Switch to: References

Citations of:

Time and Chance

Mind 114 (453):113-116 (2005)

Add citations

You must login to add citations.
  1. Making best systems best for us.Christian Loew & Siegfried Jaag - 2018 - Synthese 197 (6):2525-2550.
    Humean reductionism about laws of nature appears to leave a central aspect of scientific practice unmotivated: If the world’s fundamental structure is exhausted by the actual distribution of non-modal properties and the laws of nature are merely efficient summaries of this distribution, then why does science posit laws that cover a wide range of non-actual circumstances? In this paper, we develop a new version of the Humean best systems account of laws based on the idea that laws need to organize (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Causation and Time Reversal.Matt Farr - 2020 - British Journal for the Philosophy of Science 71 (1):177-204.
    What would it be for a process to happen backwards in time? Would such a process involve different causal relations? It is common to understand the time-reversal invariance of a physical theory in causal terms, such that whatever can happen forwards in time can also happen backwards in time. This has led many to hold that time-reversal symmetry is incompatible with the asymmetry of cause and effect. This article critiques the causal reading of time reversal. First, I argue that the (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Does my total evidence support that I’m a Boltzmann Brain?Sinan Dogramaci - 2020 - Philosophical Studies 177 (12):3717-3723.
    A Boltzmann Brain, haphazardly formed through the unlikely but still possible random assembly of physical particles, is a conscious brain having experiences just like an ordinary person. The skeptical possibility of being a Boltzmann Brain is an especially gripping one: scientific evidence suggests our actual universe’s full history may ultimately contain countless short-lived Boltzmann Brains with experiences just like yours or mine. I propose a solution to the skeptical challenge posed by these countless actual Boltzmann Brains. My key idea is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Causal after all : a model of mental causation for dualists.Bram Vaassen - 2019 - Dissertation, Umeå University
    In this dissertation, I develop and defend a model of causation that allows for dualist mental causation in worlds where the physical domain is physically complete. In Part I, I present the dualist ontology that will be assumed throughout the thesis and identify two challenges for models of mental causation within such an ontology: the exclusion worry and the common cause worry. I also argue that a proper response to these challenges requires a thoroughly lightweight account of causation, i.e. an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Primitive Directionality and Diachronic Grounding.Naoyuki Kajimoto, Kristie Miller & James Norton - 2019 - Acta Analytica 35 (2):195-211.
    Eternalists believe that there is no ontological difference between the past, present and future. Thus, a challenge arises: in virtue of what does time have a direction? Some eternalists, Oaklander and Tegtmeier ) argue that the direction of time is primitive. A natural response to positing primitive directionality is the suspicion that said posit is too mysterious to do any explanatory work. The aim of this paper is to relieve primitive directionality of some of its mystery by offering a novel (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Second Law of Thermodynamics and the Psychological Arrow of Time.Meir Hemmo & Orly Shenker - 2019 - British Journal for the Philosophy of Science 73 (1):85-107.
    Can the second law of thermodynamics explain our mental experience of the direction of time? According to an influential approach, the past hypothesis of universal low entropy also explains how the psychological arrow comes about. We argue that although this approach has many attractive features, it cannot explain the psychological arrow after all. In particular, we show that the past hypothesis is neither necessary nor sufficient to explain the psychological arrow on the basis of current physics. We propose two necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Universality caused: the case of renormalization group explanation.Emily Sullivan - 2019 - European Journal for Philosophy of Science 9 (3):36.
    Recently, many have argued that there are certain kinds of abstract mathematical explanations that are noncausal. In particular, the irrelevancy approach suggests that abstracting away irrelevant causal details can leave us with a noncausal explanation. In this paper, I argue that the common example of Renormalization Group explanations of universality used to motivate the irrelevancy approach deserves more critical attention. I argue that the reasons given by those who hold up RG as noncausal do not stand up to critical scrutiny. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Existence Is Evidence of Immortality.Michael Huemer - 2021 - Noûs 55 (1):128-151.
    Time may be infinite in both directions. If it is, then, if persons could live at most once in all of time, the probability that you would be alive now would be zero. But if persons can live more than once, the probability that you would be alive now would be nonzero. Since you are alive now, with certainty, either the past is finite, or persons can live more than once.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function and theories with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)The Role of Chance in Explanation.Bradford Skow - 2014 - Australasian Journal of Philosophy 92 (1):103-123.
    ‘Those ice cubes melted because by melting total entropy increased and entropy increase has a very high objective chance.’ What role does the chance in this explanation play? I argue that it contributes to the explanation by entailing that the melting was almost necessary, and defend the claim that the fact that some event was almost necessary can, in the right circumstances, constitute a causal explanation of that event.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Whither Evidentialist Reliabilism?Juan Comesaña - 2018 - In McCain Kevin (ed.), Believing in Accordance with the Evidence: New Essays on Evidentialism. Cham: Springer Verlag. pp. 307-25.
    Evidentialism and Reliabilism are two of the main contemporary theories of epistemic justification. Some authors have thought that the theories are not incompatible with each other, and that a hybrid theory which incorporates elements of both should be taken into account. More recently, other authors have argued that the resulting theory is well- placed to deal with fine-grained doxastic attitudes (credences). In this paper I review the reasons for adopting this kind of hybrid theory, paying attention to the case of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Necessity of Gibbsian Statistical Mechanics.David Wallace - unknown
    In discussions of the foundations of statistical mechanics, it is widely held that the Gibbsian and Boltzmannian approaches are incompatible but empirically equivalent; the Gibbsian approach may be calculationally preferable but only the Boltzmannian approach is conceptually satisfactory. I argue against both assumptions. Gibbsian statistical mechanics is applicable to a wide variety of problems and systems, such as the calculation of transport coefficients and the statistical mechanics and thermodynamics of mesoscopic systems, in which the Boltzmannian approach is inapplicable. And the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Dynamic Humeanism.Michael Townsen Hicks - 2017 - British Journal for the Philosophy of Science 69 (4):983-1007.
    Humean accounts of laws of nature fail to distinguish between dynamic laws and static initial conditions. But this distinction plays a central role in scientific theorizing and explanation. I motivate the claim that this distinction should matter for the Humean, and show that current views lack the resources to explain it. I then develop a regularity theory that captures this distinction. My view takes empirical accessibility to be one of the primary features of laws, and I identify features laws must (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • (1 other version)Counterfactuals, Irreversible Laws and The Direction of Time.Terrance A. Tomkow - manuscript
    The principle of Information Conservation or Determinism is a governing assumption of physical theory. Determinism has counterfactual consequences. It entails that if the present were different, then the future would be different. But determinism is temporally symmetric: it entails that if the present were different, the past would also have to be different. This runs contrary to our commonsense intuition that what has happened in the future depends on the past in a way the past does not depend on the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Specialisation and the Incommensurability Among Scientific Specialties.Vincenzo Politi - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (1):129-144.
    In his mature writings, Kuhn describes the process of specialisation as driven by a form of incommensurability, defined as a conceptual/linguistic barrier which promotes and guarantees the insularity of specialties. In this paper, we reject the idea that the incommensurability among scientific specialties is a linguistic barrier. We argue that the problem with Kuhn’s characterisation of the incommensurability among specialties is that he presupposes a rather abstract theory of semantic incommensurability, which he then tries to apply to his description of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • There Are no Metaphysical Primitives.Samuel Elgin - manuscript
    Many metaphysicians posit primitives. These vary with respect to the theoretical work that they perform, but are all undefinable in more basic terms. I argue against the existence of metaphysical primitives on the grounds that, if they existed, they would be essentially primitive. However, if primitives were essentially primitive, then they would have an essence. Because they are primitive, they lack an essence, which undermines the original supposition that they are primitive. I close by mentioning some implications this has both (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Causation, Realism, Determinism, and Probability in the Science and Philosophy of Max Born.Thomas Bunce - unknown
    In this thesis I will examine the philosophy of the physicist Max Born. As well as his scientific work, Born wrote on a number of philosophical topics: causation, realism, determinism, and probability. They appear as an interest throughout his career, but he particularly concentrates on them from the 1940s onwards. Born is a significant figure in the development of quantum mechanics whose philosophical work has been left largely unexamined. It is the aim of this thesis to elucidate and to critically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Did the Universe Have a Chance?C. D. McCoy - 2019 - Philosophy of Science 86 (5):1262-1272.
    In a world awash in statistical patterns, should we conclude that the universe’s evolution or genesis is somehow subject to chance? I draw attention to alternatives that must be acknowledged if we are to have an adequate assessment of what chance the universe might have had.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Standard Cosmological Model: Achievements and Issues.George Ellis - 2018 - Foundations of Physics 48 (10):1226-1245.
    The present day standard cosmological model is a great theoretical achievement. This chapter surveys the main themes that have arisen and issues that are still oustanding.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A subjectivist’s guide to deterministic chance.J. Dmitri Gallow - 2021 - Synthese 198 (5):4339-4372.
    I present an account of deterministic chance which builds upon the physico-mathematical approach to theorizing about deterministic chance known as 'the method of arbitrary functions'. This approach promisingly yields deterministic probabilities which align with what we take the chances to be---it tells us that there is approximately a 1/2 probability of a spun roulette wheel stopping on black, and approximately a 1/2 probability of a flipped coin landing heads up---but it requires some probabilistic materials to work with. I contend that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An Alternative Interpretation of Statistical Mechanics.C. D. McCoy - 2020 - Erkenntnis 85 (1):1-21.
    In this paper I propose an interpretation of classical statistical mechanics that centers on taking seriously the idea that probability measures represent complete states of statistical mechanical systems. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is associated directly with the observables of the theory rather than with the microstates (as traditional accounts would have it). The usual assumption that microstates are representationally significant in the theory is therefore dispensable, a consequence which suggests (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Fundamentality and Time’s Arrow.Christian Loew - 2018 - Philosophy of Science 85 (3):483-500.
    The distribution of matter in our universe is strikingly time asymmetric. Most famously, the Second Law of Thermodynamics says that entropy tends to increase toward the future but not toward the past. But what explains this time-asymmetric distribution of matter? In this paper, I explore the idea that time itself has a direction by drawing from recent work on grounding and metaphysical fundamentality. I will argue that positing such a direction of time, in addition to time-asymmetric boundary conditions, enables a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Levels: Descriptive, Explanatory, and Ontological.Christian List - 2017 - Noûs 53 (4):852-883.
    Scientists and philosophers frequently speak about levels of description, levels of explanation, and ontological levels. In this paper, I propose a unified framework for modelling levels. I give a general definition of a system of levels and show that it can accommodate descriptive, explanatory, and ontological notions of levels. I further illustrate the usefulness of this framework by applying it to some salient philosophical questions: (1) Is there a linear hierarchy of levels, with a fundamental level at the bottom? And (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Time Reversal Invariance in Quantum Mechanics.Reza Moulavi Ardakani - 2017 - Dissertation, Texas Tech University
    Symmetries have a crucial role in today’s physics. In this thesis, we are mostly concerned with time reversal invariance (T-symmetry). A physical system is time reversal invariant if its underlying laws are not sensitive to the direction of time. There are various accounts of time reversal transformation resulting in different views on whether or not a given theory in physics is time reversal invariant. With a focus on quantum mechanics, I describe the standard account of time reversal and compare it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Temporal Asymmetry of Counterfactuals.Terrance A. Tomkow & Kadri Vihvelin - manuscript
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Foundation of statistical mechanics: Mechanics by itself.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12465.
    Statistical mechanics is a strange theory. Its aims are debated, its methods are contested, its main claims have never been fully proven, and their very truth is challenged, yet at the same time, it enjoys huge empirical success and gives us the feeling that we understand important phenomena. What is this weird theory, exactly? Statistical mechanics is the name of the ongoing attempt to apply mechanics, together with some auxiliary hypotheses, to explain and predict certain phenomena, above all those described (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Foundation of statistical mechanics: The auxiliary hypotheses.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12464.
    Statistical mechanics is the name of the ongoing attempt to explain and predict certain phenomena, above all those described by thermodynamics on the basis of the fundamental theories of physics, in particular mechanics, together with certain auxiliary assumptions. In another paper in this journal, Foundations of statistical mechanics: Mechanics by itself, I have shown that some of the thermodynamic regularities, including the probabilistic ones, can be described in terms of mechanics by itself. But in order to prove those regularities, in (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A New Argument for the Nomological Interpretation of the Wave Function: The Galilean Group and the Classical Limit of Nonrelativistic Quantum Mechanics.Valia Allori - 2017 - International Studies in the Philosophy of Science (2):177-188.
    In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in agreement many physicists, Galilei invariance (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • No microphysical causation? No problem: selective causal skepticism and the structure of completeness-based arguments for physicalism.Matthew C. Haug - 2019 - Synthese 196 (3):1187-1208.
    A number of philosophers have argued that causation is not an objective feature of the microphysical world but rather is a perspectival phenomenon that holds only between “coarse-grained” entities such as those that figure in the special sciences. This view seems to pose a problem for arguments for physicalism that rely on the alleged causal completeness of physics. In this paper, I address this problem by arguing that the completeness of physics has two components, only one of which is causal. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Boltzmannian Immortality.Christian Loew - 2016 - Erkenntnis 82 (4):761-776.
    Plausible assumptions from Cosmology and Statistical Mechanics entail that it is overwhelmingly likely that there will be exact duplicates of us in the distant future long after our deaths. Call such persons “Boltzmann duplicates,” after the great pioneer of Statistical Mechanics. In this paper, I argue that if survival of death is possible at all, then we almost surely will survive our deaths because there almost surely will be Boltzmann duplicates of us in the distant future that stand in appropriate (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Chance and Temporal Asymmetry. [REVIEW]Patricia Palacios - 2016 - International Studies in the Philosophy of Science 30 (2):185-187.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Time in Cosmology.Chris Smeenk - 2013 - In Adrian Bardon & Heather Dyke (eds.), The Blackwell Companion to the Philosophy of Time. Wiley-Blackwell. pp. 201-219.
    This essay aims to provide a self-contained introduction to time in relativistic cosmology that clarifies both how questions about the nature of time should be posed in this setting and the extent to which they have been or can be answered empirically. The first section below recounts the loss of Newtonian absolute time with the advent of special and general relativity, and the partial recovery of absolute time in the form of cosmic time in some cosmological models. Section II considers (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Philosophy of the Physical Sciences.Chris Smeenk & Hoefer Carl - 2014 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. New York, NY, USA: Oxford University Press.
    The authors survey some debates about the nature and structure of physical theories and about the connections between our physical theories and naturalized metaphysics. The discussion is organized around an “ideal view” of physical theories and criticisms that can be raised against it. This view includes controversial commitments regarding the best analysis of physical modalities and intertheory relations. The authors consider the case in favor of taking laws as the primary modal notion, discussing objections related to alleged violations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ψ-epistemic quantum cosmology?Peter W. Evans, Sean Gryb & Karim P. Y. Thébault - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:1-12.
    This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a Ψ-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity and causally symmet- ric local hidden variable theories. Our conclusion weighs the strengths and weaknesses of the approach (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indistinguishability.Simon Saunders - unknown
    This is a systematic review of the concept of indistinguishability, in both classical and quantum mechanics, with particular attention to Gibbs paradox. Section 1 is on the Gibbs paradox; section 2 is a defense of classical indistinguishability, notwithstanding the widely-held view, that classical particles can always be distinguished by their trajectories. The last section is about the notion of object more generally, and on whether indistinguishables should be thought of as objects at all.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A Taxonomy of Views about Time in Buddhist and Western Philosophy.Kristie Miller - 2017 - Philosophy East and West 67 (3):763-782.
    We find the claim that time is not real in both western and eastern philosophical traditions. In what follows I will call the view that time does not exist temporal error theory. Temporal error theory was made famous in western analytic philosophy in the early 1900s by John McTaggart (1908) and, in much the same tradition, temporal error theory was subsequently defended by Gödel (1949). The idea that time is not real, however, stretches back much further than that. It is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Chance, Possibility, and Explanation.Nina Emery - 2015 - British Journal for the Philosophy of Science 66 (1):95-120.
    I argue against the common and influential view that non-trivial chances arise only when the fundamental laws are indeterministic. The problem with this view, I claim, is not that it conflicts with some antecedently plausible metaphysics of chance or that it fails to capture our everyday use of ‘chance’ and related terms, but rather that it is unstable. Any reason for adopting the position that non-trivial chances arise only when the fundamental laws are indeterministic is also a reason for adopting (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Physics and Causation.Thomas Blanchard - 2016 - Philosophy Compass 11 (5):256-266.
    More than a century ago, Russell launched a forceful attack on causation, arguing not only that modern physics has no need for causal notions but also that our belief in causation is a relic of a pre-scientific view of the world. He thereby initiated a debate about the relations between physics and causation that remains very much alive today. While virtually everybody nowadays rejects Russell's causal eliminativism, many philosophers have been convinced by Russell that the fundamental physical structure of our (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)On the Carroll–Chen Model.Christopher Gregory Weaver - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (1):97-124.
    I argue that the Carroll-Chen cosmogonic model does not provide a plausible scientific explanation of the past hypothesis (the thesis that our universe began in an extremely low-entropy state). I suggest that this counts as a welcomed result for those who adopt a Mill-Ramsey-Lewis best systems account of laws and maintain that the past hypothesis is a brute fact that is a non-dynamical law.
    Download  
     
    Export citation  
     
    Bookmark  
  • The problem of ontology for spontaneous collapse theories.Bradley Monton - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):407-421.
    The question of how to interpret spontaneous collapse theories of quantum mechanics is an open one. One issue involves what link one should use to go from wave function talk to talk of ordinary macroscopic objects. Another issue involves whether that link should be taken ontologically seriously. In this paper, I ague that the link should be taken ontologically seriously; I argue against an ontology consisting solely of the wave function. I then consider three possible links: the fuzzy link, the (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Deterministic Chance?Jonathan Schaffer - 2007 - British Journal for the Philosophy of Science 58 (2):113-140.
    Can there be deterministic chance? That is, can there be objective chance values other than 0 or 1, in a deterministic world? I will argue that the answer is no. In a deterministic world, the only function that can play the role of chance is one that outputs just Os and 1s. The role of chance involves connections from chance to credence, possibility, time, intrinsicness, lawhood, and causation. These connections do not allow for deterministic chance.
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • Sklar's Maneuver.Bradford Skow - 2007 - British Journal for the Philosophy of Science 58 (4):777-786.
    Sklar ([1974]) claimed that relationalism about ontology-the doctrine that space and time do not exist-is compatible with Newtonian mechanics. To defend this claim he sketched a relationalist interpretation of Newtonian mechanics. In his interpretation, absolute acceleration is a fundamental, intrinsic property of material bodies; that a body undergoes absolute acceleration does not entail that space and time exist. But Sklar left his proposal as just a sketch; his defense of relationalism succeeds only if the sketch can be filled in. I (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Causation, physics, and fit.Christian Loew - 2017 - Synthese 194 (6):1945–1965.
    Our ordinary causal concept seems to fit poorly with how our best physics describes the world. We think of causation as a time-asymmetric dependence relation between relatively local events. Yet fundamental physics describes the world in terms of dynamical laws that are, possible small exceptions aside, time symmetric and that relate global time slices. My goal in this paper is to show why we are successful at using local, time-asymmetric models in causal explanations despite this apparent mismatch with fundamental physics. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Arrow of Time in Physics.David Wallace - 2013 - In Adrian Bardon & Heather Dyke (eds.), A Companion to the Philosophy of Time. Malden, MA: Wiley-Blackwell. pp. 262–281.
    Every process studied in any science other than physics defines an arrow of time – to say nothing for the directedness of the processes of causation, inference, memory, control, and counterfactual dependence that occur in everyday life. The discussion in this chapter is confined to the arrow of time as it occurs in physics. The chapter briefly discusses those features of microscopic physics, which seem to conflict with time asymmetry. It explains just how this conflict plays out in the important (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Mathematical Representation of the Arrow of Time.Meir Hemmo & Orly Shenker - 2012 - Iyyun 61:167-192.
    This paper distinguishes between 3 meanings of reversal, all of which are mathematically equivalent in classical mechanics: velocity reversal, retrodiction, and time reversal. It then concludes that in order to have well defined velocities a primitive arrow of time must be included in every time slice. The paper briefly mentions that this arrow cannot come from the Second Law of thermodynamics, but this point is developed in more details elsewhere.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rethinking boltzmannian equilibrium.Charlotte Werndl & Roman Frigg - 2015 - Philosophy of Science 82 (5):1224-1235.
    Boltzmannian statistical mechanics partitions the phase space of a sys- tem into macro-regions, and the largest of these is identified with equilibrium. What justifies this identification? Common answers focus on Boltzmann’s combinatorial argument, the Maxwell-Boltzmann distribution, and maxi- mum entropy considerations. We argue that they fail and present a new answer. We characterise equilibrium as the macrostate in which a system spends most of its time and prove a new theorem establishing that equilib- rium thus defined corresponds to the largest (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations