Switch to: References

Add citations

You must login to add citations.
  1. A Reassessment of Cantorian Abstraction based on the $$\varepsilon $$ ε -operator.Nicola Bonatti - 2022 - Synthese 200 (5):1-26.
    Cantor’s abstractionist account of cardinal numbers has been criticized by Frege as a psychological theory of numbers which leads to contradiction. The aim of the paper is to meet these objections by proposing a reassessment of Cantor’s proposal based upon the set theoretic framework of Bourbaki—called BK—which is a First-order set theory extended with Hilbert’s \-operator. Moreover, it is argued that the BK system and the \-operator provide a faithful reconstruction of Cantor’s insights on cardinal numbers. I will introduce first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Evolutionary Argument for a Self-Explanatory, Benevolent Metaphysics.Ward Blondé - 2015 - Symposion: Theoretical and Applied Inquiries in Philosophy and Social Sciences 2 (2):143-166.
    In this paper, a metaphysics is proposed that includes everything that can be represented by a well-founded multiset. It is shown that this metaphysics, apart from being self-explanatory, is also benevolent. Paradoxically, it turns out that the probability that we were born in another life than our own is zero. More insights are gained by inducing properties from a metaphysics that is not self-explanatory. In particular, digital metaphysics is analyzed, which claims that only computable things exist. First of all, it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intuitionism in the Philosophy of Mathematics: Introducing a Phenomenological Account.Philipp Berghofer - 2020 - Philosophia Mathematica 28 (2):204-235.
    The aim of this paper is to establish a phenomenological mathematical intuitionism that is based on fundamental phenomenological-epistemological principles. According to this intuitionism, mathematical intuitions are sui generis mental states, namely experiences that exhibit a distinctive phenomenal character. The focus is on two questions: what does it mean to undergo a mathematical intuition and what role do mathematical intuitions play in mathematical reasoning? While I crucially draw on Husserlian principles and adopt ideas we find in phenomenologically minded mathematicians such as (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)In support of significant modernization of original mathematical texts (in defense of presentism).A. G. Barabashev - 1997 - Philosophia Mathematica 5 (1):21-41.
    At their extremes, the modernization of ancient mathematical texts (absolute presentism) leaves nothing of the source and the refusal to modernize (absolute antiquarism) changes nothing. The extremes exist only as tendencies. This paper attempts to justify the admissibility of broad modernization of mathematical sources (presentism) in the context of a socio-cultural (non-fundamentalist) philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Sts: A Structural Theory Of Sets.A. Baltag - 1999 - Logic Journal of the IGPL 7 (4):481-515.
    We explore a non-classical, universal set theory, based on a purely 'structural' conception of sets. A set is a transfinite process of unfolding of an arbitrary binary structure, with identity of sets given by the observational equivalence between such processes. We formalize these notions using infinitary modal logic, which provides partial descriptions for set structures up to observational equivalence. We describe the comprehension and topological properties of the resulting set-theory, and we use it to give non-classical solutions to classical paradoxes, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • What did Frege take Russell to have proved?John Woods - 2019 - Synthese 198 (4):3949-3977.
    In 1902 there arrived in Jena a letter from Russell laying out a proof that shattered Frege’s confidence in logicism, which is widely taken to be the doctrine according to which every truth of arithmetic is re-expressible without relevant loss as a provable truth about a purely logical object. Frege was persuaded that Russell had exposed a pathology in logicism, which faced him with the task of examining its symptoms, diagnosing its cause, assessing its seriousness, arriving at a treatment option, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How are Concepts of Infinity Acquired?Kazimierz Trzęsicki - 2015 - Studies in Logic, Grammar and Rhetoric 40 (1):179-217.
    Concepts of infinity have been subjects of dispute since antiquity. The main problems of this paper are: is the mind able to acquire a concept of infinity? and: how are concepts of infinity acquired? The aim of this paper is neither to say what the meanings of the word “infinity” are nor what infinity is and whether it exists. However, those questions will be mentioned, but only in necessary extent.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bolzano’s Infinite Quantities.Kateřina Trlifajová - 2018 - Foundations of Science 23 (4):681-704.
    In his Foundations of a General Theory of Manifolds, Georg Cantor praised Bernard Bolzano as a clear defender of actual infinity who had the courage to work with infinite numbers. At the same time, he sharply criticized the way Bolzano dealt with them. Cantor’s concept was based on the existence of a one-to-one correspondence, while Bolzano insisted on Euclid’s Axiom of the whole being greater than a part. Cantor’s set theory has eventually prevailed, and became a formal basis of contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infinity and continuum in the alternative set theory.Kateřina Trlifajová - 2021 - European Journal for Philosophy of Science 12 (1):1-23.
    Alternative set theory was created by the Czech mathematician Petr Vopěnka in 1979 as an alternative to Cantor’s set theory. Vopěnka criticised Cantor’s approach for its loss of correspondence with the real world. Alternative set theory can be partially axiomatised and regarded as a nonstandard theory of natural numbers. However, its intention is much wider. It attempts to retain a correspondence between mathematical notions and phenomena of the natural world. Through infinity, Vopěnka grasps the phenomena of vagueness. Infinite sets are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cantor, God, and Inconsistent Multiplicities.Aaron R. Thomas-Bolduc - 2016 - Studies in Logic, Grammar and Rhetoric 44 (1):133-146.
    The importance of Georg Cantor’s religious convictions is often neglected in discussions of his mathematics and metaphysics. Herein I argue, pace Jan ́e (1995), that due to the importance of Christianity to Cantor, he would have never thought of absolutely infinite collections/inconsistent multiplicities,as being merely potential, or as being purely mathematical entities. I begin by considering and rejecting two arguments due to Ignacio Jan ́e based on letters to Hilbert and the generating principles for ordinals, respectively, showing that my reading (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Boltzmann on mathematics.Setsuko Tanaka - 1999 - Synthese 119 (1-2):203-232.
    Boltzmann’s lectures on natural philosophy point out how the principles of mathematics are both an improvement on traditional philosophy and also serve as a necessary foundation of physics or what the English call “Natura Philosophy”, a title which he will retain for his own lectures. We start with lecture #3 and the mathematical contents of his lectures plus a few philosophical comments. Because of the length of the lectures as a whole we can only give the main points of each (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ontology of Divinity.Mirosław Szatkowski (ed.) - 2024 - Boston: De Gruyter.
    This volume announces a new era in the philosophy of God. Many of its contributions work to create stronger links between the philosophy of God, on the one hand, and mathematics or metamathematics, on the other hand. It is about not only the possibilities of applying mathematics or metamathematics to questions about God, but also the reverse question: Does the philosophy of God have anything to offer mathematics or metamathematics? The remaining contributions tackle stereotypes in the philosophy of religion. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the number of gods.Eric Steinhart - 2012 - International Journal for Philosophy of Religion 72 (2):75-83.
    A god is a cosmic designer-creator. Atheism says the number of gods is 0. But it is hard to defeat the minimal thesis that some possible universe is actualized by some possible god. Monotheists say the number of gods is 1. Yet no degree of perfection can be coherently assigned to any unique god. Lewis says the number of gods is at least the second beth number. Yet polytheists cannot defend an arbitrary plural number of gods. An alternative is that, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mengenlehre—Vom Himmel Cantors zur Theoria prima inter pares.Peter Schreiber - 1996 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 4 (1):129-143.
    On the occasion of the 150th birthday of Georg Cantor (1845–1918), the founder of the theory of sets, the development of the logical foundations of this theory is described as a sequence of catastrophes and of trials to save it. Presently, most mathematicians agree that the set theory exactly defines the subject of mathematics, i.e., any subject is a mathematical one if it may be defined in the language (i.e., in the notions) of set theory. Hence the nature of formal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Perspective on Hilbert.David E. Rowe - 1997 - Perspectives on Science 5 (4):533-570.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Concept grounding and knowledge of set theory.Jeffrey W. Roland - 2010 - Philosophia 38 (1):179-193.
    C. S. Jenkins has recently proposed an account of arithmetical knowledge designed to be realist, empiricist, and apriorist: realist in that what’s the case in arithmetic doesn’t rely on us being any particular way; empiricist in that arithmetic knowledge crucially depends on the senses; and apriorist in that it accommodates the time-honored judgment that there is something special about arithmetical knowledge, something we have historically labeled with ‘a priori’. I’m here concerned with the prospects for extending Jenkins’s account beyond arithmetic—in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Labyrinth of Continua.Patrick Reeder - 2018 - Philosophia Mathematica 26 (1):1-39.
    This is a survey of the concept of continuity. Efforts to explicate continuity have produced a plurality of philosophical conceptions of continuity that have provably distinct expressions within contemporary mathematics. I claim that there is a divide between the conceptions that treat the whole continuum as prior to its parts, and those conceptions that treat the parts of the continuum as prior to the whole. Along this divide, a tension emerges between those conceptions that favor philosophical idealizations of continuity and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dimitry Gawronsky: Reality and Actual Infinitesimals.Hernán Pringe - 2023 - Kant Studien 114 (1):68-97.
    The aim of this paper is to analyze Dimitry Gawronsky’s doctrine of actual infinitesimals. I examine the peculiar connection that his critical idealism establishes between transcendental philosophy and mathematics. In particular, I reconstruct the relationship between Gawronsky’s differentials, Cantor’s transfinite numbers, Veronese’s trans-Archimedean numbers and Robinson’s hyperreal numbers. I argue that by means of his doctrine of actual infinitesimals, Gawronsky aims to provide an interpretation of calculus that eliminates any alleged given element in knowledge.
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotle’s Alternative to Enduring and Perduring: Lasting.John M. Pemberton - 2022 - Ancient Philosophy Today 4 (2):217-236.
    Although Aristotle does not explicitly address persistence, his account of persisting may be derived from a careful consideration of his account of change. On my interpretation, he supposes that motions are mereological unities of their potential temporal parts – I dub such mereological unities ‘lasting’. Aristotle’s persisting things, too, are lasting, I argue. Lasting things are unlike enduring things in that they have temporal parts; and unlike perduring things in that their temporal parts are not actual, but rather are potential. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Mathematical Model of Divine Infinity.Eric Steinhart - 2009 - Theology and Science 7 (3):261-274.
    Mathematics is obviously important in the sciences. And so it is likely to be equally important in any effort that aims to understand God in a scientifically significant way or that aims to clarify the relations between science and theology. The degree to which God has any perfection is absolutely infinite. We use contemporary mathematics to precisely define that absolute infinity. For any perfection, we use transfinite recursion to define an endlessly ascending series of degrees of that perfection. That series (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Traditional logic and the early history of sets, 1854-1908.José Ferreirós - 1996 - Archive for History of Exact Sciences 50 (1):5-71.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Absolute Infinity, Knowledge, and Divinity in the Thought of Cusanus and Cantor (ABSTRACT ONLY).Anne Newstead - 2024 - In Mirosław Szatkowski (ed.), Ontology of Divinity. Boston: De Gruyter. pp. 561-580.
    Renaissance philosopher, mathematician, and theologian Nicholas of Cusa (1401-1464) said that there is no proportion between the finite mind and the infinite. He is fond of saying reason cannot fully comprehend the infinite. That our best hope for attaining a vision and understanding of infinite things is by mathematics and by the use of contemplating symbols, which help us grasp "the absolute infinite". By the late 19th century, there is a decisive intervention in mathematics and its philosophy: the philosophical mathematician (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • A Cantorian argument against infinitesimals.Matthew E. Moore - 2002 - Synthese 133 (3):305 - 330.
    In 1887 Georg Cantor gave an influential but cryptic proof of theimpossibility of infinitesimals. I first give a reconstruction ofCantor's argument which relies mainly on traditional assumptions fromEuclidean geometry, together with elementary results of Cantor's ownset theory. I then apply the reconstructed argument to theinfinitesimals of Abraham Robinson's nonstandard analysis. Thisbrings out the importance for the argument of an assumption I call theChain Thesis. Doubts about the Chain Thesis are seen to render thereconstructed argument inconclusive as an attack on the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Changes of language in the development of mathematics.Ladislav Kvasz - 2000 - Philosophia Mathematica 8 (1):47-83.
    The nature of changes in mathematics was discussed recently in Revolutions in Mathematics. The discussion was dominated by historical and sociological arguments. An obstacle to a philosophical analysis of this question lies in a discrepancy between our approach to formulas and to pictures. While formulas are understood as constituents of mathematical theories, pictures are viewed only as heuristic tools. Our idea is to consider the pictures contained in mathematical text, as expressions of a specific language. Thus we get formulas and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Alan Turing and the origins of complexity.Miguel Angel Martin-Delgado - 2013 - Arbor 189 (764):a083.
    Download  
     
    Export citation  
     
    Bookmark  
  • Measuring the Size of Infinite Collections of Natural Numbers: Was Cantor’s Theory of Infinite Number Inevitable?Paolo Mancosu - 2009 - Review of Symbolic Logic 2 (4):612-646.
    Cantor’s theory of cardinal numbers offers a way to generalize arithmetic from finite sets to infinite sets using the notion of one-to-one association between two sets. As is well known, all countable infinite sets have the same ‘size’ in this account, namely that of the cardinality of the natural numbers. However, throughout the history of reflections on infinity another powerful intuition has played a major role: if a collectionAis properly included in a collectionBthen the ‘size’ ofAshould be less than the (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Defining nothingness: Kazimir Malevich and religious renaissance.Tatiana Levina - 2024 - Studies in East European Thought 76 (2):247-261.
    In the treatise “Suprematism. The World as Objectlessness or Eternal Peace” (1922), Kazimir Malevich positions himself as a “bookless philosopher” who did not consider theories of other philosophers. In fact, the treatise contains a large number of references to philosophers belonging to different traditions. A careful reading shows the extent to which Malevich’s theory is linked to the Russian religious philosophy of the early twentieth century. In my view, Nikolai Berdyaev, Sergei Bulgakov, Pavel Florensky—philosophers of “Religious Renaissance,” as well as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Debates about infinity in mathematics around 1890: The Cantor-Veronese controversy, its origins and its outcome.Detlef Laugwitz - 2002 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 10 (1-3):102-126.
    This article was found among the papers left by Prof. Laugwitz (May 5, 1932–April 17, 2000). The following abstract is extracted from a lecture he gave at the Fourth Austrain Symposion on the History of Mathematics (Neuhofen/ybbs, November 10, 1995).About 100 years ago, the Cantor-Veronese controversy found wide interest and lasted for more than 20 years. It is concerned with “actual infinity” in mathematics. Cantor, supported by Peano and others, believed to have shown the non-existence of infinitely small quantities, and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The problem of the invariance of dimension in the growth of modern topology, part II.Dale M. Johnson - 1981 - Archive for History of Exact Sciences 25 (2-3):85-266.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On tarski’s assumptions.Jaakko Hintikka - 2005 - Synthese 142 (3):353-369.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Did Georg Cantor influence Edmund Husserl?Claire Ortiz Hill - 1997 - Synthese 113 (1):145-170.
    Few have entertained the idea that Georg Cantor, the creator of set theory, might have influenced Edmund Husserl, the founder of the phenomenological movement. Yet an exchange of ideas took place between them when Cantor was at the height of his creative powers and Husserl in the throes of an intellectual struggle during which his ideas were particularly malleable and changed considerably and definitively. Here their writings are examined to show how Husserl's and Cantor's ideas overlapped and crisscrossed in the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The negative theology of absolute infinity: Cantor, mathematics, and humility.Rico Gutschmidt & Merlin Carl - 2024 - International Journal for Philosophy of Religion 95 (3):233-256.
    Cantor argued that absolute infinity is beyond mathematical comprehension. His arguments imply that the domain of mathematics cannot be grasped by mathematical means. We argue that this inability constitutes a foundational problem. For Cantor, however, the domain of mathematics does not belong to mathematics, but to theology. We thus discuss the theological significance of Cantor’s treatment of absolute infinity and show that it can be interpreted in terms of negative theology. Proceeding from this interpretation, we refer to the recent debate (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-Representational Mathematical Realism.María José Frápolli - 2015 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 30 (3):331-348.
    This paper is an attempt to convince anti-realists that their correct intuitions against the metaphysical inflationism derived from some versions of mathematical realism do not force them to embrace non-standard, epistemic approaches to truth and existence. It is also an attempt to convince mathematical realists that they do not need to implement their perfectly sound and judicious intuitions with the anti-intuitive developments that render full-blown mathematical realism into a view which even Gödel considered objectionable. I will argue for the following (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes.Philip Ehrlich - 2006 - Archive for History of Exact Sciences 60 (1):1-121.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Defending Wittgenstein.Piotr Dehnel - 2023 - Philosophical Investigations 47 (1):137-149.
    Samuel J. Wheeler defends Wittgenstein's criticism of Cantor's set theory against the objections raised by Hilary Putnam. Putnam claims that Wittgenstein's dismissal of the basic tenets of this set theory concerning the noncountability of the set of real numbers was unfounded and ill‐conceived. In Wheeler's view, Putnam's charges result from his failure to grasp Wittgenstein's intention and, in particular, to consider the difference between empirical and logical impossibility. In my paper, I argue that Wheeler's defence is unsuccessful and, at the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Informal and Absolute Proofs: Some Remarks from a Gödelian Perspective.Gabriella Crocco - 2019 - Topoi 38 (3):561-575.
    After a brief discussion of Kreisel’s notion of informal rigour and Myhill’s notion of absolute proof, Gödel’s analysis of the subject is presented. It is shown how Gödel avoids the notion of informal proof because such a use would contradict one of the senses of “formal” that Gödel wants to preserve. This Gödelian notion of “formal” is directly tied to his notion of absolute proof and to the question of the general applicability of concepts, in a way that overcomes both (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Purism: Logic as the Basis of Morality.* Primus - 2021 - Essays in the Philosophy of Humanism 29:1-36.
    In this article I attempt to overcome extant obstacles in deriving fundamental, objective and logically deduced definitions of personhood and their rights, by introducing an a priori paradigm of beings and morality. I do so by drawing a distinction between entities that are sought as ends and entities that are sought as means to said ends. The former entities, I offer, are the essence of personhood and are considered precious by observers possessing a logical system of valuation. The latter entities (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Sets, Logic, Computation: An Open Introduction to Metalogic.Richard Zach - 2019 - Open Logic Project.
    An introductory textbook on metalogic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. The audience is undergraduate students with some background in formal logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Inquiries into Cognition: Wittgenstein’s Language-Games and Peirce’s Semeiosis for the Philosophy of Cognition.Andrey Pukhaev - 2013 - Dissertation, Gregorian University
    SUMMARY Major theories of philosophical psychology and philosophy of mind are examined on the basis of the fundamental questions of ontology, metaphysics, epistemology, semantics and logic. The result is the choice between language of eliminative reductionism and dualism, neither of which answers properly the relation between mind and body. In the search for a non–dualistic and non–reductive language, Wittgenstein’s notion of language–games as the representative links between language and the world is considered together with Peirce’s semeiosis of cognition. The result (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Matematyka w teologii, teologia w matematyce.Stanisław Krajewski - 2016 - Zagadnienia Filozoficzne W Nauce 60:99-118.
    Mathematicians use theological metaphors when they talk in the kitchen of mathematics. How essential is this talk? Have theological considerations and religious concepts influenced mathematics? Can mathematical models illuminate theology? Some authors have given positive answers to these questions, but they do not seem final. It is unclear how religious views influenced the work of those mathematicians who were also theologians. Religious background of some mathematical concepts could have been inessential. Mathematical models in theology have no predictive value. It is, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophical method and Galileo's paradox of infinity.Matthew W. Parker - 2009 - In Bart Van Kerkhove (ed.), New Perspectives on Mathematical Practices: Essays in Philosophy and History of Mathematics. World Scientific.
    We consider an approach to some philosophical problems that I call the Method of Conceptual Articulation: to recognize that a question may lack any determinate answer, and to re-engineer concepts so that the question acquires a definite answer in such a way as to serve the epistemic motivations behind the question. As a case study we examine “Galileo’s Paradox”, that the perfect square numbers seem to be at once as numerous as the whole numbers, by one-to-one correspondence, and yet less (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Naturalizing Badiou: mathematical ontology and structural realism.Fabio Gironi - 2014 - New York: Palgrave-Macmillan.
    This thesis offers a naturalist revision of Alain Badiou’s philosophy. This goal is pursued through an encounter of Badiou’s mathematical ontology and theory of truth with contemporary trends in philosophy of mathematics and philosophy of science. I take issue with Badiou’s inability to elucidate the link between the empirical and the ontological, and his residual reliance on a Heideggerian project of fundamental ontology, which undermines his own immanentist principles. I will argue for both a bottom-up naturalisation of Badiou’s philosophical approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Galileo’s paradox and numerosities.Piotr Błaszczyk - 2021 - Philosophical Problems in Science 70:73-107.
    Galileo's paradox of infinity involves comparing the set of natural numbers, N, and the set of squares, {n2 : n ∈ N}. Galileo sets up a one-to-one correspondence between these sets; on this basis, the number of the elements of N is considered to be equal to the number of the elements of {n2 : n ∈ N}. It also characterizes the set of squares as smaller than the set of natural numbers, since ``there are many more numbers than squares". (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Alegatos contra el superplatonismo de Balaguer.Matías Alejandro Guirado - 2016 - Filosofia Unisinos 17 (1):40-49.
    Mark Balaguer ha elaborado una peculiar variante del platonismo matemático –denominada ‘full-blooded platonism’ o ‘FBP’– para solucionar el problema de Benacerraf sobre la inaccesibilidad de las entidades abstractas. Según FBP, todos los objetos matemáticos consistentemente caracterizables existen, aunque de modo contingente. En este trabajo quisiera mostrar que la plenitud ontológica y la contingencia modal no pueden converger en una teoría de objetos matemáticos filosóficamente respetable. Para esto argumento que FBP no cubre algunos factores elementales de confiabilidad epistémica y que envuelve (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics as the art of abstraction.Richard L. Epstein - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 257--289.
    Download  
     
    Export citation  
     
    Bookmark   3 citations