Results for 'physical computation'

1000+ found
Order:
  1. Physical Computation: A Mechanistic Account. [REVIEW]Joe Dewhurst - 2016 - Philosophical Psychology 29 (5):795-797.
    Physical Computation is the summation of Piccinini’s work on computation and mechanistic explanation over the past decade. It draws together material from papers published during that time, but also provides additional clarifications and restructuring that make this the definitive presentation of his mechanistic account of physical computation. This review will first give a brief summary of the account that Piccinini defends, followed by a chapter-by-chapter overview of the book, before finally discussing one aspect of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  95
    Morphological Computation: Nothing but Physical Computation.Marcin Miłkowski - 2018 - Entropy 10 (20):942.
    The purpose of this paper is to argue against the claim that morphological computation is substantially different from other kinds of physical computation. I show that some (but not all) purported cases of morphological computation do not count as specifically computational, and that those that do are solely physical computational systems. These latter cases are not, however, specific enough: all computational systems, not only morphological ones, may (and sometimes should) be studied in various ways, including (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Computation in Physical Systems: A Normative Mapping Account.Paul Schweizer - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 27-47.
    The relationship between abstract formal procedures and the activities of actual physical systems has proved to be surprisingly subtle and controversial, and there are a number of competing accounts of when a physical system can be properly said to implement a mathematical formalism and hence perform a computation. I defend an account wherein computational descriptions of physical systems are high-level normative interpretations motivated by our pragmatic concerns. Furthermore, the criteria of utility and success vary according to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  4. Effective Physical Processes and Active Information in Quantum Computing.Ignazio Licata - 2007 - Quantum Biosystems 1 (1):51-65.
    The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. From Computer Metaphor to Computational Modeling: The Evolution of Computationalism.Marcin Miłkowski - 2018 - Minds and Machines 28 (3):515-541.
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  6. Does the Solar System Compute the Laws of Motion?Douglas Ian Campbell & Yi Yang - 2019 - Synthese 198 (4):3203-3220.
    The counterfactual account of physical computation is simple and, for the most part, very attractive. However, it is usually thought to trivialize the notion of physical computation insofar as it implies ‘limited pancomputationalism’, this being the doctrine that every deterministic physical system computes some function. Should we bite the bullet and accept limited pancomputationalism, or reject the counterfactual account as untenable? Jack Copeland would have us do neither of the above. He attempts to thread a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Cognitive Computation Sans Representation.Paul Schweizer - 2017 - In Thomas Powers (ed.), Philosophy and Computing: Essays in epistemology, philosophy of mind, logic, and ethics,. Cham, Switzerland: Springer. pp. 65-84.
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  8. Mechanistic Computational Individuation Without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2019 - British Journal for the Philosophy of Science:axz005.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. The False Dichotomy Between Causal Realization and Semantic Computation.Marcin Miłkowski - 2017 - Hybris. Internetowy Magazyn Filozoficzny 38:1-21.
    In this paper, I show how semantic factors constrain the understanding of the computational phenomena to be explained so that they help build better mechanistic models. In particular, understanding what cognitive systems may refer to is important in building better models of cognitive processes. For that purpose, a recent study of some phenomena in rats that are capable of ‘entertaining’ future paths (Pfeiffer and Foster 2013) is analyzed. The case shows that the mechanistic account of physical computation may (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  10. The Cognitive Basis of Computation: Putting Computation in Its Place.Daniel D. Hutto, Erik Myin, Anco Peeters & Farid Zahnoun - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. London: Routledge. pp. 272-282.
    The mainstream view in cognitive science is that computation lies at the basis of and explains cognition. Our analysis reveals that there is no compelling evidence or argument for thinking that brains compute. It makes the case for inverting the explanatory order proposed by the computational basis of cognition thesis. We give reasons to reverse the polarity of standard thinking on this topic, and ask how it is possible that computation, natural and artificial, might be based on cognition (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  11. Computers Aren’T Syntax All the Way Down or Content All the Way Up.Cem Bozşahin - 2018 - Minds and Machines 28 (3):543-567.
    This paper argues that the idea of a computer is unique. Calculators and analog computers are not different ideas about computers, and nature does not compute by itself. Computers, once clearly defined in all their terms and mechanisms, rather than enumerated by behavioral examples, can be more than instrumental tools in science, and more than source of analogies and taxonomies in philosophy. They can help us understand semantic content and its relation to form. This can be achieved because they have (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientiae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. -/- In this paper, I claim that mechanistic accounts of computation should allow for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13.  65
    Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Computation and Multiple Realizability.Marcin Miłkowski - 2016 - In Vincent Müller (ed.), Fundamental Issues of Artificial Intelligence. Springer. pp. 29-41.
    Multiple realizability (MR) is traditionally conceived of as the feature of computational systems, and has been used to argue for irreducibility of higher-level theories. I will show that there are several ways a computational system may be seen to display MR. These ways correspond to (at least) five ways one can conceive of the function of the physical computational system. However, they do not match common intuitions about MR. I show that MR is deeply interest-related, and for this reason, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Computability in Quantum Mechanics.Wayne C. Myrvold - 1995 - In Werner De Pauli-Schimanovich, Eckehart Köhler & Friedrich Stadler (eds.), Vienna Circle Institute Yearbook. Kluwer Academic Publishers. pp. 33-46.
    In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16.  12
    Organisations as Computing Systems.David Strohmaier - 2021 - Journal of Social Ontology 6 (2):211-236.
    Organisations are computing systems. The university’s sports centre is a computing system for managing sports teams and facilities. The tenure committee is a computing system for assigning tenure status. Despite an increasing number of publications in group ontology, the computational nature of organisations has not been recognised. The present paper is the first in this debate to propose a theory of organisations as groups structured for computing. I begin by describing the current situation in group ontology and by spelling out (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Computational Theories of Conscious Experience: Between a Rock and a Hard Place.Gary Bartlett - 2012 - Erkenntnis 76 (2):195-209.
    Very plausibly, nothing can be a genuine computing system unless it meets an input-sensitivity requirement. Otherwise all sorts of objects, such as rocks or pails of water, can count as performing computations, even such as might suffice for mentality—thus threatening computationalism about the mind with panpsychism. Maudlin in J Philos 86:407–432, ( 1989 ) and Bishop ( 2002a , b ) have argued, however, that such a requirement creates difficulties for computationalism about conscious experience, putting it in conflict with the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  18.  34
    Computational Modeling as a Philosophical Methodology.Patrick Grim - 2003 - In Luciano Floridi (ed.), The Blackwell Guide to the Philosophy of Computing and Information. Blackwell. pp. 337--349.
    Since the sixties, computational modeling has become increasingly important in both the physical and the social sciences, particularly in physics, theoretical biology, sociology, and economics. Sine the eighties, philosophers too have begun to apply computational modeling to questions in logic, epistemology, philosophy of science, philosophy of mind, philosophy of language, philosophy of biology, ethics, and social and political philosophy. This chapter analyzes a selection of interesting examples in some of those areas.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  19. Information, Computation, Cognition. Agency-Based Hierarchies of Levels.Gordana Dodig-Crnkovic - 2016 - In Vincent Müller (ed.), Fundamental Issues of Artificial Intelligence. Zurich: Springer. pp. 139-159.
    This paper connects information with computation and cognition via concept of agents that appear at variety of levels of organization of physical/chemical/cognitive systems – from elementary particles to atoms, molecules, life-like chemical systems, to cognitive systems starting with living cells, up to organisms and ecologies. In order to obtain this generalized framework, concepts of information, computation and cognition are generalized. In this framework, nature can be seen as informational structure with computational dynamics, where an (info-computational) agent is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. In this paper, I claim that mechanistic accounts of computation should allow for a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Philosophy of Computer Science: An Introductory Course.William J. Rapaport - 2005 - Teaching Philosophy 28 (4):319-341.
    There are many branches of philosophy called “the philosophy of X,” where X = disciplines ranging from history to physics. The philosophy of artificial intelligence has a long history, and there are many courses and texts with that title. Surprisingly, the philosophy of computer science is not nearly as well-developed. This article proposes topics that might constitute the philosophy of computer science and describes a course covering those topics, along with suggested readings and assignments.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  22. Beyond Formal Structure: A Mechanistic Perspective on Computation and Implementation.Marcin Miłkowski - 2011 - Journal of Cognitive Science 12 (4):359-379.
    In this article, after presenting the basic idea of causal accounts of implementation and the problems they are supposed to solve, I sketch the model of computation preferred by Chalmers and argue that it is too limited to do full justice to computational theories in cognitive science. I also argue that it does not suffice to replace Chalmers’ favorite model with a better abstract model of computation; it is necessary to acknowledge the causal structure of physical computers (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   9 citations  
  23. Enactive Autonomy in Computational Systems.Mario Villalobos & Joe Dewhurst - 2018 - Synthese 195 (5):1891-1908.
    In this paper we will demonstrate that a computational system can meet the criteria for autonomy laid down by classical enactivism. The two criteria that we will focus on are operational closure and structural determinism, and we will show that both can be applied to a basic example of a physically instantiated Turing machine. We will also address the question of precariousness, and briefly suggest that a precarious Turing machine could be designed. Our aim in this paper is to challenge (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  24. Computing Nature.Gordana Dodig-Crncovic & Raffaela Giovagnoli - 2013 - Springer.
    The articles in this volume present a selection of works from the Symposium on Natu-ral/Unconventional Computing at AISB/IACAP (British Society for the Study of Artificial Intelligence and the Simulation of Behaviour and The International Association for Computing and Philosophy) World Congress 2012, held at the University of Birmingham, celebrating Turing centenary. This book is about nature considered as the totality of physical existence, the universe. By physical we mean all phenomena - objects and processes - that are possible (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. A Cognitive Computation Fallacy? Cognition, Computations and Panpsychism.John Mark Bishop - 2009 - Cognitive Computation 1 (3):221-233.
    The journal of Cognitive Computation is defined in part by the notion that biologically inspired computational accounts are at the heart of cognitive processes in both natural and artificial systems. Many studies of various important aspects of cognition (memory, observational learning, decision making, reward prediction learning, attention control, etc.) have been made by modelling the various experimental results using ever-more sophisticated computer programs. In this manner progressive inroads have been made into gaining a better understanding of the many components (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  26. Situatedness and Embodiment of Computational Systems.Marcin Miłkowski - 2017 - Entropy 19 (4):162.
    In this paper, the role of the environment and physical embodiment of computational systems for explanatory purposes will be analyzed. In particular, the focus will be on cognitive computational systems, understood in terms of mechanisms that manipulate semantic information. It will be argued that the role of the environment has long been appreciated, in particular in the work of Herbert A. Simon, which has inspired the mechanistic view on explanation. From Simon’s perspective, the embodied view on cognition seems natural (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. The Computable Universe: From Prespace Metaphysics to Discrete Quantum Mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Supervenience and Computational Explanation in Vision Theory.Peter Morton - 1993 - Philosophy of Science 60 (1):86-99.
    According to Marr's theory of vision, computational processes of early vision rely for their success on certain "natural constraints" in the physical environment. I examine the implications of this feature of Marr's theory for the question whether psychological states supervene on neural states. It is reasonable to hold that Marr's theory is nonindividualistic in that, given the role of natural constraints, distinct computational theories of the same neural processes may be justified in different environments. But to avoid trivializing computational (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  29. Layers of Models in Computer Simulations.Thomas Boyer-Kassem - 2014 - International Studies in the Philosophy of Science 28 (4):417-436.
    I discuss here the definition of computer simulations, and more specifically the views of Humphreys, who considers that an object is simulated when a computer provides a solution to a computational model, which in turn represents the object of interest. I argue that Humphreys's concepts are not able to analyse fully successfully a case of contemporary simulation in physics, which is more complex than the examples considered so far in the philosophical literature. I therefore modify Humphreys's definition of simulation. I (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  30. Consciousness is Quantum Computed Beyond the Limits of the Brain: A Perspective Conceived From Cases Studied for Hydranencephaly.Contzen Pereira - unknown
    Hydranencephaly is a developmental malady, where the cerebral hemispheres of the brain are reduced partly or entirely too membranous sacs filled with cerebrospinal fluid. Infants with this malady are presumed to have reduced life expectancy with a survival of weeks to few years and which solely depends on care and fostering of these individuals. During their life span these individuals demonstrate behaviours that are termed “vegetative” by neuroscientists but can be comparable to the state of being “aware” or “conscious”. Based (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. System, Subsystem, Hive: Boundary Problems in Computational Theories of Consciousness.Tomer Fekete, Cees van Leeuwen & Shimon Edelman - 2016 - Frontiers in Psychology 7.
    A computational theory of consciousness should include a quantitative measure of consciousness, or MoC, that (i) would reveal to what extent a given system is conscious, (ii) would make it possible to compare not only different systems, but also the same system at different times, and (iii) would be graded, because so is consciousness. However, unless its design is properly constrained, such an MoC gives rise to what we call the boundary problem: an MoC that labels a system as conscious (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32.  91
    Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Philosophy of Mind Is (in Part) Philosophy of Computer Science.Darren Abramson - 2011 - Minds and Machines 21 (2):203-219.
    In this paper I argue that whether or not a computer can be built that passes the Turing test is a central question in the philosophy of mind. Then I show that the possibility of building such a computer depends on open questions in the philosophy of computer science: the physical Church-Turing thesis and the extended Church-Turing thesis. I use the link between the issues identified in philosophy of mind and philosophy of computer science to respond to a prominent (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  34. Emergence and Computation at the Edge of Classical and Quantum Systems.Ignazio Licata - 2008 - In World Scientific (ed.), Physics of Emergence and Organization. World Scientific.
    The problem of emergence in physical theories makes necessary to build a general theory of the relationships between the observed system and the observing system. It can be shown that there exists a correspondence between classical systems and computational dynamics according to the Shannon-Turing model. A classical system is an informational closed system with respect to the observer; this characterizes the emergent processes in classical physics as phenomenological emergence. In quantum systems, the analysis based on the computation theory (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  35. PHYSICAL PARAMETERS OF MIND-BODY INTERACTION: BREAKING THE 1ST PERSON 3RD PERSON BARRIER.Richard L. Amoroso - 2012 - Journal of Nonlocality 1 (01).
    This physics note entails a summary of an extended form of Eccles-Cartesian Interactive Dualism mind-body-multiverse paradigm called Noetic Field Theory: The Quantization of Mind (NFT), distinguished as a paradigm because it is comprehensive and empirically testable. NFT posits not only that the brain is not the seat of awareness but also that neither classical nor quantum mechanics are sufficient to describe mind as the required regime entails the new physics associated with Unified Field, UF Mechanics. This means that the brain (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Computational Logic. Vol. 1: Classical Deductive Computing with Classical Logic.Luis M. Augusto - 2018 - London: College Publications.
    This is the first of a two-volume work combining two fundamental components of contemporary computing into classical deductive computing, a powerful form of computation, highly adequate for programming and automated theorem proving, which, in turn, have fundamental applications in areas of high complexity and/or high security such as mathematical proof, software specification and verification, and expert systems. Deductive computation is concerned with truth-preservation: This is the essence of the satisfiability problem, or SAT, the central computational problem in computability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Brain-Inspired Conscious Computing Architecture.Wlodzislaw Duch - 2005 - Journal of Mind and Behavior 26 (1-2):1-22.
    What type of artificial systems will claim to be conscious and will claim to experience qualia? The ability to comment upon physical states of a brain-like dynamical system coupled with its environment seems to be sufficient to make claims. The flow of internal states in such systems, guided and limited by associative memory, is similar to the stream of consciousness. A specific architecture of an artificial system, termed articon, is introduced that by its very design has to claim being (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  38. The Physics of God and the Quantum Gravity Theory of Everything.James Redford - manuscript
    Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman-DeWitt-Weinberg quantum gravity/Standard Model Theory of Everything (TOE) describing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Complexity Biology-Based Information Structures Can Explain Subjectivity, Objective Reduction of Wave Packets, and Non-Computability.Alex Hankey - 2014 - Cosmos and History 10 (1):237-250.
    Background: how mind functions is subject to continuing scientific discussion. A simplistic approach says that, since no convincing way has been found to model subjective experience, mind cannot exist. A second holds that, since mind cannot be described by classical physics, it must be described by quantum physics. Another perspective concerns mind's hypothesized ability to interact with the world of quanta: it should be responsible for reduction of quantum wave packets; physics producing 'Objective Reduction' is postulated to form the basis (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  40.  12
    Computer-Administered Testing Practice in Higher Education in Era of Severe Acute Respiratory Syndrome-Related Diseases Outbreaks.Valentine Joseph Owan - 2020 - In V. C. Emeribe, L. U. Akah, O. A. DadA, D. A. Alawa & B. A. Akuegwu (eds.), Multidisciplinary issues in health, human kinetics and general education practices. Calabar, Nigeria: University of Calabar Press. pp. 429-442.
    The focal point of this chapter is to discuss the concept of computer regulated testing and its implications in an era of Severe Acute Respiratory Syndrome (SARS) related infection pandemics. This is especially significant because during the outbreak of most SARS-related diseases (like the COVID-19), social and physical distancing is advocated by the government of different nations. SARS-related diseases are caused by a virus known as the coronavirus which affects the respiration of infected persons or animals. These diseases can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41.  37
    Computational Capacity of Pyramidal Neurons in the Cerebral Cortex.Danko D. Georgiev, Stefan K. Kolev, Eliahu Cohen & James F. Glazebrook - 2020 - Brain Research 1748:147069.
    The electric activities of cortical pyramidal neurons are supported by structurally stable, morphologically complex axo-dendritic trees. Anatomical differences between axons and dendrites in regard to their length or caliber reflect the underlying functional specializations, for input or output of neural information, respectively. For a proper assessment of the computational capacity of pyramidal neurons, we have analyzed an extensive dataset of three-dimensional digital reconstructions from the NeuroMorphoOrg database, and quantified basic dendritic or axonal morphometric measures in different regions and layers of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The Emergence of the Physical World From Information Processing.Brian Whitworth - 2010 - Quantum Biosystems 2 (1):221-249.
    This paper links the conjecture that the physical world is a virtual reality to the findings of modern physics. What is usually the subject of science fiction is here proposed as a scientific theory open to empirical evaluation. We know from physics how the world behaves, and from computing how information behaves, so whether the physical world arises from ongoing information processing is a question science can evaluate. A prima facie case for the virtual reality conjecture is presented. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Physical Modeling Applies to Physiology, Too.Vincent Hayward - 1992 - Behavioral and Brain Sciences 15 (2):342-343.
    A physical model was utilized to show that the neural system can memorize a target position and is able to cause motor and sensory events that move the arm to a target with more accuracy. However, this cannot indicate in which coordinates the necessary computations are carried out. Turning off the lights causes the error to increase which is accomplished by cutting off one feedback path. The geometrical properties of arm kinematics and the properties of the kinesthetic and visual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. The Nature of Computational Things.Franck Varenne - 2013 - In Frédéric Migayrou Brayer & Marie-Ange (eds.), Naturalizing Architecture. Orléans: HYX Editions. pp. 96-105.
    Architecture often relies on mathematical models, if only to anticipate the physical behavior of structures. Accordingly, mathematical modeling serves to find an optimal form given certain constraints, constraints themselves translated into a language which must be homogeneous to that of the model in order for resolution to be possible. Traditional modeling tied to design and architecture thus appears linked to a topdown vision of creation, of the modernist, voluntarist and uniformly normative type, because usually (mono)functionalist. One available instrument of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Bell's Theorem Versus Local Realism in a Quaternionic Model of Physical Space.Joy Christian - 2019 - IEEE Access 7:133388-133409.
    In the context of EPR-Bohm type experiments and spin detections confined to spacelike hypersurfaces, a local, deterministic and realistic model within a Friedmann-Robertson-Walker spacetime with a constant spatial curvature (S^3 ) is presented that describes simultaneous measurements of the spins of two fermions emerging in a singlet state from the decay of a spinless boson. Exact agreement with the probabilistic predictions of quantum theory is achieved in the model without data rejection, remote contextuality, superdeterminism or backward causation. A singularity-free Clifford-algebraic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Physics Avoidance & Cooperative Semantics: Inferentialism and Mark Wilson’s Engagement with Naturalism Qua Applied Mathematics.Ekin Erkan - 2020 - Cosmos and History 16 (1):560-644.
    Mark Wilson argues that the standard categorizations of "Theory T thinking"— logic-centered conceptions of scientific organization (canonized via logical empiricists in the mid-twentieth century)—dampens the understanding and appreciation of those strategic subtleties working within science. By "Theory T thinking," we mean to describe the simplistic methodology in which mathematical science allegedly supplies ‘processes’ that parallel nature's own in a tidily isomorphic fashion, wherein "Theory T’s" feigned rigor and methodological dogmas advance inadequate discrimination that fails to distinguish between explanatory structures that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47.  19
    Towards a Theory of Computation Similar to Some Other Scientific Theories.Antonino Drago - manuscript
    At first sight the Theory of Computation i) relies on a kind of mathematics based on the notion of potential infinity; ii) its theoretical organization is irreducible to an axiomatic one; rather it is organized in order to solve a problem: “What is a computation?”; iii) it makes essential use of doubly negated propositions of non-classical logic, in particular in the word expressions of the Church-Turing’s thesis; iv) its arguments include ad absurdum proofs. Under such aspects, it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Lightning in a Bottle: Complexity, Chaos, and Computation in Climate Science.Jon Lawhead - 2014 - Dissertation, Columbia University
    Climatology is a paradigmatic complex systems science. Understanding the global climate involves tackling problems in physics, chemistry, economics, and many other disciplines. I argue that complex systems like the global climate are characterized by certain dynamical features that explain how those systems change over time. A complex system's dynamics are shaped by the interaction of many different components operating at many different temporal and spatial scales. Examining the multidisciplinary and holistic methods of climatology can help us better understand the nature (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Opinions and Outlooks on Morphological Computation.Helmut Hauser, Rudolf M. Füchslin & Rolf Pfeifer (eds.) - 2014 - E-Book.
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Can a Computer Have a Religious Experience?Justin Charles Hite - manuscript
    A religious experience is a phenomenological occurrence which is interpreted by the perceiver in such a way as to affirm or strengthen the belief in a higher being or the beliefs of a particular religion. Religion and, therefore, religious experiences are primarily mental constructs. Computational theory of mind provides the strongest capabilities of applying mental activities to computers. However, cognitive science and philosophy needs to establish the link between beliefs and physical states in order for computational theory of mind (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000