Contents
29 found
Order:
  1. Reflecting on the 3x+1 Mystery. Outline of a Scenario - Improbable or Realistic ?Edward G. Belaga - manuscript
    Guessing the outcome of iterations of even most simple arithmetical functions could be an extremely hazardous experience. Not less harder, if at all possible, might be to prove the veracity of even a "sure" guess concerning iterations : this is the case of the famous 3x+1 conjecture. Our purpose here is to study and conceptualize some intuitive insights related to the ultimate (un)solvability of this conjecture.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Algunos tópicos de Lógica matemática y los Fundamentos de la matemática.Franklin Galindo - manuscript
    En este trabajo matemático-filosófico se estudian cuatro tópicos de la Lógica matemática: El método de construcción de modelos llamado Ultraproductos, la Propiedad de Interpolación de Craig, las Álgebras booleanas y los Órdenes parciales separativos. El objetivo principal del mismo es analizar la importancia que tienen dichos tópicos para el estudio de los fundamentos de la matemática, desde el punto de vista del platonismo matemático. Para cumplir con tal objetivo se trabajará en el ámbito de la Matemática, de la Metamatemática y (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Nota: ¿CUÁL ES EL CARDINAL DEL CONJUNTO DE LOS NÚMEROS REALES?Franklin Galindo - manuscript
    ¿Qué ha pasado con el problema del cardinal del continuo después de Gödel (1938) y Cohen (1964)? Intentos de responder esta pregunta pueden encontrarse en los artículos de José Alfredo Amor (1946-2011), "El Problema del continuo después de Cohen (1964-2004)", de Carlos Di Prisco , "Are we closer to a solution of the continuum problem", y de Joan Bagaria, "Natural axioms of set and the continuum problem" , que se pueden encontrar en la biblioteca digital de mi blog de Lógica (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Principles and Philosophy of Linear Algebra: A Gentle Introduction.Paul Mayer - manuscript
    Linear Algebra is an extremely important field that extends everyday concepts about geometry and algebra into higher spaces. This text serves as a gentle motivating introduction to the principles (and philosophy) behind linear algebra. This is aimed at undergraduate students taking a linear algebra class - in particular engineering students who are expected to understand and use linear algebra to build and design things, however it may also prove helpful for philosophy majors and anyone else interested in the ideas behind (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. From Poetics to Mathematics: Vicente Mariner’s Latin Translation of Proclus’ In Euclidem.Álvaro José Campillo Bo - 2024 - Noctua 11 (2):258-294.
    This paper discusses the 17th-century Latin translation of Proclus’ Commentary on the First Book of Euclid’s Elements, preserved in Madrid, Biblioteca Nacional de España, MS 9871, produced by the Spaniard Vicente Mariner. The author examines the historical context, sources, and motivations behind Mariner’s translation, his intellectual profile, and the potential reasons for translating a mathematical text given his background in literature. Via a comparison of Mariner’s text with the original Greek, this paper delves into Mariner’s translation choices and linguistic nuances (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. El Axioma de elección en el quehacer matemático contemporáneo.Franklin Galindo & Randy Alzate - 2022 - Aitías 2 (3):49-126.
    Para matemáticos interesados en problemas de fundamentos, lógico-matemáticos y filósofos de la matemática, el axioma de elección es centro obligado de reflexión, pues ha sido considerado esencial en el debate dentro de las posiciones consideradas clásicas en filosofía de la matemática (intuicionismo, formalismo, logicismo, platonismo), pero también ha tenido una presencia fundamental para el desarrollo de la matemática y metamatemática contemporánea. Desde una posición que privilegia el quehacer matemático, nos proponemos mostrar los aportes que ha tenido el axioma en varias (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Introduction to the n-SuperHyperGraph - the most general form of graph today.Florentin Smarandache - 2022 - Neutrosophic Sets and Systems 48 (1):483-485.
    We recall and improve our 2019 and 2020 concepts of n-SuperHyperGraph, Plithogenic nSuperHyperGraph, n-Power Set of a Set, and we present some application from the real world. The nSuperHyperGraph is the most general form of graph today and it is able to describe the complex reality we live in, by using n-SuperVertices (groups of groups of groups etc.) and nSuperHyperEdges (edges connecting groups of groups of groups etc.).
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. (1 other version)On the correctness of problem solving in ancient mathematical procedure texts.Mario Bacelar Valente - 2020 - Revista de Humanidades de Valparaíso 16:169-189.
    It has been argued in relation to Old Babylonian mathematical procedure texts that their validity or correctness is self-evident. One “sees” that the procedure is correct without it having, or being accompanied by, any explicit arguments for the correctness of the procedure. Even when agreeing with this view, one might still ask about how is the correctness of a procedure articulated? In this work, we present an articulation of the correctness of ancient Egyptian and Old Babylonian mathematical procedure texts – (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Un teorema sobre el Modelo de Solovay.Franklin Galindo - 2020 - Divulgaciones Matematicas 21 (1-2): 42–46.
    The objective of this article is to present an original proof of the following theorem: Thereis a generic extension of the Solovay’s model L(R) where there is a linear order of P(N)/fin that extends to the partial order (P(N)/f in), ≤*). Linear orders of P(N)/fin are important because, among other reasons, they allow constructing non-measurable sets, moreover they are applied in Ramsey's Theory .
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Tópicos de Ultrafiltros.Franklin Galindo - 2020 - Divulgaciones Matematicas 21 (1-2):54-77.
    Ultrafilters are very important mathematical objects in mathematical research [6, 22, 23]. There are a wide variety of classical theorems in various branches of mathematics where ultrafilters are applied in their proof, and other classical theorems that deal directly with ultrafilters. The objective of this article is to contribute (in a divulgative way) to ultrafilter research by describing the demonstrations of some such theorems related (uniquely or in combination) to topology, Measure Theory, algebra, combinatorial infinite, set theory and first-order logic, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Algunas notas introductorias sobre la Teoría de Conjuntos.Franklin Galindo - 2019 - Apuntes Filosóficos: Revista Semestral de la Escuela de Filosofía 18 (55):201-232.
    The objective of this document is to present three introductory notes on set theory: The first note presents an overview of this discipline from its origins to the present, in the second note some considerations are made about the evaluation of reasoning applying the first-order Logic and Löwenheim's theorems, Church Indecidibility, Completeness and Incompleteness of Gödel, it is known that the axiomatic theories of most commonly used sets are written in a specific first-order language, that is, they are developed within (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. (1 other version)On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers.Urszula Wybraniec-Skardowska - 2019 - Axioms 2019 (Deductive Systems).
    The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two di erent ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural numbers and relation of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume I.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2018 - Basel, Switzerland: MDPI. Edited by Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali.
    The topics approached in the 52 papers included in this book are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Discrete and continuous: a fundamental dichotomy in mathematics.James Franklin - 2017 - Journal of Humanistic Mathematics 7 (2):355-378.
    The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last hundred years. This article (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  15. Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer.Yaroslav Sergeyev - 2013 - Applied Mathematics and Computation 219 (22):10668–10681.
    There exists a huge number of numerical methods that iteratively construct approximations to the solution y(x) of an ordinary differential equation (ODE) y′(x) = f(x,y) starting from an initial value y_0=y(x_0) and using a finite approximation step h that influences the accuracy of the obtained approximation. In this paper, a new framework for solving ODEs is presented for a new kind of a computer – the Infinity Computer (it has been patented and its working prototype exists). The new computer is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. What is The Reason to Use Clifford Algebra in Quantum Cognition? Part I: “It from Qubit” On The Possibility That the Amino Acids Can Discern Between Two Quantum Spin States.Elio Conte - 2012 - Neuroquantology 10 (3):561-565.
    Starting with 1985, we discovered the possible existence of electrons with net helicity in biomolecules as amino acids and their possibility to discern between the two quantum spin states. It is well known that the question of a possible fundamental role of quantum mechanics in biological matter constitutes still a long debate. In the last ten years we have given a rather complete quantum mechanical elaboration entirely based on Clifford algebra whose basic entities are isomorphic to the well known spin (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. Perfect set properties in models of ZF.Franklin Galindo & Carlos Di Prisco - 2010 - Fundamenta Mathematicae 208 (208):249-262.
    We study several perfect set properties of the Baire space which follow from the Ramsey property ω→(ω) ω . In particular we present some independence results which complete the picture of how these perfect set properties relate to each other.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. The gödel paradox and Wittgenstein's reasons.Francesco Berto - 2009 - Philosophia Mathematica 17 (2):208-219.
    An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent arithmetics match (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   10 citations  
  19. Walking Cautiously Into the Collatz Wilderness: Algorithmically, Number Theoretically, Randomly.Edward G. Belaga & Maurice Mignotte - 2006 - Discrete Mathematics and Theoretical Computer Science.
    Building on theoretical insights and rich experimental data of our preprints, we present here new theoretical and experimental results in three interrelated approaches to the Collatz problem and its generalizations: algorithmic decidability, random behavior, and Diophantine representation of related discrete dynamical systems, and their cyclic and divergent properties.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. Review of N. Wildberger, Divine Proportions: Rational Trigonometry to Universal[REVIEW]James Franklin - 2006 - Mathematical Intelligencer 28 (3):73-74.
    Reviews Wildberger's account of his rational trigonometry project, which argues for a simpler way of doing trigonometry that avoids irrationals.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  21. Countable fusion not yet proven guilty: it may be the Whiteheadian account of space whatdunnit.G. Oppy - 1997 - Analysis 57 (4):249-253.
    I criticise a paper by Peter Forrest in which he argues that a principle of unrestricted countable fusion has paradoxical consequences. I argue that the paradoxical consequences that he exhibits may be due to his Whiteheadean assumptions about the nature of spacetime rather than to the principle of unrestricted countable fusion.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  22. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic systems (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. On the Diagrammatic and Mechanical Representation of Propositions and Reasonings.John Venn - 1880 - Philosophical Magazine 9 (59):1-18.
    Schemes of diagrammatic representation have been so familiarly introduced into logical treatises during the last century or so, that many readers, even of those who have made no professional study of logic, may be supposed to be acquainted with the general nature and object of such devices. Of these schemes one only, viz. that commonly called "Eulerian circles," has met with any general acceptance. A variety of others indeed have been proposed by ingenious and celebrated logicians, several of which would (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   19 citations  
  24. El Método de Forcing: Algunas aplicaciones y una aproximación a sus fundamentos metamatemáticos.Franklin Galindo - manuscript
    Es conocido que el método de forcing es una de las técnicas de construcción de modelos más importantes de la Teoría de conjuntos en la actualidad, siendo el mismo muy útil para investigar problemas de matemática y/o de fundamentos de la matemática. El destacado matemático Joan Bagaria afirma lo siguiente sobre el método de forcing en su artículo "Paul Cohen y la técnica del forcing" (Gaceta de la Real Sociedad Matemática Española, Vol. 2, Nº 3, 1999, págs 543-553) : "Aunque (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. El Teorema de Completitud de Gödel, el Teorema del Colapso Transitivo de Mostowski y el Principio de Reflexión.Franklin Galindo - manuscript
    Es conocido que el Teorema de Completitud de Gödel, el Teorema del Colapso Transitivo de Mostowski y el Principio de Reflexión son resultados muy útiles en las investigaciones de Lógica matemática y/o los Fundamentos de la matemática. El objetivo de este trabajo es presentar algunas demostraciones clásicas de tales resultados: Dos del Teorema de Completitud de Gödel, una del Teorema del Colapso Transitivo de Mostowski y una del Principio de Reflexión. Se aspira que estas notas sean de utilidad para estudiar (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  26. Un problema abierto de independencia en la teoría de conjuntos relacionado con ultrafiltros no principales sobre el conjunto de los números naturales N, y con Propiedades Ramsey.Franklin Galindo - manuscript
    En el ámbito de la lógica matemática existe un problema sobre la relación lógica entre dos versiones débiles del Axioma de elección (AE) que no se ha podido resolver desde el año 2000 (aproximadamente). Tales versiones están relacionadas con ultrafiltros no principales y con Propiedades Ramsey (Bernstein, Polarizada, Subretículo, Ramsey, Ordinales flotantes, etc). La primera versión débil del AE es la siguiente (A): “Existen ultrafiltros no principales sobre el conjunto de los números naturales (ℕ)”. Y la segunda versión débil del (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. Whence the complex numbers?Hans Halvorson - manuscript
    A short note on why we use complex numbers in physics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. Special Systems Theory.Kent Palmer - manuscript
    A new advanced systems theory concerning the emergent nature of the Social, Consciousness, and Life based on Mathematics and Physical Analogies is presented. This meta-theory concerns the distance between the emergent levels of these phenomena and their ultra-efficacious nature. The theory is based on the distinction between Systems and Meta-systems (organized Openscape environments). We first realize that we can understand the difference between the System and the Meta-system in terms of the relationship between a ‘Whole greater than the sum of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. Iter Italicum and Leibniz/Giordano correspondence.Francesco Tampoia - manuscript
    Letters exchanged by scientists are a crucial source by which to trace the process that accompanies their scientific evolution. In this paper -accomplished through a historical approach- I aim to throw new light on Leibniz's continuing interest in classical geometry and to stress the significance of his correspondence with the Italian mathematician Vitale Giordano.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark