Switch to: References

Citations of:

Time and Chance

Mind 114 (453):113-116 (2005)

Add citations

You must login to add citations.
  1. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • The logic of the past hypothesis.David Wallace - 2023 - In Barry Loewer, Brad Weslake & Eric B. Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _Time and Chance_. Cambridge MA: Harvard University Press. pp. 76-109.
    I attempt to get as clear as possible on the chain of reasoning by which irreversible macrodynamics is derivable from time-reversible microphysics, and in particular to clarify just what kinds of assumptions about the initial state of the universe, and about the nature of the microdynamics, are needed in these derivations. I conclude that while a “Past Hypothesis” about the early Universe does seem necessary to carry out such derivations, that Hypothesis is not correctly understood as a constraint on the (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • A better best system account of lawhood.Jonathan Cohen & Craig Callender - 2009 - Philosophical Studies 145 (1):1 - 34.
    Perhaps the most significant contemporary theory of lawhood is the Best System (/MRL) view on which laws are true generalizations that best systematize knowledge. Our question in this paper will be how best to formulate a theory of this kind. We’ll argue that an acceptable MRL should (i) avoid inter-system comparisons of simplicity, strength, and balance, (ii) make lawhood epistemically accessible, and (iii) allow for laws in the special sciences. Attention to these problems will bring into focus a useful menu (...)
    Download  
     
    Export citation  
     
    Bookmark   178 citations  
  • Deterministic Chance?Jonathan Schaffer - 2007 - British Journal for the Philosophy of Science 58 (2):113-140.
    Can there be deterministic chance? That is, can there be objective chance values other than 0 or 1, in a deterministic world? I will argue that the answer is no. In a deterministic world, the only function that can play the role of chance is one that outputs just Os and 1s. The role of chance involves connections from chance to credence, possibility, time, intrinsicness, lawhood, and causation. These connections do not allow for deterministic chance.
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • Causation and Time Reversal.Matt Farr - 2020 - British Journal for the Philosophy of Science 71 (1):177-204.
    What would it be for a process to happen backwards in time? Would such a process involve different causal relations? It is common to understand the time-reversal invariance of a physical theory in causal terms, such that whatever can happen forwards in time can also happen backwards in time. This has led many to hold that time-reversal symmetry is incompatible with the asymmetry of cause and effect. This article critiques the causal reading of time reversal. First, I argue that the (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Against Counterfactual Miracles.Cian Dorr - 2016 - Philosophical Review 125 (2):241-286.
    This paper considers how counterfactuals should be evaluated on the assumption that determinism is true. I argue against Lewis's influential view that the actual laws of nature would have been false if something had happened that never actually happened, and in favour of the competing view that history would have been different all the way back. I argue that we can do adequate justice to our ordinary practice of relying on a wide range of historical truths in evaluating counterfactuals by (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Making best systems best for us.Christian Loew & Siegfried Jaag - 2018 - Synthese 197 (6):2525-2550.
    Humean reductionism about laws of nature appears to leave a central aspect of scientific practice unmotivated: If the world’s fundamental structure is exhausted by the actual distribution of non-modal properties and the laws of nature are merely efficient summaries of this distribution, then why does science posit laws that cover a wide range of non-actual circumstances? In this paper, we develop a new version of the Humean best systems account of laws based on the idea that laws need to organize (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Causal Reasoning in Physics.Mathias Frisch - 2014 - Cambridge, United Kingdom: Cambridge University Press.
    Much has been written on the role of causal notions and causal reasoning in the so-called 'special sciences' and in common sense. But does causal reasoning also play a role in physics? Mathias Frisch argues that, contrary to what influential philosophical arguments purport to show, the answer is yes. Time-asymmetric causal structures are as integral a part of the representational toolkit of physics as a theory's dynamical equations. Frisch develops his argument partly through a critique of anti-causal arguments and partly (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Semantic Plasticity and Speech Reports.Cian Dorr & John Hawthorne - 2014 - Philosophical Review 123 (3):281-338.
    Most meanings we express belong to large families of variant meanings, among which it would be implausible to suppose that some are much more apt for being expressed than others. This abundance of candidate meanings creates pressure to think that the proposition attributing any particular meaning to an expression is modally plastic: its truth depends very sensitively on the exact microphysical state of the world. However, such plasticity seems to threaten ordinary counterfactuals whose consequents contain speech reports, since it is (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Deterministic chance.Luke Glynn - 2010 - British Journal for the Philosophy of Science 61 (1):51–80.
    I argue that there are non-trivial objective chances (that is, objective chances other than 0 and 1) even in deterministic worlds. The argument is straightforward. I observe that there are probabilistic special scientific laws even in deterministic worlds. These laws project non-trivial probabilities for the events that they concern. And these probabilities play the chance role and so should be regarded as chances as opposed, for example, to epistemic probabilities or credences. The supposition of non-trivial deterministic chances might seem to (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Quantum states for primitive ontologists: A case study.Gordon Belot - 2012 - European Journal for Philosophy of Science 2 (1):67-83.
    Under so-called primitive ontology approaches, in fully describing the history of a quantum system, one thereby attributes interesting properties to regions of spacetime. Primitive ontology approaches, which include some varieties of Bohmian mechanics and spontaneous collapse theories, are interesting in part because they hold out the hope that it should not be too difficult to make a connection between models of quantum mechanics and descriptions of histories of ordinary macroscopic bodies. But such approaches are dualistic, positing a quantum state as (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • (1 other version)Levels: Descriptive, Explanatory, and Ontological.Christian List - 2017 - Noûs 53 (4):852-883.
    Scientists and philosophers frequently speak about levels of description, levels of explanation, and ontological levels. In this paper, I propose a unified framework for modelling levels. I give a general definition of a system of levels and show that it can accommodate descriptive, explanatory, and ontological notions of levels. I further illustrate the usefulness of this framework by applying it to some salient philosophical questions: (1) Is there a linear hierarchy of levels, with a fundamental level at the bottom? And (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Existence Is Evidence of Immortality.Michael Huemer - 2021 - Noûs 55 (1):128-151.
    Time may be infinite in both directions. If it is, then, if persons could live at most once in all of time, the probability that you would be alive now would be zero. But if persons can live more than once, the probability that you would be alive now would be nonzero. Since you are alive now, with certainty, either the past is finite, or persons can live more than once.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Dynamic Humeanism.Michael Townsen Hicks - 2017 - British Journal for the Philosophy of Science 69 (4):983-1007.
    Humean accounts of laws of nature fail to distinguish between dynamic laws and static initial conditions. But this distinction plays a central role in scientific theorizing and explanation. I motivate the claim that this distinction should matter for the Humean, and show that current views lack the resources to explain it. I then develop a regularity theory that captures this distinction. My view takes empirical accessibility to be one of the primary features of laws, and I identify features laws must (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Fitness, probability and the principles of natural selection.Frederic Bouchard & Alexander Rosenberg - 2004 - British Journal for the Philosophy of Science 55 (4):693-712.
    We argue that a fashionable interpretation of the theory of natural selection as a claim exclusively about populations is mistaken. The interpretation rests on adopting an analysis of fitness as a probabilistic propensity which cannot be substantiated, draws parallels with thermodynamics which are without foundations, and fails to do justice to the fundamental distinction between drift and selection. This distinction requires a notion of fitness as a pairwise comparison between individuals taken two at a time, and so vitiates the interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • The modal nature of structures in ontic structural realism.Michael Esfeld - 2009 - International Studies in the Philosophy of Science 23 (2):179 – 194.
    Ontic structural realism is the view that structures are what is real in the first place in the domain of fundamental physics. The structures are usually conceived as including a primitive modality. However, it has not been spelled out as yet what exactly that modality amounts to. This paper proposes to fill this lacuna by arguing that the fundamental physical structures possess a causal essence, being powers. Applying the debate about causal vs categorical properties in analytic metaphysics to ontic structural (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Physics and Leibniz's principles.Simon Saunders - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 289--307.
    It is shown that the Hilbert-Bernays-Quine principle of identity of indiscernibles applies uniformly to all the contentious cases of symmetries in physics, including permutation symmetry in classical and quantum mechanics. It follows that there is no special problem with the notion of objecthood in physics. Leibniz's principle of sufficient reason is considered as well; this too applies uniformly. But given the new principle of identity, it no longer implies that space, or atoms, are unreal.
    Download  
     
    Export citation  
     
    Bookmark   130 citations  
  • Minimal Anti-Humeanism.Harjit Bhogal - 2017 - Australasian Journal of Philosophy 95 (3):447-460.
    There is a tension in our theorizing about laws of nature: our practice of using and reasoning with laws of nature suggests that laws are universal generalizations, but if laws are universal generalizations then we face the problem of explanatory circularity. In this paper I elucidate this tension and show how it motivates a view of laws that I call Minimal Anti-Humeanism. This view says that the laws are the universal generalizations that are not grounded in their instances. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function and theories with (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Against pointillisme about mechanics.Jeremy Butterfield - 2006 - British Journal for the Philosophy of Science 57 (4):709-753.
    This paper forms part of a wider campaign: to deny pointillisme, the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. More specifically, this paper argues against pointillisme about the concept of velocity in classical mechanics; especially against proposals by Tooley, Robinson and Lewis. (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • The Best Humean System for Statistical Mechanics.Roman Frigg & Carl Hoefer - 2015 - Erkenntnis 80 (S3):551-574.
    Classical statistical mechanics posits probabilities for various events to occur, and these probabilities seem to be objective chances. This does not seem to sit well with the fact that the theory’s time evolution is deterministic. We argue that the tension between the two is only apparent. We present a theory of Humean objective chance and show that chances thus understood are compatible with underlying determinism and provide an interpretation of the probabilities we find in Boltzmannian statistical mechanics.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Varieties of Bayesianism.Jonathan Weisberg - 2011
    Handbook of the History of Logic, vol. 10, eds. Dov Gabbay, Stephan Hartmann, and John Woods, forthcoming.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • An Alternative Interpretation of Statistical Mechanics.C. D. McCoy - 2020 - Erkenntnis 85 (1):1-21.
    In this paper I propose an interpretation of classical statistical mechanics that centers on taking seriously the idea that probability measures represent complete states of statistical mechanical systems. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is associated directly with the observables of the theory rather than with the microstates (as traditional accounts would have it). The usual assumption that microstates are representationally significant in the theory is therefore dispensable, a consequence which suggests (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Does my total evidence support that I’m a Boltzmann Brain?Sinan Dogramaci - 2020 - Philosophical Studies 177 (12):3717-3723.
    A Boltzmann Brain, haphazardly formed through the unlikely but still possible random assembly of physical particles, is a conscious brain having experiences just like an ordinary person. The skeptical possibility of being a Boltzmann Brain is an especially gripping one: scientific evidence suggests our actual universe’s full history may ultimately contain countless short-lived Boltzmann Brains with experiences just like yours or mine. I propose a solution to the skeptical challenge posed by these countless actual Boltzmann Brains. My key idea is (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Probabilities in Statistical Mechanics.Wayne C. Myrvold - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 573-600.
    This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, Gibbs, and (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Asymmetry, Abstraction, and Autonomy: Justifying Coarse-Graining in Statistical Mechanics.Katie Robertson - 2020 - British Journal for the Philosophy of Science 71 (2):547-579.
    While the fundamental laws of physics are time-reversal invariant, most macroscopic processes are irreversible. Given that the fundamental laws are taken to underpin all other processes, how can the fundamental time-symmetry be reconciled with the asymmetry manifest elsewhere? In statistical mechanics, progress can be made with this question. What I dub the ‘Zwanzig–Zeh–Wallace framework’ can be used to construct the irreversible equations of SM from the underlying microdynamics. Yet this framework uses coarse-graining, a procedure that has faced much criticism. I (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Time-Asymmetry of Causation.Huw Price & Brad Weslake - 2009 - In Helen Beebee, Christopher Hitchcock & Peter Menzies (eds.), The Oxford Handbook of Causation. Oxford University Press UK. pp. 414-443.
    One of the most striking features of causation is that causes typically precede their effects – the causal arrow is strongly aligned with the temporal arrow. Why should this be so? We offer an opinionated guide to this problem, and to the solutions currently on offer. We conclude that the most promising strategy is to begin with the de facto asymmetry of human deliberation, characterised in epistemic terms, and to build out from there. More than any rival, this subjectivist approach (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • A Probabilistic Semantics for Counterfactuals. Part A.Hannes Leitgeb - 2012 - Review of Symbolic Logic 5 (1):26-84.
    This is part A of a paper in which we defend a semantics for counterfactuals which is probabilistic in the sense that the truth condition for counterfactuals refers to a probability measure. Because of its probabilistic nature, it allows a counterfactual ‘ifAthenB’ to be true even in the presence of relevant ‘Aand notB’-worlds, as long such exceptions are not too widely spread. The semantics is made precise and studied in different versions which are related to each other by representation theorems. (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Foundation of statistical mechanics: The auxiliary hypotheses.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12464.
    Statistical mechanics is the name of the ongoing attempt to explain and predict certain phenomena, above all those described by thermodynamics on the basis of the fundamental theories of physics, in particular mechanics, together with certain auxiliary assumptions. In another paper in this journal, Foundations of statistical mechanics: Mechanics by itself, I have shown that some of the thermodynamic regularities, including the probabilistic ones, can be described in terms of mechanics by itself. But in order to prove those regularities, in (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A subjectivist’s guide to deterministic chance.J. Dmitri Gallow - 2021 - Synthese 198 (5):4339-4372.
    I present an account of deterministic chance which builds upon the physico-mathematical approach to theorizing about deterministic chance known as 'the method of arbitrary functions'. This approach promisingly yields deterministic probabilities which align with what we take the chances to be---it tells us that there is approximately a 1/2 probability of a spun roulette wheel stopping on black, and approximately a 1/2 probability of a flipped coin landing heads up---but it requires some probabilistic materials to work with. I contend that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Twenty-one arguments against propensity analyses of probability.Antony Eagle - 2004 - Erkenntnis 60 (3):371–416.
    I argue that any broadly dispositional analysis of probability will either fail to give an adequate explication of probability, or else will fail to provide an explication that can be gainfully employed elsewhere (for instance, in empirical science or in the regulation of credence). The diversity and number of arguments suggests that there is little prospect of any successful analysis along these lines.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • GRW as an ontology of dispositions.Mauro Dorato & Michael Esfeld - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (1):41-49.
    The paper argues that the formulation of quantum mechanics proposed by Ghirardi, Rimini and Weber (GRW) is a serious candidate for being a fundamental physical theory and explores its ontological commitments from this perspective. In particular, we propose to conceive of spatial superpositions of non-massless microsystems as dispositions or powers, more precisely propensities, to generate spontaneous localizations. We set out five reasons for this view, namely that (1) it provides for a clear sense in which quantum systems in entangled states (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Typicality and the approach to equilibrium in Boltzmannian statistical mechanics.Roman Frigg - 2009 - Philosophy of Science 76 (5):997-1008.
    An important contemporary version of Boltzmannian statistical mechanics explains the approach to equilibrium in terms of typicality. The problem with this approach is that it comes in different versions, which are, however, not recognized as such and not clearly distinguished. This article identifies three different versions of typicality‐based explanations of thermodynamic‐like behavior and evaluates their respective successes. The conclusion is that the first two are unsuccessful because they fail to take the system's dynamics into account. The third, however, is promising. (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Can conditioning on the “past hypothesis” militate against the reversibility objections?Eric Winsberg - 2004 - Philosophy of Science 71 (4):489-504.
    In his recent book, Time and Chance, David Albert claims that by positing that there is a uniform probability distribution defined, on the standard measure, over the space of microscopic states that are compatible with both the current macrocondition of the world, and with what he calls the “past hypothesis”, we can explain the time asymmetry of all of the thermodynamic behavior in the world. The principal purpose of this paper is to dispute this claim. I argue that Albert's proposal (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • A Relic of a Bygone Age? Causation, Time Symmetry and the Directionality Argument.Matt Farr & Alexander Reutlinger - 2013 - Erkenntnis 78 (2):215-235.
    Bertrand Russell famously argued that causation is not part of the fundamental physical description of the world, describing the notion of cause as “a relic of a bygone age”. This paper assesses one of Russell’s arguments for this conclusion: the ‘Directionality Argument’, which holds that the time symmetry of fundamental physics is inconsistent with the time asymmetry of causation. We claim that the coherence and success of the Directionality Argument crucially depends on the proper interpretation of the ‘ time symmetry’ (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Time's ontic voltage.Craig Callender - 2011 - In Adrian Bardon (ed.), The Future of the Philosophy of Time. London: Routledge. pp. 73-94.
    Philosophy of time, as practiced throughout the last hundred years, is both language- and existence-obsessed. It is language-obsessed in the sense that the primary venue for attacking questions about the nature of time—in sharp contrast to the primary venue for questions about space—has been philosophy of language. Although other areas of philosophy have long recognized that there is a yawning gap between language and the world, the message is spreading slowly in philosophy of time.[1] Since twentieth-century analytic philosophy as a (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Special Sciences, Conspiracy and the Better Best System Account of Lawhood.Jonathan Cohen & Craig Callender - 2010 - Erkenntnis 73 (3):427 - 447.
    An important obstacle to lawhood in the special sciences is the worry that such laws would require metaphysically extravagant conspiracies among fundamental particles. How, short of conspiracy, is this possible? In this paper we'll review a number of strategies that allow for the projectibility of special science generalizations without positing outlandish conspiracies: non-Humean pluralism, classical MRL theories of laws, and Albert and Loewer's theory. After arguing that none of the above fully succeed, we consider the conspiracy problem through the lens (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Black Hole Thermodynamics: More Than an Analogy?John Dougherty & Craig Callender - unknown
    Black hole thermodynamics is regarded as one of the deepest clues we have to a quantum theory of gravity. It motivates scores of proposals in the field, from the thought that the world is a hologram to calculations in string theory. The rationale for BHT playing this important role, and for much of BHT itself, originates in the analogy between black hole behavior and ordinary thermodynamic systems. Claiming the relationship is “more than a formal analogy,” black holes are said to (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Simplicity in the Best Systems Account of Laws of Nature.James Woodward - 2014 - British Journal for the Philosophy of Science 65 (1):91-123.
    This article discusses the role of simplicity and the notion of a best balance of simplicity and strength within the best systems account (BSA) of laws of nature. The article explores whether there is anything in scientific practice that corresponds to the notion of simplicity or to the trade-off between simplicity and strength to which the BSA appeals. Various theoretical rationales for simplicity preferences and their bearing on the identification of laws are also explored. It is concluded that there are (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Physical causation and difference-making.Alyssa Ney - 2009 - British Journal for the Philosophy of Science 60 (4):737-764.
    This paper examines the relationship between physical theories of causation and theories of difference-making. It is plausible to think that such theories are compatible with one another as they are aimed at different targets: the former, an empirical account of actual causal relations; the latter, an account that will capture the truth of most of our ordinary causal claims. The question then becomes: what is the relationship between physical causation and difference-making? Is one kind of causal fact more fundamental than (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Deterministic Chance.Antony Eagle - 2010 - Noûs 45 (2):269 - 299.
    I sketch a new constraint on chance, which connects chance ascriptions closely with ascriptions of ability, and more specifically with 'CAN'-claims. This connection between chance and ability has some claim to be a platitude; moreover, it exposes the debate over deterministic chance to the extensive literature on (in)compatibilism about free will. The upshot is that a prima facie case for the tenability of deterministic chance can be made. But the main thrust of the paper is to draw attention to the (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Explaining Thermodynamic-Like Behavior in Terms of Epsilon-Ergodicity.Roman Frigg & Charlotte Werndl - 2011 - Philosophy of Science 78 (4):628-652.
    Gases reach equilibrium when left to themselves. Why do they behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the systems have to be ergodic. This answer has been criticised on different grounds and is now widely regarded as flawed. In this paper we argue that some of the main arguments against Boltzmann's answer, in particular, arguments based on the KAM-theorem and the Markus-Meyer theorem, are beside the point. We then argue that something (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • On A- and B-theoretic elements of branching spacetimes.Matt Farr - 2012 - Synthese 188 (1):85-116.
    This paper assesses branching spacetime theories in light of metaphysical considerations concerning time. I present the A, B, and C series in terms of the temporal structure they impose on sets of events, and raise problems for two elements of extant branching spacetime theories—McCall’s ‘branch attrition’, and the ‘no backward branching’ feature of Belnap’s ‘branching space-time’—in terms of their respective A- and B-theoretic nature. I argue that McCall’s presentation of branch attrition can only be coherently formulated on a model with (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • What time reversal invariance is and why it matters.John Earman - 2002 - International Studies in the Philosophy of Science 16 (3):245 – 264.
    David Albert's Time and Chance (2000) provides a fresh and interesting perspective on the problem of the direction of time. Unfortunately, the book opens with a highly non-standard exposition of time reversal invariance that distorts the subsequent discussion. The present article not only has the remedial goal of setting the record straight about the meaning of time reversal invariance, but it also aims to show how the niceties of this symmetry concept matter to the problem of the direction of time (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Typicality, Irreversibility and the Status of Macroscopic Laws.Dustin Lazarovici & Paula Reichert - 2015 - Erkenntnis 80 (4):689-716.
    We discuss Boltzmann’s probabilistic explanation of the second law of thermodynamics providing a comprehensive presentation of what is called today the typicality account. Countering its misconception as an alternative explanation, we examine the relation between Boltzmann’s H-theorem and the general typicality argument demonstrating the conceptual continuity between the two. We then discuss the philosophical dimensions of the concept of typicality and its relevance for scientific reasoning in general, in particular for understanding the reduction of macroscopic laws to microscopic laws. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Three myths about time reversal in quantum theory.Bryan W. Roberts - 2017 - Philosophy of Science 84 (2):315-334.
    Many have suggested that the transformation standardly referred to as `time reversal' in quantum theory is not deserving of the name. I argue on the contrary that the standard definition is perfectly appropriate, and is indeed forced by basic considerations about the nature of time in the quantum formalism.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Microphysical Causation and the Case for Physicalism.Alyssa Ney - 2016 - Analytic Philosophy 57 (1):141-164.
    Physicalism is sometimes portrayed by its critics as a dogma, but there is an empirical argument for the position, one based on the accumulation of diverse microphysical causal explanations in physics, chemistry, and physiology. The canonical statement of this argument was presented in 2001 by David Papineau. The goal of this paper is to demonstrate a tension that arises between this way of understanding the empirical case for physicalism and a view that is becoming practically a received position in philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Rethinking boltzmannian equilibrium.Charlotte Werndl & Roman Frigg - 2015 - Philosophy of Science 82 (5):1224-1235.
    Boltzmannian statistical mechanics partitions the phase space of a sys- tem into macro-regions, and the largest of these is identified with equilibrium. What justifies this identification? Common answers focus on Boltzmann’s combinatorial argument, the Maxwell-Boltzmann distribution, and maxi- mum entropy considerations. We argue that they fail and present a new answer. We characterise equilibrium as the macrostate in which a system spends most of its time and prove a new theorem establishing that equilib- rium thus defined corresponds to the largest (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations