View topic on PhilPapers for more information
Related categories

5 found
Order:
More results on PhilPapers
  1. Physical Possibility and Determinate Number Theory.Sharon Berry - manuscript
    It's currently fashionable to take Putnamian model theoretic worries seriously for mathematics, but not for discussions of ordinary physical objects and the sciences. But I will argue that (under certain mild assumptions) merely securing determinate reference to physical possibility suffices to rule out nonstandard models of our talk of numbers. So anyone who accepts realist reference to physical possibility should not reject reference to the standard model of the natural numbers on Putnamian model theoretic grounds.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. The Construction of Transfinite Equivalence Algorithms.Han Geurdes - manuscript
    Context: Consistency of mathematical constructions in numerical analysis and the application of computerized proofs in the light of the occurrence of numerical chaos in simple systems. Purpose: To show that a computer in general and a numerical analysis in particular can add its own peculiarities to the subject under study. Hence the need of thorough theoretical studies on chaos in numerical simulation. Hence, a questioning of what e.g. a numerical disproof of a theorem in physics or a prediction in numerical (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order PA and Zermelo’s quasi-categoricity (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  4. The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Andrea Sereni & Francesca Boccuni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Berlin: Springer. pp. 165-188.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction of these statements (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. What is Absolute Undecidability?†.Justin Clarke-Doane - 2013 - Noûs 47 (3):467-481.
    It is often alleged that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   10 citations