + PI + "Imaginary" Time, Earthly Education, Science-Religion Union, The Human Condition, Superconductivity, Planetary Fields, How Gravitation Can Boost Health, Space-Time Propulsion From The Emdrive To The Brouwer Fixed-Point Theorem, "Light Matter", Etc. These Effects Were Originally Discussed In Several Short Internet Articles. Table Of Contents Introduction Superconductivity And Planetary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. THE ROLE OF TIME IN THE CONSTRUCTION OF BIO-MATERIALS: A NOVEL INSIGHT.Varanasi Ramabrahmam - manuscript
    Various understandings and definitions of time will be reviewed. The nature and structure of time will be reviewed and the concepts of time and passage of time will be refreshed. The fundamental role played by energy and four natural forces in the actions, reactions and interactions concerning matter, anti-matter, energy in space and time will be critically analyzed. The reality how time is constructed during the construction of materials will be presented and discussed. The classical and quantum ideas in (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 919