Results for 'physical computation'

947 found
Order:
  1. Physical computation: a mechanistic account. [REVIEW]Joe Dewhurst - 2016 - Philosophical Psychology 29 (5):795-797.
    Physical Computation is the summation of Piccinini’s work on computation and mechanistic explanation over the past decade. It draws together material from papers published during that time, but also provides additional clarifications and restructuring that make this the definitive presentation of his mechanistic account of physical computation. This review will first give a brief summary of the account that Piccinini defends, followed by a chapter-by-chapter overview of the book, before finally discussing one aspect of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Morphological Computation: Nothing but Physical Computation.Marcin Miłkowski - 2018 - Entropy 10 (20):942.
    The purpose of this paper is to argue against the claim that morphological computation is substantially different from other kinds of physical computation. I show that some (but not all) purported cases of morphological computation do not count as specifically computational, and that those that do are solely physical computational systems. These latter cases are not, however, specific enough: all computational systems, not only morphological ones, may (and sometimes should) be studied in various ways, including (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Computation in Physical Systems: A Normative Mapping Account.Paul Schweizer - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 27-47.
    The relationship between abstract formal procedures and the activities of actual physical systems has proved to be surprisingly subtle and controversial, and there are a number of competing accounts of when a physical system can be properly said to implement a mathematical formalism and hence perform a computation. I defend an account wherein computational descriptions of physical systems are high-level normative interpretations motivated by our pragmatic concerns. Furthermore, the criteria of utility and success vary according to (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  4. Implementation and Interpretation: A Unified Account of Physical Computation.Danielle J. Williams - 2023 - Dissertation, University of California, Davis
    Download  
     
    Export citation  
     
    Bookmark  
  5. The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. The physics of implementing logic: Landauer's principle and the multiple-computations theorem.Meir Hemmo & Orly Shenker - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:90-105.
    This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and Landauer’s principle in physics. The multiple-computations theorem implies that certain physical systems implement simultaneously more than one computation. Landauer’s principle implies that the physical implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We show that the multiple-computations theorem is incompatible with, or at least challenges, the universal validity of Landauer’s principle. To this end we provide accounts of both ideas (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  7. Effective Physical Processes and Active Information in Quantum Computing.Ignazio Licata - 2007 - Quantum Biosystems 1 (1):51-65.
    The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. The False Dichotomy between Causal Realization and Semantic Computation.Marcin Miłkowski - 2017 - Hybris. Internetowy Magazyn Filozoficzny 38:1-21.
    In this paper, I show how semantic factors constrain the understanding of the computational phenomena to be explained so that they help build better mechanistic models. In particular, understanding what cognitive systems may refer to is important in building better models of cognitive processes. For that purpose, a recent study of some phenomena in rats that are capable of ‘entertaining’ future paths (Pfeiffer and Foster 2013) is analyzed. The case shows that the mechanistic account of physical computation may (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  9. Does the solar system compute the laws of motion?Douglas Ian Campbell & Yi Yang - 2019 - Synthese 198 (4):3203-3220.
    The counterfactual account of physical computation is simple and, for the most part, very attractive. However, it is usually thought to trivialize the notion of physical computation insofar as it implies ‘limited pancomputationalism’, this being the doctrine that every deterministic physical system computes some function. Should we bite the bullet and accept limited pancomputationalism, or reject the counterfactual account as untenable? Jack Copeland would have us do neither of the above. He attempts to thread a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Mechanistic Computational Individuation without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2019 - British Journal for the Philosophy of Science:axz005.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  11. From Computer Metaphor to Computational Modeling: The Evolution of Computationalism.Marcin Miłkowski - 2018 - Minds and Machines 28 (3):515-541.
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  12. Cognitive Computation sans Representation.Paul Schweizer - 2017 - In Thomas M. Powers (ed.), Philosophy and Computing: Essays in epistemology, philosophy of mind, logic, and ethics. Cham: Springer. pp. 65-84.
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  13. The Cognitive Basis of Computation: Putting Computation in Its Place.Daniel D. Hutto, Erik Myin, Anco Peeters & Farid Zahnoun - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Routledge. pp. 272-282.
    The mainstream view in cognitive science is that computation lies at the basis of and explains cognition. Our analysis reveals that there is no compelling evidence or argument for thinking that brains compute. It makes the case for inverting the explanatory order proposed by the computational basis of cognition thesis. We give reasons to reverse the polarity of standard thinking on this topic, and ask how it is possible that computation, natural and artificial, might be based on cognition (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  14. Computation and Multiple Realizability.Marcin Miłkowski - 2016 - In Vincent C. Müller (ed.), Fundamental Issues of Artificial Intelligence. Cham: Springer. pp. 29-41.
    Multiple realizability (MR) is traditionally conceived of as the feature of computational systems, and has been used to argue for irreducibility of higher-level theories. I will show that there are several ways a computational system may be seen to display MR. These ways correspond to (at least) five ways one can conceive of the function of the physical computational system. However, they do not match common intuitions about MR. I show that MR is deeply interest-related, and for this reason, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Computability in Quantum Mechanics.Wayne C. Myrvold - 1995 - In Werner DePauli-Schimanovich, Eckehart Köhler & Friedrich Stadler (eds.), The Foundational Debate: Complexity and Constructivity in Mathematics and Physics. Dordrecht, Boston and London: Kluwer Academic Publishers. pp. 33-46.
    In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  16. Computers Aren’t Syntax All the Way Down or Content All the Way Up.Cem Bozşahin - 2018 - Minds and Machines 28 (3):543-567.
    This paper argues that the idea of a computer is unique. Calculators and analog computers are not different ideas about computers, and nature does not compute by itself. Computers, once clearly defined in all their terms and mechanisms, rather than enumerated by behavioral examples, can be more than instrumental tools in science, and more than source of analogies and taxonomies in philosophy. They can help us understand semantic content and its relation to form. This can be achieved because they have (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  17. Indeterminism in physics and intuitionistic mathematics.Nicolas Gisin - 2021 - Synthese 199 (5-6):13345-13371.
    Most physics theories are deterministic, with the notable exception of quantum mechanics which, however, comes plagued by the so-called measurement problem. This state of affairs might well be due to the inability of standard mathematics to “speak” of indeterminism, its inability to present us a worldview in which new information is created as time passes. In such a case, scientific determinism would only be an illusion due to the timeless mathematical language scientists use. To investigate this possibility it is necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  18. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientiae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. In this paper, I claim that mechanistic accounts of computation should allow for a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  19. Computational Modeling as a Philosophical Methodology.Patrick Grim - 2003 - In Luciano Floridi (ed.), The Blackwell guide to the philosophy of computing and information. Blackwell. pp. 337–349.
    Since the sixties, computational modeling has become increasingly important in both the physical and the social sciences, particularly in physics, theoretical biology, sociology, and economics. Sine the eighties, philosophers too have begun to apply computational modeling to questions in logic, epistemology, philosophy of science, philosophy of mind, philosophy of language, philosophy of biology, ethics, and social and political philosophy. This chapter analyzes a selection of interesting examples in some of those areas.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  20. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Organisations as Computing Systems.David Strohmaier - 2020 - Journal of Social Ontology 6 (2):211-236.
    Organisations are computing systems. The university’s sports centre is a computing system for managing sports teams and facilities. The tenure committee is a computing system for assigning tenure status. Despite an increasing number of publications in group ontology, the computational nature of organisations has not been recognised. The present paper is the first in this debate to propose a theory of organisations as groups structured for computing. I begin by describing the current situation in group ontology and by spelling out (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. (1 other version)Integrating Computer Vision Algorithms and Ontologies for Spectator Crowd Behavior Analysis.Davide Conigliaro, Celine Hudelot, Roberta Ferrario & Daniele Porello - 2017 - In Vittorio Murino, Marco Cristani, Shishir Shah & Silvio Savarese (eds.), Group and Crowd Behavior for Computer Vision, 1st Edition. pp. 297-319.
    In this paper, building on these previous works, we propose to go deeper into the understanding of crowd behavior by proposing an approach which integrates ontologi- cal models of crowd behavior and dedicated computer vision algorithms, with the aim of recognizing some targeted complex events happening in the playground from the observation of the spectator crowd behavior. In order to do that, we first propose an ontology encoding available knowledge on spectator crowd behavior, built as a spe- cialization of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. (1 other version)Platonic Computer— the Universal Machine That Bridges the “Inverse Explanatory Gap” in the Philosophy of Mind.Simon X. Duan - 2022 - Filozofia i Nauka 10:285-302.
    The scope of Platonism is extended by introducing the concept of a “Platonic computer” which is incorporated in metacomputics. The theoretical framework of metacomputics postulates that a Platonic computer exists in the realm of Forms and is made by, of, with, and from metaconsciousness. Metaconsciousness is defined as the “power to conceive, to perceive, and to be self-aware” and is the formless, con-tentless infinite potentiality. Metacomputics models how metaconsciousness generates the perceived actualities including abstract entities and physical and nonphysical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Computational Theories of Conscious Experience: Between a Rock and a Hard Place.Gary Bartlett - 2012 - Erkenntnis 76 (2):195-209.
    Very plausibly, nothing can be a genuine computing system unless it meets an input-sensitivity requirement. Otherwise all sorts of objects, such as rocks or pails of water, can count as performing computations, even such as might suffice for mentality—thus threatening computationalism about the mind with panpsychism. Maudlin in J Philos 86:407–432, ( 1989 ) and Bishop ( 2002a , b ) have argued, however, that such a requirement creates difficulties for computationalism about conscious experience, putting it in conflict with the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  25. The Formats of Cognitive Representation: A Computational Account.Dimitri Coelho Mollo & Alfredo Vernazzani - 2023 - Philosophy of Science (3):682-701.
    Cognitive representations are typically analysed in terms of content, vehicle and format. While current work on formats appeals to intuitions about external representations, such as words and maps, in this paper we develop a computational view of formats that does not rely on intuitions. In our view, formats are individuated by the computational profiles of vehicles, i.e., the set of constraints that fix the computational transformations vehicles can undergo. The resulting picture is strongly pluralistic, it makes space for a variety (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  26. Beyond Formal Structure: A Mechanistic Perspective on Computation and Implementation.Marcin Miłkowski - 2011 - Journal of Cognitive Science 12 (4):359-379.
    In this article, after presenting the basic idea of causal accounts of implementation and the problems they are supposed to solve, I sketch the model of computation preferred by Chalmers and argue that it is too limited to do full justice to computational theories in cognitive science. I also argue that it does not suffice to replace Chalmers’ favorite model with a better abstract model of computation; it is necessary to acknowledge the causal structure of physical computers (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  27. Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. On Computable Numbers, Non-Universality, and the Genuine Power of Parallelism.Nancy Salay & Selim Akl - 2015 - International Journal of Unconventional Computing 11 (3-4):283-297.
    We present a simple example that disproves the universality principle. Unlike previous counter-examples to computational universality, it does not rely on extraneous phenomena, such as the availability of input variables that are time varying, computational complexity that changes with time or order of execution, physical variables that interact with each other, uncertain deadlines, or mathematical conditions among the variables that must be obeyed throughout the computation. In the most basic case of the new example, all that is used (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. (1 other version)Information, Computation, Cognition. Agency-Based Hierarchies of Levels.Gordana Dodig-Crnkovic - 2016 - In Vincent C. Müller (ed.), Fundamental Issues of Artificial Intelligence. Cham: Springer. pp. 139-159.
    This paper connects information with computation and cognition via concept of agents that appear at variety of levels of organization of physical/chemical/cognitive systems – from elementary particles to atoms, molecules, life-like chemical systems, to cognitive systems starting with living cells, up to organisms and ecologies. In order to obtain this generalized framework, concepts of information, computation and cognition are generalized. In this framework, nature can be seen as informational structure with computational dynamics, where an (info-computational) agent is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Physical modeling applies to physiology, too.Vincent Hayward - 1992 - Behavioral and Brain Sciences 15 (2):342-343.
    A physical model was utilized to show that the neural system can memorize a target position and is able to cause motor and sensory events that move the arm to a target with more accuracy. However, this cannot indicate in which coordinates the necessary computations are carried out. Turning off the lights causes the error to increase which is accomplished by cutting off one feedback path. The geometrical properties of arm kinematics and the properties of the kinesthetic and visual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. The Physics of God and the Quantum Gravity Theory of Everything.James Redford - 2021 - In The Physics of God and the Quantum Gravity Theory of Everything: And Other Selected Works. Chișinău, Moldova: Eliva Press. pp. 1-186.
    Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman-DeWitt-Weinberg quantum gravity/Standard Model Theory of Everything (TOE) describing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. WHERE DO NEW IDEAS COME FROM? HOW DO THEY EMERGE? - EPISTEMOLOGY AS COMPUTATION.Gordana Dodig-Crnkovic - 2007 - In Christian Calude (ed.), Randomness & Complexity, from Leibniz to Chaitin. World Scientific Pub Co. pp. 263-281.
    This essay presents arguments for the claim that in the best of all possible worlds (Leibniz) there are sources of unpredictability and creativity for us humans, even given a pancomputational stance. A suggested answer to Chaitin’s questions: “Where do new mathematical and biological ideas come from? How do they emerge?” is that they come from the world and emerge from basic physical (computational) laws. For humans as a tiny subset of the universe, a part of the new ideas comes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. A Cognitive Computation Fallacy? Cognition, Computations and Panpsychism.John Mark Bishop - 2009 - Cognitive Computation 1 (3):221-233.
    The journal of Cognitive Computation is defined in part by the notion that biologically inspired computational accounts are at the heart of cognitive processes in both natural and artificial systems. Many studies of various important aspects of cognition (memory, observational learning, decision making, reward prediction learning, attention control, etc.) have been made by modelling the various experimental results using ever-more sophisticated computer programs. In this manner progressive inroads have been made into gaining a better understanding of the many components (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  35. On the impossibility of using analogue machines to calculate non-computable functions.Robin O. Gandy - manuscript - Translated by Aran Nayebi.
    A number of examples have been given of physical systems (both classical and quantum mechanical) which when provided with a (continuously variable) computable input will give a non-computable output. It has been suggested that these systems might allow one to design analogue machines which would calculate the values of some number-theoretic non-computable function. Analysis of the examples show that the suggestion is wrong. In Section 4 I claim that given a reasonable definition of analogue machine it will always be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Philosophy of Computer Science.William J. Rapaport - 2005 - Teaching Philosophy 28 (4):319-341.
    There are many branches of philosophy called “the philosophy of X,” where X = disciplines ranging from history to physics. The philosophy of artificial intelligence has a long history, and there are many courses and texts with that title. Surprisingly, the philosophy of computer science is not nearly as well-developed. This article proposes topics that might constitute the philosophy of computer science and describes a course covering those topics, along with suggested readings and assignments.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  37. Layers of Models in Computer Simulations.Thomas Boyer-Kassem - 2014 - International Studies in the Philosophy of Science 28 (4):417-436.
    I discuss here the definition of computer simulations, and more specifically the views of Humphreys, who considers that an object is simulated when a computer provides a solution to a computational model, which in turn represents the object of interest. I argue that Humphreys's concepts are not able to analyse fully successfully a case of contemporary simulation in physics, which is more complex than the examples considered so far in the philosophical literature. I therefore modify Humphreys's definition of simulation. I (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  38. Computational Explanation of Consciousness:A Predictive Processing-based Understanding of Consciousness.Zhichao Gong - 2024 - Journal of Human Cognition 8 (2):39-49.
    In the domain of cognitive science, understanding consciousness through the investigation of neural correlates has been the primary research approach. The exploration of neural correlates of consciousness is focused on identifying these correlates and reducing consciousness to a physical phenomenon, embodying a form of reductionist physicalism. This inevitably leads to challenges in explaining consciousness itself. The computational interpretation of consciousness takes a functionalist view, grounded in physicalism, and models conscious experience as a cognitive function, elucidated through computational means. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. On the Foundations of Computing. Computing as the Fourth Great Domain of Science. [REVIEW]Gordana Dodig-Crnkovic - 2023 - Global Philosophy 33 (1):1-12.
    This review essay analyzes the book by Giuseppe Primiero, On the foundations of computing. Oxford: Oxford University Press (ISBN 978-0-19-883564-6/hbk; 978-0-19-883565-3/pbk). xix, 296 p. (2020). It gives a critical view from the perspective of physical computing as a foundation of computing and argues that the neglected pillar of material computation (Stepney) should be brought centerstage and computing recognized as the fourth great domain of science (Denning).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Handbook of Computational Economics, Volume 2: Agent-Based Computational Economics.Leigh Tesfatsion & Kenneth L. Judd (eds.) - 2006 - Amsterdam, The Netherlands: Elsevier.
    The explosive growth in computational power over the past several decades offers new tools and opportunities for economists. This handbook volume surveys recent research on Agent-based Computational Economics (ACE), the computational study of economic processes modeled as open-ended dynamic systems of interacting agents. Empirical referents for “agents” in ACE models can range from individuals or social groups with learning capabilities to physical world features with no cognitive function. Topics covered include: learning; empirical validation; network economics; social dynamics; financial markets; (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  41. SAD computers and two versions of the Church–Turing thesis.Tim Button - 2009 - British Journal for the Philosophy of Science 60 (4):765-792.
    Recent work on hypercomputation has raised new objections against the Church–Turing Thesis. In this paper, I focus on the challenge posed by a particular kind of hypercomputer, namely, SAD computers. I first consider deterministic and probabilistic barriers to the physical possibility of SAD computation. These suggest several ways to defend a Physical version of the Church–Turing Thesis. I then argue against Hogarth's analogy between non-Turing computability and non-Euclidean geometry, showing that it is a non-sequitur. I conclude that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  42. Discussion on the Relationship between Computation, Information, Cognition, and Their Embodiment.Gordana Dodig-Crnkovic & Marcin Miłkowski - 2023 - Entropy 25 (2):310.
    Three special issues of Entropy journal have been dedicated to the topics of “InformationProcessing and Embodied, Embedded, Enactive Cognition”. They addressed morphological computing, cognitive agency, and the evolution of cognition. The contributions show the diversity of views present in the research community on the topic of computation and its relation to cognition. This paper is an attempt to elucidate current debates on computation that are central to cognitive science. It is written in the form of a dialog between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Computational capacity of pyramidal neurons in the cerebral cortex.Danko D. Georgiev, Stefan K. Kolev, Eliahu Cohen & James F. Glazebrook - 2020 - Brain Research 1748:147069.
    The electric activities of cortical pyramidal neurons are supported by structurally stable, morphologically complex axo-dendritic trees. Anatomical differences between axons and dendrites in regard to their length or caliber reflect the underlying functional specializations, for input or output of neural information, respectively. For a proper assessment of the computational capacity of pyramidal neurons, we have analyzed an extensive dataset of three-dimensional digital reconstructions from the NeuroMorphoOrg database, and quantified basic dendritic or axonal morphometric measures in different regions and layers of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Towards Soliton Computer Based on Solitary Wave Solution of Maxwell Dirac equation: A Plausible Alternative to Manakov System.Victor Christianto & Florentin Smarandache - 2023 - Bulletin of Pure and Applied Sciences 42.
    In recent years, there are a number of proposals to consider collision-based soliton computer based on certain chemical reactions, namely Belousov-Zhabotinsky reaction, which leads to soliton solutions of coupled Nonlinear Schroedinger equations. They are called Manakov System. But it seems to us that such a soliton computer model can also be based on solitary wave solution of Maxwell-Dirac equation, which reduces to Choquard equation. And soliton solution of Choquard equation has been investigated by many researchers, therefore it seems more profound (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Situatedness and Embodiment of Computational Systems.Marcin Miłkowski - 2017 - Entropy 19 (4):162.
    In this paper, the role of the environment and physical embodiment of computational systems for explanatory purposes will be analyzed. In particular, the focus will be on cognitive computational systems, understood in terms of mechanisms that manipulate semantic information. It will be argued that the role of the environment has long been appreciated, in particular in the work of Herbert A. Simon, which has inspired the mechanistic view on explanation. From Simon’s perspective, the embodied view on cognition seems natural (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Enactive autonomy in computational systems.Mario Villalobos & Joe Dewhurst - 2018 - Synthese 195 (5):1891-1908.
    In this paper we will demonstrate that a computational system can meet the criteria for autonomy laid down by classical enactivism. The two criteria that we will focus on are operational closure and structural determinism, and we will show that both can be applied to a basic example of a physically instantiated Turing machine. We will also address the question of precariousness, and briefly suggest that a precarious Turing machine could be designed. Our aim in this paper is to challenge (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  47. The Nature of Computational Things.Franck Varenne - 2013 - In Frédéric Migayrou Brayer & Marie-Ange (eds.), Naturalizing Architecture. HYX Editions. pp. 96-105.
    Architecture often relies on mathematical models, if only to anticipate the physical behavior of structures. Accordingly, mathematical modeling serves to find an optimal form given certain constraints, constraints themselves translated into a language which must be homogeneous to that of the model in order for resolution to be possible. Traditional modeling tied to design and architecture thus appears linked to a topdown vision of creation, of the modernist, voluntarist and uniformly normative type, because usually (mono)functionalist. One available instrument of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  89
    Venturing into the Mind’s Mysteries: A Thrilling Dive into Computational Functionalism through the Lens of Putnam and Piccinini.R. L. Tripathi - 2024 - Open Access Journal of Data Science and Artificial Intelligence 2 (1):5.
    Computational Functionalism is a subfield of philosophy of mind most relevant to the subject of cognitive science as well as to artificial intelligence (AI). The analysis of this paper focuses on Hilary Putnam’s and Gualtiero Piccinini’s standpoints regarding the molecular understanding of computation. Finally, Putnam’s argument of the functionalism in notion of the mental states is based on the positive definition of those states by their functions, while Piccinini, and on the other hand suggest that an understanding of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Computer-administered testing practice in higher education in era of severe acute respiratory syndrome-related diseases outbreaks.Valentine Joseph Owan - 2020 - In V. C. Emeribe, L. U. Akah, O. A. Dada, D. A. Alawa & B. A. Akuegwu (eds.), Multidisciplinary issues in health, human kinetics and general education practices. University of Calabar Press. pp. 429-442.
    The focal point of this chapter is to discuss the concept of computer regulated testing and its implications in an era of Severe Acute Respiratory Syndrome (SARS) related infection pandemics. This is especially significant because during the outbreak of most SARS-related diseases (like the COVID-19), social and physical distancing is advocated by the government of different nations. SARS-related diseases are caused by a virus known as the coronavirus which affects the respiration of infected persons or animals. These diseases can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. The Physical Numbers: A New Foundational Logic-Numerical Structure For Mathematics And Physics.Gomez-Ramirez Danny A. J. - manuscript
    The boundless nature of the natural numbers imposes paradoxically a high formal bound to the use of standard artificial computer programs for solving conceptually challenged problems in number theory. In the context of the new cognitive foundations for mathematics' and physics' program immersed in the setting of artificial mathematical intelligence, we proposed a refined numerical system, called the physical numbers, preserving most of the essential intuitions of the natural numbers. Even more, this new numerical structure additionally possesses the property (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 947