Results for 'quantum gravity'

999 found
Order:
  1. Quantum Gravity, Timelessness, and the Contents of Thought.David Braddon-Mitchell & Kristie Miller - 2019 - Philosophical Studies 176 (7):1807-1829.
    A number of recent theories of quantum gravity lack a one-dimensional structure of ordered temporal instants. Instead, according to many of these views, our world is either best represented as a single three-dimensional object, or as a configuration space composed of such three-dimensional objects, none of which bear temporal relations to one another. Such theories will be empirically self-refuting unless they can accommodate the existence of conscious beings capable of representation. For if representation itself is impossible in a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  2. Spacetime Emergence in Quantum Gravity: Functionalism and the Hard Problem.Baptiste Le Bihan - forthcoming - Synthese.
    Spacetime functionalism is the view that spacetime is a functional structure implemented by a more fundamental ontology. Lam and Wüthrich have recently argued that spacetime functionalism helps to solve the epistemological problem of empirical coherence in quantum gravity and suggested that it also (dis)solves the hard problem of spacetime, namely the problem of offering a picture consistent with the emergence of spacetime from a non-spatio-temporal structure. First, I will deny that spacetime functionalism solves the hard problem by showing (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  3. String Theory, Loop Quantum Gravity and Eternalism.Baptiste Le Bihan - 2020 - European Journal for Philosophy of Science 10:17.
    Eternalism, the view that what we regard locally as being located in the past, the present and the future equally exists, is the best ontological account of temporal existence in line with special and general relativity. However, special and general relativity are not fundamental theories and several research programs aim at finding a more fundamental theory of quantum gravity weaving together all we know from relativistic physics and quantum physics. Interestingly, some of these approaches assert that time (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Inter-Theory Relations in Quantum Gravity: Correspondence, Reduction, and Emergence.Karen Crowther - 2017 - Studies in History and Philosophy of Modern Physics.
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  5. The Deep Metaphysics of Quantum Gravity: The Seventeenth Century Legacy and an Alternative Ontology Beyond Substantivalism and Relationism.Edward Slowik - 2013 - Studies in the History and Philosophy of Modern Physics 44 (4):490-499.
    This essay presents an alternative to contemporary substantivalist and relationist interpretations of quantum gravity hypotheses by means of an historical comparison with the ontology of space in the seventeenth century. Utilizing differences in the spatial geometry between the foundational theory and the theory derived from the foundational, in conjunction with nominalism and platonism, it will be argued that there are crucial similarities between seventeenth century and contemporary theories of space, and that these similarities reveal a host of underlying (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Have we Lost Spacetime on the Way? Narrowing the Gap between General Relativity and Quantum Gravity.Baptiste Le Bihan & Niels Siegbert Linnemann - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65:112-121.
    Important features of space and time are taken to be missing in quantum gravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio- temporal quantum gravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   10 citations  
  7. Presentism and Quantum Gravity.Bradley Monton - 2001 - In Dennis Dieks (ed.), The Ontology of Spacetime.
    There is a philosophical tradition of arguing against presentism, the thesis that only presently existing things exist, on the basis of its incompatibility with fundamental physics. I grant that presentism is incompatible with special and general relativity, but argue that presentism is not incompatible with quantum gravity, because there are some theories of quantum gravity that utilize a fixed foliation of spacetime. I reply to various objections to this defense of presentism, and point out a flaw (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  8. A Proposal for a Bohmian Ontology of Quantum Gravity.Antonio Vassallo & Michael Esfeld - 2013 - Foundations of Physics (1):1-18.
    The paper shows how the Bohmian approach to quantum physics can be applied to develop a clear and coherent ontology of non-perturbative quantum gravity. We suggest retaining discrete objects as the primitive ontology also when it comes to a quantum theory of space-time and therefore focus on loop quantum gravity. We conceive atoms of space, represented in terms of nodes linked by edges in a graph, as the primitive ontology of the theory and show (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  9. Renormalizability, Fundamentality and a Final Theory: The Role of UV-Completion in the Search for Quantum Gravity.Karen Crowther & Niels Linnemann - 2017 - British Journal for the Philosophy of Science:axx052.
    Principles are central to physical reasoning, particularly in the search for a theory of quantum gravity (QG), where novel empirical data is lacking. One principle widely adopted in the search for QG is UV completion: the idea that a theory should (formally) hold up to all possible high energies. We argue---/contra/ standard scientific practice---that UV-completion is poorly-motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for QG. For this, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  10. Quantum Gravity and Taoist Cosmology: Exploring the Ancient Origins of Phenomenological String Theory.Steven M. Rosen - 2017 - Progress in Biophysics and Molecular Biology 131:34-60.
    In the author’s previous contribution to this journal (Rosen 2015), a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current paper takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a connection between the Klein bottle, which is crucial to the theory, and the Ho-t’u, a Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the psychophysical (phenomenological) action (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Fakeons, Quantum Gravity and the Correspondence Principle.Damiano Anselmi - manuscript
    The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Quantum Gravity, Timelessness, and the Folk Concept of Time.Andrew James Latham & Kristie Miller - forthcoming - Synthese:1-26.
    What it would take to vindicate folk temporal error theory? This question is significant against a backdrop of new views in quantum gravity—so-called timeless physical theories—that claim to eliminate time by eliminating a one-dimensional substructure of ordered temporal instants. Ought we to conclude that if these views are correct, nothing satisfies the folk concept of time and hence that folk temporal error theory is true? In light of evidence we gathered, we argue that physical theories that entirely eliminate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  18
    Quantum Gravity As the Unification of General Relativity & Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-3.
    A nonstandard viewpoint to quantum gravity is discussed. General relativity and quantum mechanics are to be related as two descriptions of the same, e.g. as Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics merged in the contemporary quantum mechanics. From the viewpoint of general relativity one can search for that generalization of relativity implying the in-variance “within – out of” of the same system.
    Download  
     
    Export citation  
     
    Bookmark  
  14.  33
    Epistemology of Quantum Gravity.Nicolae Sfetcu - manuscript
    Quantum gravity has required the consideration of fundamental epistemological questions, which can be identified in philosophy with the mind-body problem and the problem of free will. These questions influenced the epistemology of quantum mechanics in the form of von Neumann's "psycho-physical parallelism" and the subsequent analysis of the thesis by Wigner that "the collapse of the wave packet" occurs in the mind of the "observer". Quantum gravity in cosmology involves the problem of the experimenter's freedom (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Defining a Crisis: The Roles of Principles in the Search for a Theory of Quantum Gravity.Karen Crowther - forthcoming - Synthese:1-28.
    In times of crisis, when current theories are revealed as inadequate to task, and new physics is thought to be required---physics turns to re-evaluate its principles, and to seek new ones. This paper explores the various types, and roles of principles that feature in the problem of quantum gravity as a current crisis in physics. I illustrate the diversity of the principles being appealed to, and show that principles serve in a variety of roles in all stages of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  55
    On Quantum Gravity.Sydney Ernest Grimm - manuscript
    The force of gravity is the result of the creation of matter within vacuum space by the structure of the basic quantum fields. The scalar vectors of the flat Higgs field lost their symmetry and the result are scalar vectors from everywhere around in vacuum space that point in the direction of the created matter. Gravity shows to be a push force and is equal to Newtonian gravity (except the concept of a pull force).
    Download  
     
    Export citation  
     
    Bookmark  
  17.  35
    Epistemology of Canonical Quantum Gravity - Loop Quantum Gravity.Nicolae Sfetcu - manuscript
    In the interpretation of canonical quantum gravity (CQG), gravity appears as a geometric pseudoforce, is reduced to spacetime geometry and becomes a simple effect of spacetime curvature. The scale at which quantum gravitational effects occur is determined by the different physical constants of fundamental physics: h, c and G, which characterize quantum, relativistic and gravitational phenomena. By combining these constants, we obtain the Planck constants at which the effects of quantum gravity must manifest. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18.  25
    Heuristics and Tests of Quantum Gravity.Nicolae Sfetcu - manuscript
    For the attempt to create a gravitational quantum theory, there are several research programs, some of which became obsolete over time due to the higher heuristic power of other programs. The primordial test of any quantum theory of gravity is the reproduction of the successes of general relativity. This involves reconstructing the local geometry from the non-local observables. In addition, quantum gravity should probabilistically predict the large-scale topology of the Universe, which may soon be measurable, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19.  30
    Extensions of Quantum Gravity Theories - Final Theory and Cosmology.Nicolae Sfetcu - manuscript
    The fields of application of general relativity (GR) and quantum field theory (QFT) are different, so most situations require the use of only one of the two theories. The overlaps occur in regions of extremely small size and high mass, such as the black hole or the early universe (immediately after the Big Bang). This conflict is supposed to be solved only by unifying gravity with the other three interactions, to integrate GR and QFT into one theory. At (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20.  81
    Towards Ψ-Epistemic Quantum Gravity.Marcoen J. T. F. Cabbolet - manuscript
    This self-contained letter shows how ψ-epistemic quantum gravity (QG), that is, QG with a ψ-epistemic interpretation of quantum theory, in principle obtains from a deterministic model of the Elementary Process Theory (EPT) that describes an individual process at supersmall (Planck) scale by which a predominantly gravitational interaction takes place. While both ψ-epistemic QG and the model of the EPT remain to be formulated rigorously, this shows how the probabilistic nature of our knowledge of the physical world emerges (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21.  37
    General Relativity and Quantum Gravity in Terms of Quantum Measure: A Philosophical Comment.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (17):1-37.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. 3. Planck Unit Quantum Gravity (Gravitons) for Simulation Hypothesis Modeling.Malcolm J. Macleod - manuscript
    Defined are gravitational formulas in terms of Planck units and units of $\hbar c$. Mass is not assigned as a constant property but is instead treated as a discrete event defined by units of Planck mass with gravity as an interaction between these units, the gravitational orbit as the sum of these mass-mass interactions and the gravitational coupling constant as a measure of the frequency of these interactions and not the magnitude of the gravitational force itself. Each particle that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23.  36
    Epistemology of String Theory in Quantum Gravity.Nicolae Sfetcu - manuscript
    In quantum field theory, the main obstacle is the occurrence of the untreatable infinities in the interactions of the particles due to the possibility of arbitrary distances between the point particles. Strings, as extended objects, provide a better framework, which allows finite calculations. String theory is part of a research program in which point particles in particle physics are replaced by one-dimensional objects called strings. It describes how these strings propagate through space and interact with one another. The purpose (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. The Correspondence Principle in Quantum Field Theory and Quantum Gravity.Damiano Anselmi - manuscript
    We discuss the fate of the correspondence principle beyond quantum mechanics, specifically in quantum field theory and quantum gravity, in connection with the intrinsic limitations of the human ability to observe the external world. We conclude that the best correspondence principle is made of unitarity, locality, proper renormalizability (a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. New Insights on Time and Quantum Gravity.Ozer Oztekin - 2020 - Advances in Physics Theories and Applications 83 (DOI: 10.7176/APTA/83-08).
    According to Einstein, a universal time does not exist. But what if time is different than what we think of it? Cosmic Microvawe Background Radiation was accepted as a reference for a universal clock and a new time concept has been constructed. According to this new concept, time was tackled as two-dimensional having both a wavelength and a frequency. What our clocks measure is actually a derivation of the frequency of time. A relativistic time dilation actually corresponds to an increase (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Unification of Science - Einstein's Missing Steps in E=Mc2 and His Missing Link to Quantum Gravity.Rodney Bartlett - 2018 - Beau Bassin, Mauritius: Lambert Academic Publishing.
    A Monograph Dealing With Unification In Relation To Dark Energy, Dark Matter, Cosmic Expansion, E=mc2, Quantum Gravity, "Imaginary" Computers, Creation Of The Infinite And Eternal Universe Using Electronic BITS + PI + "Imaginary" Time, Earthly Education, Science-Religion Union, The Human Condition, Superconductivity, Planetary Fields, How Gravitation Can Boost Health, Space-Time Propulsion From The Emdrive To The Brouwer Fixed-Point Theorem, "Light Matter", Etc. These Effects Were Originally Discussed In Several Short Internet Articles. Table Of Contents Introduction Superconductivity And Planetary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. The Physics of God and the Quantum Gravity Theory of Everything.James Redford - manuscript
    Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman-DeWitt-Weinberg quantum gravity/Standard Model Theory of Everything (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Is Gravity, the Curvature of Spacetime or a Quantum Phenomenon.Alfonso Leon Guillen Gomez - 2014 - Journal of Advances in Physics 4 (1):194-203.
    Gravity is the curvature of spacetime, the structural property of static gravitational field, a geometric field, in curved coordinates, according the functions guv, that express geometric relations between material events. Course, general relativity is a relational theory, however, gravity, a thinking category, has symetric physical effects with matter. We use, analitic and critic method of reread the general relativity, since the perspective of the history of the science and the philosophy of the science. Our goal is driver the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Gravity is a Quantum Force.Alfonso Leon Guillen Gomez - manuscript
    The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, from general to particular, breaks the law of inertia of Galilei since recovers apparently the rectilinear uniform movement but not the repose state, unless the bodies have undergone their collapse, although, the curved (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  66
    The Case of Quantum Mechanics Mathematizing Reality: The “Superposition” of Mathematically Modelled and Mathematical Reality: Is There Any Room for Gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. On an Intrinsic Quantum Theoretical Structure Inside Einstein's Gravity Field Equations.Han Geurdes - manuscript
    As is well known, Einstein was dissatisfied with the foundation of quantum theory and sought to find a basis for it that would have satisfied his need for a causal explanation. In this paper this abandoned idea is investigated. It is found that it is mathematically not dead at all. More in particular: a quantum mechanical U(1) gauge invariant Dirac equation can be derived from Einstein's gravity field equations. We ask ourselves what it means for physics, the (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  32. The Unified Equation of Gravity and QM: The Case of Non-Relativistic Motion.Abuzaid Samir - 2014 - AL-Mukhatabat 11.
    We propose to simplify the problem of the unified theory of Quantum-Gravity through dealing first with the simple case of non-relativistic equations of Gravity and Quantum Mechanics. We show that unification of the two non-relativistic formalisms can be achieved through the joined classical and Quantum postulate that every natural body is composed of N identical final particles. This includes the current 'elementary' particles of the standard model such as quarks, photons, gluons, etc. Furthermore, we show (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. On an Intrinsic Quantum Theoretical Structure Inside Einstein's Gravity Field Equations.J. F. Geurdes - manuscript
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  34.  29
    Gravity as Entanglement. Entanglement as Gravity.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (30):1-23.
    A generalized and unifying viewpoint to both general relativity and quantum mechanics and information is investigated. It may be described as a generaliztion of the concept of reference frame from mechanics to thermodynamics, or from a reference frame linked to an element of a system, and thus, within it, to another reference frame linked to the whole of the system or to any of other similar systems, and thus, out of it. Furthermore, the former is the viewpoint of general (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  35. Why Gravity is Not an Entropic Force.Shan Gao - 2010
    The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Gravity is a Force.Alfonso Leon Guillen Gomez - manuscript
    The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, of the particular to the general, breaks the law of inertia of Galilei since recovers the rectilinear uniform movement but not the repose state, unless the bodies have undergone their union, although, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Epistemology of Experimental Gravity - Scientific Rationality.Nicolae Sfetcu - manuscript
    The evolution of gravitational tests from an epistemological perspective framed in the concept of rational reconstruction of Imre Lakatos, based on his methodology of research programmes. Unlike other works on the same subject, the evaluated period is very extensive, starting with Newton's natural philosophy and up to the quantum gravity theories of today. In order to explain in a more rational way the complex evolution of the gravity concept of the last century, I propose a natural extension (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38.  37
    Quantum-Information Conservation. The Problem About “Hidden Variables”, or the “Conservation of Energy Conservation” in Quantum Mechanics: A Historical Lesson for Future Discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. From Quantum Entanglement to Spatiotemporal Distance.Alyssa Ney - forthcoming - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime. Oxford:
    Within the field of quantum gravity, there is an influential research program developing the connection between quantum entanglement and spatiotemporal distance. Quantum information theory gives us highly refined tools for quantifying quantum entanglement such as the entanglement entropy. Through a series of well-confirmed results, it has been shown how these facts about the entanglement entropy of component systems may be connected to facts about spatiotemporal distance. Physicists are seeing these results as yielding promising methods for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Thinking About Spacetime.David Yates - forthcoming - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime. Oxford: Oxford University Press.
    Several different quantum gravity research programmes suggest, for various reasons, that spacetime is not part of the fundamental ontology of physics. This gives rise to the problem of empirical coherence: if fundamental physical entities do not occupy spacetime or instantiate spatiotemporal properties, how can fundamental theories concerning those entities be justified by observation of spatiotemporally located things like meters, pointers and dials? I frame the problem of empirical coherence in terms of entailment: how could a non-spatiotemporal fundamental theory (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Space-Time Intervals Underlie Human Conscious Experience, Gravity, and a Theory of Everything.Richard Sieb - 2018 - Neuroquantology 16 (7):49-64.
    Space-time intervals are the fundamental components of conscious experience, gravity, and a Theory of Everything. Space-time intervals are relationships that arise naturally between events. They have a general covariance (independence of coordinate systems, scale invariance), a physical constancy, that encompasses all frames of reference. There are three basic types of space-time intervals (light-like, time-like, space-like) which interact to create space-time and its properties. Human conscious experience is a four-dimensional space-time continuum created through the processing of space-time intervals by the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42.  29
    Quantum Invariance.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (22):1-6.
    Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. It should (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Mathematical Nature of Reality, Plus Gravitation-Electromagnetism Unification, Derived From Revised Gravitational Tidal Forces and Mass-From-Gravity Concept.Rodney Bartlett - manuscript
    This article had its beginning with Einstein's 1919 paper "Do gravitational fields play an essential role in the structure of elementary particles?" Together with General Relativity's statement that gravity is not a pull but is a push caused by the curvature of space-time, a hypothesis for Earth's ocean tides was developed that does not solely depend on the Sun and Moon as Kepler and Newton believed. It also borrows from Galileo. The breakup of planets and asteroids by white dwarfs, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Quantum Mechanics Foundations.Bakytzhan Oralbekov - manuscript
    Gravity remains the most elusive field. Its relationship with the electromagnetic field is poorly understood. Relativity and quantum mechanics describe the aforementioned fields, respectively. Bosons and fermions are often credited with responsibility for the interactions of force and matter. It is shown here that fermions factually determine the gravitational structure of the universe, while bosons are responsible for the three established and described forces. Underlying the relationships of the gravitational and electromagnetic fields is a symmetrical probability distribution of (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  45. Pursuit of Wisdom and Quantum Ontology.P. Kleinert - 2011 - arXiv 3:1111.0749.
    In his late work (De venatione sapientiae), Cusanus unfolded basic ideas of his brilliant theology. After a long period, this ingenious teaching became clearly recognizable especially in our time. Forward with his face to the back, modern scientific theory adopts nowadays a course to which Cusanus had already pointed centuries ago. Modern thought revolves with unexpected precision and unexpected mysteriousness around two issues of his doctrine of wisdom: (i) The possibility-of-being-made is not a figment of the human brain by which (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  46.  45
    Cognition According to Quantum Information: Three Epistemological Puzzles Solved.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (20):1-15.
    The cognition of quantum processes raises a series of questions about ordering and information connecting the states of one and the same system before and after measurement: Quantum measurement, quantum in-variance and the non-locality of quantum information are considered in the paper from an epistemological viewpoint. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47.  44
    Space-Time Intervals Underlie Human Conscious Experience, Gravity, and Everything.Richard Sieb - 2019 - Neuroquantology 17 (5):87-89.
    This short commentary discusses the importance of space-time intervals in scientific study. Space-time intervals underlie special relativity, general relativity, and quantum field theory. In doing so, space-time intervals underlie human conscious experience, gravity, and a theory of everything. Space-time intervals also explain many puzzling scientific phenomena: quantum phenomena, dark matter, dark energy, the origin and evolution of the universe, and the life force. The importance of space-time intervals cannot be overestimated. Two articles published in Neuroquantology explain how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  36
    The Dynamical Approach to Spin-2 Gravity.Kian Salimkhani - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:29-45.
    This paper engages with the following closely related questions that have recently received some attention in the literature: what is the status of the equivalence principle in general relativity?; how does the metric field obtain its property of being able to act as a metric?; and is the metric of GR derivative on the dynamics of the matter fields? The paper attempts to complement these debates by studying the spin-2 approach to gravity. In particular, the paper argues that three (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Priority Monism Beyond Spacetime.Baptiste Le Bihan - 2018 - Metaphysica 19 (1):95-111.
    I will defend two claims. First, Schaffer's priority monism is in tension with many research programs in quantum gravity. Second, priority monism can be modified into a view more amenable to this physics. The first claim is grounded in the fact that promising approaches to quantum gravity such as loop quantum gravity or string theory deny the fundamental reality of spacetime. Since fundamental spacetime plays an important role in Schaffer's priority monism by being identified (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  50. Space Emergence in Contemporary Physics: Why We Do Not Need Fundamentality, Layers of Reality and Emergence.Baptiste Le Bihan - 2018 - Disputatio 10 (49):71-95.
    ‘Space does not exist fundamentally: it emerges from a more fundamental non-spatial structure.’ This intriguing claim appears in various research programs in contemporary physics. Philosophers of physics tend to believe that this claim entails either that spacetime does not exist, or that it is derivatively real. In this article, I introduce and defend a third metaphysical interpretation of the claim: reductionism about space. I argue that, as a result, there is no need to subscribe to fundamentality, layers of reality and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
1 — 50 / 999