According to Einstein, a universal time does not exist. But what if time is different than what we think of it? Cosmic Microvawe Background Radiation was accepted as a reference for a universal clock and a new time concept has been constructed. According to this new concept, time was tackled as two-dimensional having both a wavelength and a frequency. What our clocks measure is actually a derivation of the frequency of time. A relativistic time dilation actually corresponds to an increase (...) in the wavelength of time. At the point where time wavelength and time frequency is equal, where light is positioned, quantum-world and macro- world are seperated. Gravity was redefined with respect to time and the new two dimensional time fabric of the universe was speculated to be the source of dark energy causing the universe to expand. According to this new point of view quantum realm and macro-world can be better understood. This new time concept provide a basis for our understanding of quantumgravity and provide the long-sought answers to well known problems of it. A prediction of the presented theory is that the universe will expand at various rates at different regions due to the fact that particular surroundings will create different gravities and cause a different gravity- time wavelength effect yielding various time delays for calculating this rate of expansion. (shrink)
Eternalism, the view that what we regard locally as being located in the past, the present and the future equally exists, is the best ontological account of temporal existence in line with special and general relativity. However, special and general relativity are not fundamental theories and several research programs aim at finding a more fundamental theory of quantumgravity weaving together all we know from relativistic physics and quantum physics. Interestingly, some of these approaches assert that time (...) is not fundamental. If time is not fundamental, what does it entail for eternalism and the standard debate over existence in time? First, I will argue that the non-fundamentality of time to be found in string theory entails standard eternalism. Second, I will argue that the non-fundamentality of time to be found in loop quantumgravity entails atemporal eternalism, namely a novel position in the spirit of standard eternalism. (shrink)
Spacetime functionalism is the view that spacetime is a functional structure implemented by a more fundamental ontology. Lam and Wüthrich have recently argued that spacetime functionalism helps to solve the epistemological problem of empirical coherence in quantumgravity and suggested that it also (dis)solves the hard problem of spacetime, namely the problem of offering a picture consistent with the emergence of spacetime from a non-spatio-temporal structure. First, I will deny that spacetime functionalism solves the hard problem by showing (...) that it comes in various species, each entailing a different attitude towards, or answer to, the hard problem. Second, I will argue that the existence of an explanatory gap, which grounds the hard problem, has not been correctly taken into account in the literature. (shrink)
Important features of space and time are taken to be missing in quantumgravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio- temporal quantumgravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that (...) most approaches to quantumgravity already start with an in-built distinction between structures to which the asymmetry between space and time can be traced back. (shrink)
What it would take to vindicate folk temporal error theory? This question is significant against a backdrop of new views in quantumgravity—so-called timeless physical theories—that claim to eliminate time by eliminating a one-dimensional substructure of ordered temporal instants. Ought we to conclude that if these views are correct, nothing satisfies the folk concept of time and hence that folk temporal error theory is true? In light of evidence we gathered, we argue that physical theories that entirely eliminate (...) an ordered substructure vindicate folk temporal error theory. (shrink)
In the author’s previous contribution to this journal (Rosen 2015), a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current paper takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a connection between the Klein bottle, which is crucial to the theory, and the Ho-t’u, a Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the psychophysical (phenomenological) action (...) pattern at the heart of microphysics. But tackling the question of quantumgravity requires that a whole family of topological dimensions be brought into play. What we find in engaging with these structures is a closely related family of Taoist forebears that, in concert with their successors, provide a blueprint for cosmic evolution. Whereas conventional string theory accounts for the generation of nature’s fundamental forces via a notion of symmetry breaking that is essentially static and thus unable to explain cosmogony successfully, phenomenological/Taoist string theory entails the dialectical interplay of symmetry and asymmetry inherent in the principle of synsymmetry. This dynamic concept of cosmic change is elaborated on in the three concluding sections of the paper. Here, a detailed analysis of cosmogony is offered, first in terms of the theory of dimensional development and its Taoist (yin-yang) counterpart, then in terms of the evolution of the elemental force particles through cycles of expansion and contraction in a spiraling universe. The paper closes by considering the role of the analyst per se in the further evolution of the cosmos. (shrink)
We discuss the fate of the correspondence principle beyond quantum mechanics, specifically in quantum field theory and quantumgravity, in connection with the intrinsic limitations of the human ability to observe the external world. We conclude that the best correspondence principle is made of unitarity, locality, proper renormalizability (a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantumgravity is identified in an essentially (...) unique way. The gauge interactions are uniquely identified in form. Instead, the matter sector remains basically unrestricted. The major prediction is the violation of causality at small distances. (shrink)
Relationships between current theories, and relationships between current theories and the sought theory of quantumgravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, (...) using examples from specific QG approaches. Reduction is argued to be a special case of correspondence, and to form part of the definition of QG. Finally, the appropriate account of emergence in the context of QG is presented, and compared to conceptions of emergence in the broader philosophy literature. It is argued that, while emergence is likely to hold between QG and general relativity, emergence is not part of the definition of QG, and nor can it serve usefully in the development and justification of the new theory. (shrink)
Principles are central to physical reasoning, particularly in the search for a theory of quantumgravity (QG), where novel empirical data is lacking. One principle widely adopted in the search for QG is UV completion: the idea that a theory should (formally) hold up to all possible high energies. We argue---/contra/ standard scientific practice---that UV-completion is poorly-motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for QG. For this, (...) we explore the reasons for expecting, or desiring, a UV-complete theory, as well as analyse how UV completion is used, and how it should be used, in various specific approaches to QG. (shrink)
The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantumgravity. The unitarity assumption is better understood, since it allows for the presence of physical (...) particles as well as fake particles (fakeons). The locality assumption is applied to an interim classical action, since the true classical action is nonlocal and emerges from the quantization and a later process of classicization. The renormalizability assumption is refined to single out the special role of the gauge couplings. We show that the upgraded principle leads to an essentially unique theory of quantumgravity. In particular, in four dimensions, a fakeon of spin 2, together with a scalar field, is able to make the theory renormalizable while preserving unitarity. We offer an overview of quantum field theories of particles and fakeons in various dimensions, with and without gravity. (shrink)
The paper shows how the Bohmian approach to quantum physics can be applied to develop a clear and coherent ontology of non-perturbative quantumgravity. We suggest retaining discrete objects as the primitive ontology also when it comes to a quantum theory of space-time and therefore focus on loop quantumgravity. We conceive atoms of space, represented in terms of nodes linked by edges in a graph, as the primitive ontology of the theory and show (...) how a non-local law in which a universal and stationary wave-function figures can provide an order of configurations of such atoms of space such that the classical space-time of general relativity is approximated. Although there is as yet no fully worked out physical theory of quantumgravity, we regard the Bohmian approach as setting up a standard that proposals for a serious ontology in this field should meet and as opening up a route for fruitful physical and mathematical investigations. (shrink)
This essay presents an alternative to contemporary substantivalist and relationist interpretations of quantumgravity hypotheses by means of an historical comparison with the ontology of space in the seventeenth century. Utilizing differences in the spatial geometry between the foundational theory and the theory derived from the foundational, in conjunction with nominalism and platonism, it will be argued that there are crucial similarities between seventeenth century and contemporary theories of space, and that these similarities reveal a host of underlying (...) conceptual issues that the substantival/relational dichotomy fails to distinguish. (shrink)
This self-contained letter shows how ψ-epistemic quantumgravity (QG), that is, QG with a ψ-epistemic interpretation of quantum theory, in principle obtains from a deterministic model of the Elementary Process Theory (EPT) that describes an individual process at supersmall (Planck) scale by which a predominantly gravitational interaction takes place. While both ψ-epistemic QG and the model of the EPT remain to be formulated rigorously, this shows how the probabilistic nature of our knowledge of the physical world emerges (...) in a strictly deterministic universe--God does not play dice, it is our knowledge of the outcome of a process that is fundamentally probabilistic. (shrink)
In the interpretation of canonical quantumgravity (CQG), gravity appears as a geometric pseudoforce, is reduced to spacetime geometry and becomes a simple effect of spacetime curvature. The scale at which quantum gravitational effects occur is determined by the different physical constants of fundamental physics: h, c and G, which characterize quantum, relativistic and gravitational phenomena. By combining these constants, we obtain the Planck constants at which the effects of quantumgravity must manifest. (...) Loop quantumgravity attempts to unify gravity with the other three fundamental forces starting with relativity and adding quantum traits. DOI: 10.13140/RG.2.2.10368.58889 . (shrink)
Quantumgravity has required the consideration of fundamental epistemological questions, which can be identified in philosophy with the mind-body problem and the problem of free will. These questions influenced the epistemology of quantum mechanics in the form of von Neumann's "psycho-physical parallelism" and the subsequent analysis of the thesis by Wigner that "the collapse of the wave packet" occurs in the mind of the "observer". Quantumgravity in cosmology involves the problem of the experimenter's freedom (...) to change local physical conditions, a passive "observer". In any theory that describes a single universe, questions arise about the nature of causality in the traditional philosophical sense. DOI: 10.13140/RG.2.2.24646.42567. (shrink)
For the attempt to create a gravitational quantum theory, there are several research programs, some of which became obsolete over time due to the higher heuristic power of other programs. The primordial test of any quantum theory of gravity is the reproduction of the successes of general relativity. This involves reconstructing the local geometry from the non-local observables. In addition, quantumgravity should probabilistically predict the large-scale topology of the Universe, which may soon be measurable, (...) and phenomena at the Planck scale. DOI: 10.13140/RG.2.2.30302.18243. (shrink)
A Monograph Dealing With Unification In Relation To Dark Energy, Dark Matter, Cosmic Expansion, E=mc2, QuantumGravity, "Imaginary" Computers, Creation Of The Infinite And Eternal Universe Using Electronic BITS + PI + "Imaginary" Time, Earthly Education, Science-Religion Union, The Human Condition, Superconductivity, Planetary Fields, How Gravitation Can Boost Health, Space-Time Propulsion From The Emdrive To The Brouwer Fixed-Point Theorem, "Light Matter", Etc. These Effects Were Originally Discussed In Several Short Internet Articles. Table Of Contents Introduction Superconductivity And Planetary (...) Magnetic / Electric Fields Co-Movement Of Photons And Graviton General Relativity Deletes Dark Energy, Dark Matter And Universal Expansion The Relation Of The Higgs Field To Gravity Spin Interactions And Making Bosons Or Fermions The Final Missing Steps In E=mc2 What Will Education Be Like In 2049? Learn By Holographic Teachers Using Quantum Mechanics, "Imaginary" Computers And A Unification Of Physics That Will Bring Education To Everyone, Everywhere Hypotheses Supporting Gravitation As A Push - (1) M-Sigma, The Non-Fundamental Nuclear Forces (2) Geysers On Saturn's Moon Enceladus (3) Gravity, Falling Bodies (4) Earth's Tides, Astronomical Unit, Cosmic Backgrounds A Proposal For The True Human Condition That Reconciles Science With Religion Back To The Moon And On To The Stars Normalising Patients With Gravitation. (shrink)
In quantum field theory, the main obstacle is the occurrence of the untreatable infinities in the interactions of the particles due to the possibility of arbitrary distances between the point particles. Strings, as extended objects, provide a better framework, which allows finite calculations. String theory is part of a research program in which point particles in particle physics are replaced by one-dimensional objects called strings. It describes how these strings propagate through space and interact with one another. The purpose (...) of string theory was to replace elementary particles with one-dimensional strings in order to unify quantum physics and gravity. DOI: 10.13140/RG.2.2.18894.82240. (shrink)
The fields of application of general relativity (GR) and quantum field theory (QFT) are different, so most situations require the use of only one of the two theories. The overlaps occur in regions of extremely small size and high mass, such as the black hole or the early universe (immediately after the Big Bang). This conflict is supposed to be solved only by unifying gravity with the other three interactions, to integrate GR and QFT into one theory. At (...) the cosmological level, the standard cosmological model contains Einstein's theory of gravity as part of the "hard core". Dark matter, dark energy, and inflation were added to the theory in response to observations. None of these ancillary hypotheses have yet been confirmed. DOI: 10.13140/RG.2.2.34318.72008. (shrink)
As is well known, Einstein was dissatisfied with the foundation of quantum theory and sought to find a basis for it that would have satisfied his need for a causal explanation. In this paper this abandoned idea is investigated. It is found that it is mathematically not dead at all. More in particular: a quantum mechanical U(1) gauge invariant Dirac equation can be derived from Einstein's gravity field equations. We ask ourselves what it means for physics, the (...) history of physics and for the actual discussion on foundations. (shrink)
A number of recent theories of quantumgravity lack a one-dimensional structure of ordered temporal instants. Instead, according to many of these views, our world is either best represented as a single three-dimensional object, or as a configuration space composed of such three-dimensional objects, none of which bear temporal relations to one another. Such theories will be empirically self-refuting unless they can accommodate the existence of conscious beings capable of representation. For if representation itself is impossible in a (...) timeless world, then no being in such a world could entertain the thought that a timeless theory is true, let alone believe such a theory or rationally believe it. This paper investigates the options for understanding representation in a three-dimensional, timeless, world. Ultimately it concludes that the only viable option is one according to which representation is taken to be deeply non-naturalistic. Ironically then we are left with two seemingly very unattractive options. Either a very naturalistic motivation—taking seriously a live view in fundamental physics—leads us to a very non-naturalistic view of the mental, or else views in the philosophy of mind partly dictate what is an acceptable theory in physics. (shrink)
There is a philosophical tradition of arguing against presentism, the thesis that only presently existing things exist, on the basis of its incompatibility with fundamental physics. I grant that presentism is incompatible with special and general relativity, but argue that presentism is not incompatible with quantumgravity, because there are some theories of quantumgravity that utilize a fixed foliation of spacetime. I reply to various objections to this defense of presentism, and point out a flaw (...) in Gödel's modal argument for the ideality of time. This paper provides an interesting case study of the interplay between physics and philosophy. (shrink)
In times of crisis, when current theories are revealed as inadequate to task, and new physics is thought to be required---physics turns to re-evaluate its principles, and to seek new ones. This paper explores the various types, and roles of principles that feature in the problem of quantumgravity as a current crisis in physics. I illustrate the diversity of the principles being appealed to, and show that principles serve in a variety of roles in all stages of (...) the crisis, including in motivating the need for a new theory, and defining what this theory should be like. In particular, I consider: the generalised correspondence principle, UV-completion, background independence, and the holographic principle. I also explore how the current crisis fits with Friedman's view on the roles of principles in revolutionary theory-change, finding that while many key aspects of this view are not represented in quantumgravity, the view could potentially offer a useful diagnostic, and prescriptive strategy. This paper is intended to be relatively non-technical, and to bring some of the philosophical issues from the search for quantumgravity to a more general philosophical audience interested in the roles of principles in scientific theory-change. (shrink)
Defined are gravitational formulas in terms of Planck units and units of $\hbar c$. Mass is not assigned as a constant property but is instead treated as a discrete event defined by units of Planck mass with gravity as an interaction between these units, the gravitational orbit as the sum of these mass-mass interactions and the gravitational coupling constant as a measure of the frequency of these interactions and not the magnitude of the gravitational force itself. Each particle that (...) is in the mass-state (defined by a unit of Planck mass) per unit of Planck time is directly linked to every other particle also in the mass-state by a discrete unit of $m_P v^2 r = \hbar c$, the velocity of a gravitational orbit is summed from these individual $v^2$. As this approach presumes a digital time, it is suitable for use in programming Simulation Hypothesis models. As this link is responsible for the particle-particle interaction it is analogous to the graviton. Orbital angular momentum of the planetary orbits derives from the sum of the planet-sun particle-particle orbital angular momentum irrespective of the angular momentum of the sun itself and the rotational angular momentum of a planet includes particle-particle rotational angular momentum. (shrink)
Gravity is the curvature of spacetime, the structural property of static gravitational field, a geometric field, in curved coordinates, according the functions guv, that express geometric relations between material events. Course, general relativity is a relational theory, however, gravity, a thinking category, has symetric physical effects with matter. We use, analitic and critic method of reread the general relativity, since the perspective of the history of the science and the philosophy of the science. Our goal is driver the (...) debate on gravity, to the arena of the quantum physics, but without the ballast of the general relativity. We find that through of relativist aether was attempted transform spacetime in a substantia without succes, the consequence was return to problematic geometric field. The philosophy of the science intervenes, and according the best philosophical theory of substantivalism, spacetime is a inmaterial, geometric substantia. Then, the metaphysics arrives to a full solution in the super-substantivalism theory, that affirms: matter arises from geometric spacetime. Thus, it explains consistently the symetric physical effects between spacetime and matter. Surely, this solution is a medieval speculation. Our conclusion is that since general relativity do not defined physically spacetime leads necessarily to philosophical definitions of relationism and substantivalism on spacetime that are unacceptable physically. Therefore, gravity is not the curvature of spacetime. (shrink)
Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman-DeWitt-Weinberg quantumgravity/Standard Model Theory of Everything (...) (TOE) describing and unifying all the forces in physics, of which itself is also required by the known physical laws. With infinite computational resources, the dead can be resurrected--never to die again--via perfect computer emulation of the multiverse from its start at the Big Bang. Miracles are also physically allowed via electroweak quantum tunneling controlled by the Omega Point cosmological singularity. The Omega Point is a different aspect of the Big Bang cosmological singularity--the first cause--and the Omega Point has all the haecceities claimed for God in the traditional religions. -/- From this analysis, conclusions are drawn regarding the social, ethical, economic and political implications of the Omega Point cosmology. (shrink)
The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, from general to particular, breaks the law of inertia of Galilei since recovers apparently the rectilinear uniform movement but not the repose state, unless the bodies have undergone their collapse, although, the curved (...) spacetime becomes flat and the curved geodesies becomes straight lines. For General Relativity is a natural law, within of a gravitational field, the accelerated movement of the bodies, that leads to that a geometric curvature puts out to the bodies in such geodesic movement. In this paper this error of General Relativity, like generalization of the law of inertia of Galilei, is examined and it is found that it is caused by suppression of mass and force that allows conceiving acceleration like property of spacetime. This is a mathematical and non-ontological result. Indeed, mass and force are the fundament that the gravitational acceleration is independent of the magnitude of mass of the bodies but gravity not of the mass and the gravitational force. The action of the gravity force, on inertial and gravitational masses of a body, produces mutual cancellation during its free fallen but too its weight when this cease. By means of the third law of Newton it shows that gravity is a force since weight is caused by gravity. (shrink)
The force of gravity is the result of the creation of matter within vacuum space by the structure of the basic quantum fields. The scalar vectors of the flat Higgs field lost their symmetry and the result are scalar vectors from everywhere around in vacuum space that point in the direction of the created matter. Gravity shows to be a push force and is equal to Newtonian gravity (except the concept of a pull force).
‘Space does not exist fundamentally: it emerges from a more fundamental non-spatial structure.’ This intriguing claim appears in various research programs in contemporary physics. Philosophers of physics tend to believe that this claim entails either that spacetime does not exist, or that it is derivatively real. In this article, I introduce and defend a third metaphysical interpretation of the claim: reductionism about space. I argue that, as a result, there is no need to subscribe to fundamentality, layers of reality and (...) emergence in order to analyse the constitution of space by non-spatial entities. It follows that space constitution, if borne out, does not provide empirical evidence in favour of a stratified, Aristotelian in spirit, metaphysics. The view will be described in relation to two particular research programs in contemporary physics: wave function realism and loop quantumgravity. (shrink)
We propose to simplify the problem of the unified theory of Quantum-Gravity through dealing first with the simple case of non-relativistic equations of Gravity and Quantum Mechanics. We show that unification of the two non-relativistic formalisms can be achieved through the joined classical and Quantum postulate that every natural body is composed of N identical final particles. This includes the current 'elementary' particles of the standard model such as quarks, photons, gluons, etc. Furthermore, we show (...) that this opens a new route toward a Generalized Equation of Quantum-Gravity that takes the effects of both of velocity and acceleration into account. (shrink)
Space-time intervals are the fundamental components of conscious experience, gravity, and a Theory of Everything. Space-time intervals are relationships that arise naturally between events. They have a general covariance (independence of coordinate systems, scale invariance), a physical constancy, that encompasses all frames of reference. There are three basic types of space-time intervals (light-like, time-like, space-like) which interact to create space-time and its properties. Human conscious experience is a four-dimensional space-time continuum created through the processing of space-time intervals by the (...) brain; space-time intervals are the source of conscious experience (observed physical reality). Human conscious experience is modeled by Einstein’s special theory of relativity, a theory designed specifically from the general covariance of space-time intervals (for inertial frames of reference). General relativity is our most accurate description of gravity. In general relativity, the general covariance of space-time intervals is extended to all frames of reference (inertial and non-inertial), including gravitational reference frames; space-time intervals are the source of gravity in general relativity. The general covariance of space-time intervals is further extended to quantum mechanics; space-time intervals are the source of quantumgravity. The general covariance of space-time intervals seamlessly merges general relativity with quantum field theory (the two grand theories of the universe). Space-time intervals consequently are the basis of a Theory of Everything (a single all-encompassing coherent theoretical framework of physics that fully explains and links together all physical aspects of the universe). This theoretical framework encompasses our observed physical reality (conscious experience) as well; space-time intervals link observed physical reality to actual physical reality. This provides an accurate and reliable match between observed physical reality and the physical universe by which we can carry on our activity. The Minkowski metric, which defines generally covariant space-time intervals, may be considered an axiom (premise, postulate) for the Theory of Everything. (shrink)
I will defend two claims. First, Schaffer's priority monism is in tension with many research programs in quantumgravity. Second, priority monism can be modified into a view more amenable to this physics. The first claim is grounded in the fact that promising approaches to quantumgravity such as loop quantumgravity or string theory deny the fundamental reality of spacetime. Since fundamental spacetime plays an important role in Schaffer's priority monism by being identified (...) with the fundamental structure, namely the cosmos, the disappearance of spacetime in these views might undermine classical priority monism. My second claim is that priority monism can avoid this issue with two moves: first, in dropping one of its core assumption, namely that the fundamental structure is spatio-temporal, second, by identifying the connection between the non-spatio-temporal structure and the derivative spatio-temporal structure with mereological composition. (shrink)
Several different quantumgravity research programmes suggest, for various reasons, that spacetime is not part of the fundamental ontology of physics. This gives rise to the problem of empirical coherence: if fundamental physical entities do not occupy spacetime or instantiate spatiotemporal properties, how can fundamental theories concerning those entities be justified by observation of spatiotemporally located things like meters, pointers and dials? I frame the problem of empirical coherence in terms of entailment: how could a non-spatiotemporal fundamental theory (...) entail spatiotemporal evidence propositions? Solutions to this puzzle can be classified as realist or antirealist, depending on whether or not they posit a non-fundamental spacetime structure grounded in or caused by the fundamental structure. These approaches place different constraints on our everyday concepts of space and time. Applying lessons from the philosophy of mind, I argue that only realism is both conceptually plausible and suitable for addressing the problem at hand. I suggest a role functionalist version of realism, which is consistent with both grounding and causation, and according to which our everyday concepts reveal something of the true nature of emergent spacetime. (shrink)
Typically, a less fundamental theory, or structure, emerging from a more fundamental one is an example of synchronic emergence. A model (and the physical state it describes) emerging from a prior model (state) upon which it nevertheless depends is an example of diachronic emergence. The case of spacetime emergent from quantumgravity and quantum cosmology challenges these two conceptions of emergence. Here, I propose two more-general conceptions of emergence, analogous to the synchronic and diachronic ones, but which (...) are potentially applicable to the case of emergent spacetime: an inter-level, hierarchical conception, and an intra-level, `flat' conception. I then explore whether, and how, these ideas may be applicable in the case of several putative examples of relativistic spacetime emergent from the non-spatiotemporal structures described by different approaches to quantumgravity, and of spacetime emergent from a non-spatiotemporal `big bang' state according to different examples of quantum cosmology. (shrink)
On one popular view, the general covariance of gravity implies that change is relational in a strong sense, such that all it is for a physical degree of freedom to change is for it to vary with regard to a second physical degree of freedom. At a quantum level, this view of change as relative variation leads to a fundamentally timeless formalism for quantumgravity. Here, we will show how one may avoid this acute ‘problem of (...) time’. Under our view, duration is still regarded as relative, but temporal succession is taken to be absolute. Following our approach, which is presented in more formal terms in, it is possible to conceive of a genuinely dynamical theory of quantumgravity within which time, in a substantive sense, remains. 1 Introduction1.1 The problem of time1.2 Our solution2 Understanding Symmetry2.1 Mechanics and representation2.2 Freedom by degrees2.3 Voluntary redundancy3 Understanding Time3.1 Change and order3.2 Quantization and succession4 Time and Gravitation4.1 The two faces of classical gravity4.2 Retaining succession in quantum gravity5 Discussion5.1 Related arguments5.2 Concluding remarks. (shrink)
We analyze the possible implications of spacetime discreteness for the special and general relativity and quantum theory. It is argued that the existence of a minimum size of spacetime may explain the invariance of the speed of light in special relativity and Einstein’s equivalence principle in general relativity. Moreover, the discreteness of spacetime may also result in the collapse of the wave function in quantum mechanics, which may provide a possible solution to the quantum measurement problem. These (...) interesting results might have some important implications for a complete theory of quantumgravity. (shrink)
Do theories of quantum mechanics and quantumgravity require spacetime to be a basic, ground level feature, or can spacetime be seen as an emergent element of these theories? While several commentators have raised serious doubts about the prospects of forgoing the standard spacetime backdrop, it will be argued that a defense of these emergent spacetime interpretations of quantum mechanics and quantumgravity hypotheses can be made, whether as an inference to the best explanation (...) or using another strategy. Furthermore, the idea that space and time can arise from a quite different, non-spatiotemporal level of reality will be shown to have various historical precedents, especially in the seventeenth and eighteenth centuries, a realization that may help dispel some of the mystery associated with these types of hypotheses. (shrink)
The author’s studies in the philosophy of science, culminating in this book, were inspired by his previous research in the domains of classical and quantumgravity. In fact it was the need to bring some order in the family of modern classical theories of gravitation and to build up the appropriate conceptual foundations of quantumgravity , that forced the author to create his own methodological model of theory change, which he applies rather successfully to the (...) most controversial case study, the Lorentz-Einstein transition. (shrink)
This is a chapter of the planned monograph "Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity", co-authored by Nick Huggett and Christian Wüthrich and under contract with Oxford University Press. This chapter analyses the nature and derivation of spacetime topology and geometry according to string theory.
In the article, with the help of various models, the thesis on the fundamental nature of the field form of matter in physics is considered. In the first chapter a model of special relativity is constructed, on the basis of which the priority of the massless form of matter is revealed. In the second chapter, a field model of inert and heavy mass is constructed and on this basis the mechanism of inertia and gravity of weighty bodies is revealed. (...) In the third chapter, the example of geons shows the fundamental nature of a massless form of matter on the Planck scale. The three-dimensionality of the observable space is substantiated. In the fourth chapter, we consider a variant of solving the problem of singularities in general relativity using the example of multidimensional spaces. The last chapter examines the author's approach to quantumgravity. The conclusions do not contradict the main thesis of the article on the fundamental nature of the massless form of matter. We emphasize the qualitative nature of the presentation of the material in the article. (shrink)
A ‘duality’ is a formal mapping between the spaces of solutions of two empirically equivalent theories. In recent times, dualities have been found to be pervasive in string theory and quantum field theory. Naïvely interpreted, duality-related theories appear to make very different ontological claims about the world—differing in e.g. space-time structure, fundamental ontology, and mereological structure. In light of this, duality-related theories raise questions familiar from discussions of underdetermination in the philosophy of science: in the presence of dual theories, (...) what is one to say about the ontology of the world? In this paper, we undertake a comprehensive and non-technical survey of the landscape of possible ontological interpretations of duality-related theories. We provide a significantly enriched and clarified taxonomy of options—several of which are novel to the literature. (shrink)
My article began as a very short 250 words inspired by astrophysicist Jeff Hester's (pro-evolution) pages on entropy (Astronomy magazine - Oct. and Nov. 2017 - http://www.astronomy.com/magazine/jeff-hester/2017/09/entropys-rainbow and http://www.astronomy.com/magazine/jeff-hester/2017/10/entropy-redux). The letter I wrote pointed out evolution's pluses (eg adaptations) and minuses (regarding origins). It went on to speak of a human, scientific, entirely natural explanation for what is called God. It proposes that the true human condition after death and before birth is as a member of the Elohim - a (...) name used for God in the Old Testament which, according to World Book Encyclopedia, means the PLURAL MAJESTY OF THE ONE GOD. This led to a few hundred more words about why some people call an entirely natural process "supernatural". I speculate that it must be because of the applications in thousands of years of finding a successful theory of quantumgravity (union of quantum mechanics and Einstein's theory of gravity - general relativity). Like quantum mechanics and gravitation, those apps would include all space and all time, and would undoubtedly be as mysterious to us as our technology would initially be to the builders of Egypt's first pyramids. In years past, the denial of divine beings by science may have been logical. But times sometimes change radically. Such a paradigm shift seems to be upon us now, with the recent discovery of gravitational waves and the anticipation of quantumgravity. In changing times, scientists and philosophers and everyone must always keep open minds. Of course, proposing that the human condition after death and before birth is as a member of the Elohim means that humans of the far distant future must be capable of the creation attributed to God by many people throughout the centuries. Therefore, a subsection entitled "Creation Of The Infinite, Eternal Cosmos Using Electronic BITS, Pi And Imaginary Time" has been added to the end of this article. -/- . (shrink)
The theoretical contradiction between General Relativity and QuantumGravity about gravity was ended, since spacetime is not structural property of the gravitational fi eld like Einstein said. Exactly spacetime is the structural geometric property of the matter and energy that it gives their geometric dimensions. Thus, spacetime is not continent of the matter (Substantialism), since it is contained. Neither is the category of the relations between material bodies or between their events (Relationalism) since is not relational property; (...) spacetime is structural property. The particle-wave, of matter and eld, has intrinsically three spatial dimensions and one temporal dimension. The spacetime is intrinsically the structural quality of particle-wave. The spacetime is the geometric dimensions of the particle-wave itself and for others. Therefore, the matter and its movements are containing itself. Now only QuantumGravity is possible. (shrink)
The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, of the particular to the general, breaks the law of inertia of Galilei since recovers the rectilinear uniform movement but not the repose state, unless the bodies have undergone their union, although, the (...) curved spacetime becomes flat and the curved geodesies becomes straight lines. For General Relativity is a natural law, within of a gravitational field, the uniform accelerated movement of the bodies, that leads to that a geometric curvature puts out to the bodies of the repose state for animate them of the movement of free fallen. In this paper this error of General Relativity, like generalization of the law of inertia of Galilei, is examined and it is found that it is caused by suppression of mass and force that allows conceiving acceleration like property of spacetime. This is a mathematical and non-ontological result. Indeed, mass and force are the fundament that the gravitational acceleration is a constant value for all the bodies, independently of the magnitude of mass but not of the mass and the gravitational force. The action of the gravity force, on inertial and gravitational masses of a body, produces mutual cancellation during its free fallen. In addition, by means of the third law of Newton it demonstrates that gravity is a force since weight is caused by gravity force. (shrink)
The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of (...) entropic force in a thermodynamics system. As a result, there is no entropic force in the gravity system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This provides a further support for the conclusion that gravity is not an entropic force. (shrink)
L'éternalisme, la thèse selon laquelle les entités que nous catégorisons comme étant passées, présentes et futures existent tout autant, est la meilleure approche ontologique de l'existence temporelle qui soit en accord avec les théories de la relativité restreinte et de la relativité générale. Cependant, les théories de la relativité restreinte et générale ne sont pas fondamentales si bien que plusieurs programmes de recherche tentent de trouver une théorie plus fondamentale de la gravité quantique rassemblant tous les enseignements de la physique (...) relativiste et de la physique quantique. Certaines de ces approches soutiennent que le temps n'est pas fondamental. Toutefois, si le temps n'est pas fondamental, quelles en sont les conséquences pour l'éternalisme et les débats sur l'existence dans le temps ? Premièrement, je soutiendrai que la non-fondamentalité du temps que l'on rencontre dans la théorie des cordes mène à l'éternalisme standard. Deuxièmement, je soutiendrai que la non-fondamentalité du temps rencontrée dans la gravité quantique à boucles implique l'éternalisme atemporel, à savoir une nouvelle position qui demeure fidèle à l'esprit de l'éternalisme standard. (shrink)
The evolution of gravitational tests from an epistemological perspective framed in the concept of rational reconstruction of Imre Lakatos, based on his methodology of research programmes. Unlike other works on the same subject, the evaluated period is very extensive, starting with Newton's natural philosophy and up to the quantumgravity theories of today. In order to explain in a more rational way the complex evolution of the gravity concept of the last century, I propose a natural extension (...) of the methodology of the research programmes of Lakatos that I then use during the paper. I believe that this approach offers a new perspective on how evolved over time the concept of gravity and the methods of testing each theory of gravity, through observations and experiments. I argue, based on the methodology of the research programmes and the studies of scientists and philosophers, that the current theories of quantumgravity are degenerative, due to the lack of experimental evidence over a long period of time and of self-immunization against the possibility of falsification. Moreover, a methodological current is being developed that assigns a secondary, unimportant role to verification through observations and/or experiments. For this reason, it will not be possible to have a complete theory of quantumgravity in its current form, which to include to the limit the general relativity, since physical theories have always been adjusted, during their evolution, based on observational or experimental tests, and verified by the predictions made. Also, contrary to a widespread opinion and current active programs regarding the unification of all the fundamental forces of physics in a single final theory, based on string theory, I argue that this unification is generally unlikely, and it is not possible anyway for a unification to be developed based on current theories of quantumgravity, including string theory. In addition, I support the views of some scientists and philosophers that currently too much resources are being consumed on the idea of developing quantumgravity theories, and in particular string theory, to include general relativity and to unify gravity with other forces, as long as science does not impose such research programs. -/- DOI: 10.13140/RG.2.2.35350.70724 . (shrink)
L'éternalisme implique une forme exotique d'éternité : toute entité, aussi éphémère soit-elle et quelle que soit sa localisation dans le temps, existe relativement à toute autre localisation temporelle. Cet essai vise, premièrement, à défendre l'éternalisme en exhibant les difficultés rédhibitoires du présentisme et du non-futurisme, et deuxièmement à examiner de quelle manière l'éternalisme pourrait être amendé à l'aune d'une affirmation que l'on trouve sous la plume de certains physiciens, à savoir que, fondamentalement, le temps n'existe pas. La disparition du temps (...) est-elle compatible avec la thèse éternaliste ? Enfin, en guise de conclusion, nous examinerons brièvement une conséquence curieuse de l'éternalisme : bien que mortels, nous sommes des êtres éternels. (shrink)
In seeking an answer to the question of what it means for a theory to be fundamental, it is enlightening to ask why the current best theories of physics are not generally believed to be fundamental. This reveals a set of conditions that a theory of physics must satisfy in order to be considered fundamental. Physics aspires to describe ever deeper levels of reality, which may be without end. Ultimately, at any stage we may not be able to tell whether (...) we've reached rock bottom, or even if there is a base level – nevertheless, I draft a checklist to help us identify when to stop digging, in the case where we may have reached a candidate for a final theory. Given that the list is – according to (current) mainstream belief in high-energy physics – complete, and each criterion well-motivated, I argue that a physical theory that satisfies all the criteria can be assumed to be fundamental in the absence of evidence to the contrary (i.e., I argue that the necessary conditions are jointly sufficient for a claim of fundamentality in physics). (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.