Results for 'probabilistic time reversal'

1000+ found
Order:
  1. The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics.Andrew Thomas Holster - 2003 - New Journal of Physics 5 (130).
    Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Time flow and reversibility in a probabilistic universe.Andrew Thomas Holster - 1990 - Dissertation, Massey University
    A fundamental problem in understanding the nature of time is explaining its directionality. This 1990 PhD thesis re-examines the concepts of time flow, the physical directionality of time, and the semantics of tensed language. Several novel results are argued for that contradict the orthodox anti-realist views still dominant in the subject. Specifically, the concept of "metaphysical time flow" is supported as a valid scientific concept, and argued to be intrinsic to the directionality of objective probabilities in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Time Flow Manifesto CHAPTER 2 TIME SYMMETRY IN PHYSICS.Andrew Holster - manuscript
    This chapter starts with a simple conventional presentation of time reversal in physics, and then returns to analyse it, rejects the conventional analysis, and establishes correct principles in their place.
    Download  
     
    Export citation  
     
    Bookmark  
  4. The Time Flow Manifesto CHAPTER 3 REVERSIBILTY IN PHYSICS.Andrew Holster - manuscript
    The conventional claims and concepts of 5* - 8* are a hang-over from the classical theory of thermodynamics – i.e. thermodynamics based on a fully deterministic micro-theory, developed in the time of Boltzmann, Loschmidt and Gibbs in the late C19th. The classical theory has well-known ‘reversibility paradoxes’ when applied to the universe as a whole. But the introduction of intrinsic probabilities in quantum mechanics, and its consequent time asymmetry, fundamentally changes the picture.
    Download  
     
    Export citation  
     
    Bookmark  
  5. Principles of physical time directionality and fallacies of the conventional philosophy.Andrew Holster - manuscript
    These are the first two chapters from a monograph (The Time Flow Manifesto, Holster, 2013-14; unpublished), defending the concepts of time directionality and time flow in physics and naturalistic metaphysics, against long-standing attacks from the ‘conventional philosophy of physical time’. This monograph sets out to disprove twelve specific “fallacies of the conventional philosophy”, stated in the first section below. These are the foundational principles of the conventional philosophy, which developed in the mid-C20th from positivist-inspired studies. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The Arrow of Time.Ted Dace - 2018 - Cosmos and History 14 (3):321-333.
    The foundation of irreversible, probabilistic time -- the classical time of conscious observation -- is the reversible and deterministic time of the quantum wave function. The tendency in physics is to regard time in the abstract, a mere parameter devoid of inherent direction, implying that a concept of real time begins with irreversibility. In reality time has no need for irreversibility, and every invocation of time implies becoming or flow. Neither symmetry under (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Causation and Time Reversal.Matt Farr - 2020 - British Journal for the Philosophy of Science 71 (1):177-204.
    What would it be for a process to happen backwards in time? Would such a process involve different causal relations? It is common to understand the time-reversal invariance of a physical theory in causal terms, such that whatever can happen forwards in time can also happen backwards in time. This has led many to hold that time-reversal symmetry is incompatible with the asymmetry of cause and effect. This article critiques the causal reading of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  8. The time reversal invariance of classical electromagnetic theory: Albert versus Malament.Andrew Holster - unknown
    David Albert has recently argued that classical electromagnetic theory (EM) is not time reversal invariant (non-TRI), while David Malament rejects this argument and maintains the orthodox result, that EM is TRI. Both Albert's and Malament's arguments are analysed, and both are found wanting in certain respects. It is argued here that the result really depends on the choice of theoretical ontology choosen to interpret EM theory, and there is more than one plausible choice. Albert and Malament have choosen (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Time Reversal Invariance in Quantum Mechanics.Reza Moulavi Ardakani - 2017 - Dissertation, Texas Tech University
    Symmetries have a crucial role in today’s physics. In this thesis, we are mostly concerned with time reversal invariance (T-symmetry). A physical system is time reversal invariant if its underlying laws are not sensitive to the direction of time. There are various accounts of time reversal transformation resulting in different views on whether or not a given theory in physics is time reversal invariant. With a focus on quantum mechanics, I describe (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The quantum mechanical time reversal operator.Andrew Thomas Holster - unknown
    The analysis of the reversibility of quantum mechanics depends upon the choice of the time reversal operator for quantum mechanical states. The orthodox choice for the time reversal operator on QM states is known as the Wigner operator, T*, where * performs complex conjugation. The peculiarity is that this is not simply the unitary time reversal operation, but an anti-unitary operator, involving complex conjugation in addition to ordinary time reversal. The alternative choice (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  11. Reversing the arrow of time.Bryan W. Roberts - 2022 - Cambridge: Cambridge University Press.
    'The arrow of time' refers to the curious asymmetry that distinguishes the future from the past. Reversing the Arrow of Time argues that there is an intimate link between the symmetries of 'time itself' and time reversal symmetry in physical theories, which has wide-ranging implications for both physics and its philosophy. This link helps to clarify how we can learn about the symmetries of our world, how to understand the relationship between symmetries and what is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. "Fuzzy Time", not Probabilistic Time! (Infinities in Physics).Didehvar Farzad - manuscript
    Why Fuzzy time? Why neither "Probabilistic Time" nor "Stochastic time"? In this very short note we argue about.
    Download  
     
    Export citation  
     
    Bookmark  
  13. Maxwell's Paradox: The Metaphysics of Classical Electrodynamics and its Time Reversal Invariance.Valia Allori - 2015 - Analytica: an electronic, open-access journal for philosophy of science 1:1-19.
    In this paper, I argue that the recent discussion on the time - reversal invariance of classical electrodynamics (see (Albert 2000: ch.1), (Arntzenius 2004), (Earman 2002), (Malament 2004),(Horwich 1987: ch.3)) can be best understood assuming that the disagreement among the various authors is actually a disagreement about the metaphysics of classical electrodynamics. If so, the controversy will not be resolved until we have established which alternative is the most natural. It turns out that we have a paradox, namely (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  14. The incompleteness of extensional object languages of physics and time reversal. Part 2.Andrew Holster - manuscript
    This continues from Part 1. It is shown how an intensional interpretation of physics object languages can be formalised, and how a syntactic compositional time reversal operator can subsequently be defined. This is applied to solve the problems used as examples in Part 1. A proof of a general theorem that such an operator must be defineable is sketched. A number of related issues about the interpretation of theories of physics, including classical and quantum mechanics and classical EM (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. The incompleteness of extensional object languages of physics and time reversal. Part 1.Andrew Holster - unknown
    This paper argues that ordinary object languages for fundamental physics are incomplete, essentially because they are extensional, and consequently lack any adequate formal representation of contingency. It is shown that it is impossible to formulate adequate deduction systems for general transformations in such languages. This is argued in detail for the time reversal transformation. Two important controversies about the application of time reversal in quantum mechanics are summarized at the start, to provide the context of this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Concepts of physical directionality of time Part 2 The interpretation of the quantum mechanical time reversal operator.Andrew Thomas Holster - manuscript
    This is Part 2 of a four part paper, intended as an introduction to the key concepts and issues of time directionality for physicists and philosophers. It redresses some fundamental confusions in the subject. These need to be corrected in introductory courses for physics and philosophy of physics students. Here we analyze the quantum mechanical time reversal operator and the reversal of the deterministic Schrodinger equation. It is argued that quantum mechanics is anti-symmetric w.r.t. time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. The 'Noncausal Causality' of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (45):1-7.
    The paper is concentrated on the special changes of the conception of causality from quantum mechanics to quantum information meaning as a background the revolution implemented by the former to classical physics and science after Max Born’s probabilistic reinterpretation of wave function. Those changes can be enumerated so: (1) quantum information describes the general case of the relation of two wave functions, and particularly, the causal amendment of a single one; (2) it keeps the physical description to be causal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. What if Time Flows in Reverse? Thoughts on the Nature of Time.Thomas McGrath - manuscript
    Concepts of time as Astronomical Time, Cultural Time, and Absolute Time are defined, and an idea is developed that Absolute Time flows in reverse.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Special relativity, time, probabilism, and ultimate reality.Nicholas Maxwell - 2004 - In D. Dieks (ed.), The Ontology of Spacetime. Elsevier, B. V.
    McTaggart distinguished two conceptions of time: the A-series, according to which events are either past, present or future; and the B-series, according to which events are merely earlier or later than other events. Elsewhere, I have argued that these two views, ostensibly about the nature of time, need to be reinterpreted as two views about the nature of the universe. According to the so-called A-theory, the universe is three dimensional, with a past and future; according to the B-theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. Relativity Theory may not have the last Word on the Nature of Time: Quantum Theory and Probabilism.Nicholas Maxwell - 2016 - In Giancarlo Ghirardi & Shyam Wuppuluri (eds.), Space, Time and the Limits of Human Understanding. Cham: Imprint: Springer. pp. 109-124.
    Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Are probabilism and special relativity incompatible?Nicholas Maxwell - 1985 - Philosophy of Science 52 (1):23-43.
    In this paper I expound an argument which seems to establish that probabilism and special relativity are incompatible. I examine the argument critically, and consider its implications for interpretative problems of quantum theory, and for theoretical physics as a whole.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  22. Are probabilism and special relativity compatible?Nicholas Maxwell - 1988 - Philosophy of Science 55 (4):640-645.
    Are special relativity and probabilism compatible? Dieks argues that they are. But the possible universe he specifies, designed to exemplify both probabilism and special relativity, either incorporates a universal "now" (and is thus incompatible with special relativity), or amounts to a many world universe (which I have discussed, and rejected as too ad hoc to be taken seriously), or fails to have any one definite overall Minkowskian-type space-time structure (and thus differs drastically from special relativity as ordinarily understood). Probabilism (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  23. Are Probabilism and Special Relativity Compatible?Nicholas Maxwell - 1988 - Philosophy of Science 55 (4):640-645.
    Are probabilism and special relativity compatible? Dieks argues that they are. But the possible universe he specifies, designed to exemplify both probabilism and special relativity, either incorporates a universal “now”, or amounts to a many world universe, or fails to have any one definite overall Minkowskian-type space-time structure. Probabilism and special relativity appear to be incompatible after all. What is at issue is not whether “the flow of time” can be reconciled with special relativity, but rather whether explicitly (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  24. Probabilistic Knowledge in Action.Carlotta Pavese - 2020 - Analysis 80 (2):342-356.
    According to a standard assumption in epistemology, if one only partially believes that p , then one cannot thereby have knowledge that p. For example, if one only partially believes that that it is raining outside, one cannot know that it is raining outside; and if one only partially believes that it is likely that it will rain outside, one cannot know that it is likely that it will rain outside. Many epistemologists will agree that epistemic agents are capable of (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  25. Merleau-Ponty and the Backward Flow of Time: The Reversibility of Temporality and the Temporality of Reversibility.Glen Mazis - 1992 - In Shaun Gallagher Thomas Busch (ed.), Merleau-Ponty, Hermeneutics and Postmodernism.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  26. Reverse Quantum Mechanics: Ontological Path.Michele Caponigro - manuscript
    This paper is essentially a quantum philosophical challenge: starting from simple assumptions, we argue about an ontological approach to quantum mechanics. In this paper, we will focus only on the assumptions. While these assumptions seems to solve the ontological aspect of theory many others epistemological problems arise. For these reasons, in order to prove these assumptions, we need to find a consistent mathematical context (i.e. time reverse problem, quantum entanglement, implications on quantum fields, Schr¨odinger cat states, the role of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. The Meta-Reversibility Objection.Meacham Christopher - 2023 - In Barry Loewer, Brad Weslake & Eric B. Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _time and Chance_. Cambridge MA: Harvard University Press.
    One popular approach to statistical mechanics understands statistical mechanical probabilities as measures of rational indifference. Naive formulations of this ``indifference approach'' face reversibility worries - while they yield the right prescriptions regarding future events, they yield the wrong prescriptions regarding past events. This paper begins by showing how the indifference approach can overcome the standard reversibility worries by appealing to the Past Hypothesis. But, the paper argues, positing a Past Hypothesis doesn't free the indifference approach from all reversibility worries. For (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Defending Genealogy as Conceptual Reverse-Engineering.Matthieu Queloz - forthcoming - Analysis.
    In this paper, I respond to three critical notices of The Practical Origins of Ideas: Genealogy as Conceptual Reverse-Engineering, written by Cheryl Misak, Alexander Prescott-Couch, and Paul Roth, respectively. After contrasting genealogical conceptual reverse-engineering with conceptual reverse-engineering, I discuss pragmatic genealogy’s relation to history. I argue that it would be a mistake to understand pragmatic genealogy as a fiction (or a model, or an idealization) as opposed to a form of historical explanation. That would be to rely on precisely the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  30. Probabilistic and Geometric Languages in the Context of the Principle of Least Action.Vladislav E. Terekhovich - 2012 - Philosophy of Science. Novosibirsk 1:80-92.
    This paper explores the issue of the unification of three languages of physics, the geometric language of forces, geometric language of fields or 4-dimensional space-time, and probabilistic language of quantum mechanics. On the one hand, equations in each language may be derived from the Principle of Least Action (PLA). On the other hand, Feynman's path integral method could explain the physical meaning of PLA. The axioms of classical and relativistic mechanics can be considered as consequences of Feynman's formulation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Time and irreversibility in an accelerating universe.Gustavo E. Romero & Daniela Pérez - 2011 - International Journal of Modern Physics D 20:2831-2838.
    It is a remarkable fact that all processes occurring in the observable universe are irre- versible, whereas the equations through which the fundamental laws of physics are formu- lated are invariant under time reversal. The emergence of irreversibility from the funda- mental laws has been a topic of consideration by physicists, astronomers and philosophers since Boltzmann's formulation of his famous \H" theorem. In this paper we shall discuss some aspects of this problem and its connection with the dynamics (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  32. A Reversal of Perspective: The Subject as Citizen under Absolute Monarchy, or the Ambiguity of Notions.Krzysztof Trzciński - 2007 - In K. Trzcinski (ed.), The State and Development in Africa and Other Regions: Studies and Essays in Honour of Professor Jan J. Milewski. Warsaw: pp. 319-332.
    Europe has never had a single definition for the term ‘citizen.’ Indeed, over the centuries the significance of this term has undergone far-reaching evolution. In different historical periods, different states, and different European languages, this term has had diverse meanings and has been used in varying contexts. The concept of ‘citizen’ has repeatedly been defined anew depending upon specific political, social, and economic conditions. At various periods, the term ‘citizen’ has related to a wider or narrower portion of a given (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. A Relic of a Bygone Age? Causation, Time Symmetry and the Directionality Argument.Matt Farr & Alexander Reutlinger - 2013 - Erkenntnis 78 (2):215-235.
    Bertrand Russell famously argued that causation is not part of the fundamental physical description of the world, describing the notion of cause as “a relic of a bygone age”. This paper assesses one of Russell’s arguments for this conclusion: the ‘Directionality Argument’, which holds that the time symmetry of fundamental physics is inconsistent with the time asymmetry of causation. We claim that the coherence and success of the Directionality Argument crucially depends on the proper interpretation of the ‘ (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  34. Reflections on the Reversibility of Nuclear Energy Technologies.Jan Peter Bergen - 2017 - Dissertation, Delft University of Technology
    The development of nuclear energy technologies in the second half of the 20th century came with great hopes of rebuilding nations recovering from the devasta-tion of the Second World War or recently released from colonial rule. In coun-tries like France, India, the USA, Canada, Russia, and the United Kingdom, nuclear energy became the symbol of development towards a modern and technologically advanced future. However, after more than six decades of experi-ence with nuclear energy production, and in the aftermath of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. The Time Flow Manifesto Chapter 1 Concepts of Time Direction.Andrew Holster - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  36. Time's arrow and irreversibility in time-asymmetric quantum mechanics.Mario Castagnino, Manuel Gadella & Olimpia Lombardi - 2005 - International Studies in the Philosophy of Science 19 (3):223–243.
    The aim of this paper is to analyze time-asymmetric quantum mechanics with respect to the problems of irreversibility and of time’s arrow. We begin with arguing that both problems are conceptually different. Then, we show that, contrary to a common opinion, the theory’s ability to describe irreversible quantum processes is not a consequence of the semigroup evolution laws expressing the non-time-reversal invariance of the theory. Finally, we argue that time-asymmetric quantum mechanics, either in Prigogine’s version (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Entanglement and thermodynamics in general probabilistic theories.Giulio Chiribella & Carlo Maria Scandolo - 2015 - New Journal of Physics 17:103027.
    Entanglement is one of the most striking features of quantum mechanics, and yet it is not specifically quantum. More specific to quantum mechanics is the connection between entanglement and thermodynamics, which leads to an identification between entropies and measures of pure state entanglement. Here we search for the roots of this connection, investigating the relation between entanglement and thermodynamics in the framework of general probabilistic theories. We first address the question whether an entangled state can be transformed into another (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  38. The time asymmetry of quantum mechanics and concepts of physical directionality of time Part 1.Andrew Thomas Holster - manuscript
    This is Part 1 of a four part paper, intended to redress some of the most fundamental confusions in the subject of physical time directionality, and represent the concepts accurately. There are widespread fallacies in the subject that need to be corrected in introductory courses for physics students and philosophers. We start in Part 1 by analysing the time reversal symmetry of quantum probability laws. Time reversal symmetry is defined as the property of invariance under (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Academic Freedom, Feminism and the Probabilistic Conception of Evidence.Tom Vinci - 2022 - Philosophy Study 12 (6):22-28.
    There is a current debate about the extent to which Academic Freedom should be permitted in our universities. On the one hand, we have traditionalists who maintain that Academic Freedom should be unrestricted: people who have the appropriate qualifications and accomplishments should be allowed to develop theories about how the world is, or ought to be, as they see fit. On the other hand, we have post-traditional philosophers who argue against this degree of Academic Freedom. I consider a conservative version (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Abnormal Ventromedial Prefrontal Cortex Function in Children With Psychopathic Traits During Reversal Learning.Elizabeth C. Finger, Abigail A. Marsh, Derek G. Mitchell, Marguerite E. Reid, Courtney Sims, Salima Budhani, David S. Kosson, Gang Chen, Kenneth E. Towbin, Ellen Leibenluft, Daniel S. Pine & James R. Blair - 2008 - Archives of General Psychiatry 65: 586–594.
    Context — Children and adults with psychopathic traits and conduct or oppositional defiant disorder demonstrate poor decision making and are impaired in reversal learning. However, the neural basis of this impairment has not previously been investigated. Furthermore, despite high comorbidity of psychopathic traits and attention deficit/hyperactivity disorder, to our knowledge, no research has attempted to distinguish neural correlates of childhood psychopathic traits and attention-deficit/hyperactivity disorder. Objective—To determine the neural regions that underlie the reversal learning impairments in children with (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  41.  50
    Cosmological Black Holes and the Direction of Time.Gustavo E. Romero, Federico G. López Armengol & Daniela Pérez - 2018 - Foundations of Science 23 (2):415-426.
    Macroscopic irreversible processes emerge from fundamental physical laws of reversible character. The source of the local irreversibility seems to be not in the laws themselves but in the initial and boundary conditions of the equations that represent the laws. In this work we propose that the screening of currents by black hole event horizons determines, locally, a preferred direction for the flux of electromagnetic energy. We study the growth of black hole event horizons due to the cosmological expansion and accretion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. 'Not My People': Jewish-Christian Ethics and Divine Reversals in Response to Injustice.Joshua Blanchard - 2019 - In Kevin Timpe & Blake Hereth (eds.), The Lost Sheep in Philosophy of Religion: New Perspectives on Disability, Gender, Race, and Animals. New York, USA: Routledge. pp. 120-137.
    In the Hebrew Scriptures, there are familiar consequences for disobedience to God—destruction of holy sites, slavery, exile, and death. But there is one consequence that is less familiar and of special interest in this chapter. Disobedience to God sometimes results in stark reversals in God’s very relationship and experiential availability to God’s own people. Such people may even remove God’s very presence. This is a curious form of punishment that threatens the very spiritual identity of the victims of the (...). This chapter explores divine reversal in the Hebrew Scriptures (and its continuation in the New Testament). Insofar as the self-identified people of God commit positive injustices against others, and even insofar as they are culpable for failing to prevent such injustices from occurring, devotees of the Hebrew Scriptures—so, devout Jews and Christians alike—ought to take seriously the possibility that God will side with those who suffer the injustices and even, in a sense, sanctify their life, practices, and identity. Divine reversals pose problems for Jewish and Christian ethics, which must grapple with the possibility that God might seem to adopt inconsistent moral positions across time—or at least inconsistent moral postures. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  43. P≠NP, By considering time as a fuzzy concept.Didehvar Farzad - manuscript
    Here, we try to build the structure of a Theory of computation based on considering time as a fuzzy concept. Actually, there are some reasons to consider time as a fuzzy concept. In this article, we don’t go to this side but we remind that Brower and Husserl ideas about the concept of time were similar [14]. Throughout this article, we present the Theory of Computation with Fuzzy Time. Considering the classical definition of Turing Machine we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. A Connection between Minkowski and Galilean Space‐times in Quantum Mechanics.Douglas Kutach - 2010 - International Studies in the Philosophy of Science 24 (1):15 – 29.
    Relativistic quantum theories are equipped with a background Minkowski spacetime and non-relativistic quantum theories with a Galilean space-time. Traditional investigations have distinguished their distinct space-time structures and have examined ways in which relativistic theories become sufficiently like Galilean theories in a low velocity approximation or limit. A different way to look at their relationship is to see that both kinds of theories are special cases of a certain five-dimensional generalization involving no limiting procedures or approximations. When one compares (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. P≠NP, By accepting to make a shift in the Theory (Time as a fuzzy concept) The Structure of a Theory (TC*, Theory of Computation based on Fuzzy time).Farzad Didehvar - manuscript
    In a series of articles we try to show the need of a novel Theory for Theory of Computation based on considering time as a Fuzzy concept. Time is a central concept In Physics. First we were forced to consider some changes and modifications in the Theories of Physics. In the second step and throughout this article we show the positive Impact of this modification on Theory of Computation and Complexity Theory to rebuild it in a more successful (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Natural Cybernetics of Time, or about the Half of any Whole.Vasil Penchev - 2021 - Information Systems eJournal (Elsevier: SSRN) 4 (28):1-55.
    Norbert Wiener’s idea of “cybernetics” is linked to temporality as in a physical as in a philosophical sense. “Time orders” can be the slogan of that natural cybernetics of time: time orders by itself in its “screen” in virtue of being a well-ordering valid until the present moment and dividing any totality into two parts: the well-ordered of the past and the yet unordered of the future therefore sharing the common boundary of the present between them when (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Time and the Quantum Measurement Problem.Ted Dace - 2021 - International Journal of Quantum Foundations Supplement 3 (1):32-43.
    The quantum measurement problem resolves according to the twofold nature of time. Whereas the continuous evolution of the wave function reflects the fundamental nature of time as continuous presence, the collapse of the wave function indicates the subsidiary aspect of time as the projection of instantaneity from the ongoing present. Each instant irreversibly emerges from the reversible temporal continuum implicit in the smoothly propagating wave function. The basis of this emergence is periodic conflict between quantum systems, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Times two: The tenses of linear and collapse dynamics in relational quantum mechanics.Andrew Soltau - manuscript
    The nature and topology of time remains an open question in philosophy, both tensed and tenseless concepts of time appear to have merit. A concept of time including both kinds of time evolution of physical systems in quantum mechanics subsumes the properties of both notions. The linear dynamics defines the universe probabilistically throughout space-time, and can be seen as the definition of a block universe. The collapse dynamics is the time evolution of the linear (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Reassessing Time, Energy and Nonlocality in Quantum Mechanics with Observations on Schrödinger’s Cat.Paul Klevgard - manuscript
    Radiation was a big challenge for the quantum pioneers since the photon was massless, probabilistic and appeared to be both wave and particle. Einstein’s special relativity equated mass with energy and space with time. But the equality of mass with energy, then and now, is regarded as quantitative and the equality of space with time is anything but equal; space hosts material entities; time hosts nothing. Exploring these equality issues raises some questions as to how measurable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Negative-Energy Matter and the Direction of Time.J. C. Lindner - forthcoming
    This report offers a modern perspective on the problem of negative energy, based on a reexamination of the concept of time direction as it arises in a classical and quantum-mechanical context. From this analysis emerges an improved understanding of the general-relativistic stress-energy of matter as being a manifestation of local variations in the energy density of zero-point vacuum fluctuations. Based on those developments, a set of axioms is proposed from which are derived generalized gravitational field equations which actually constitute (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000