Switch to: References

Add citations

You must login to add citations.
  1. Proof theory and constructive mathematics.Anne S. Troelstra - 1977 - In Jon Barwise (ed.), Handbook of mathematical logic. New York: North-Holland. pp. 973--1052.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Cut Elimination in the Presence of Axioms.Sara Negri & Jan Von Plato - 1998 - Bulletin of Symbolic Logic 4 (4):418-435.
    A way is found to add axioms to sequent calculi that maintains the eliminability of cut, through the representation of axioms as rules of inference of a suitable form. By this method, the structural analysis of proofs is extended from pure logic to free-variable theories, covering all classical theories, and a wide class of constructive theories. All results are proved for systems in which also the rules of weakening and contraction can be eliminated. Applications include a system of predicate logic (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Gentzen's proof systems: byproducts in a work of genius.Jan von Plato - 2012 - Bulletin of Symbolic Logic 18 (3):313-367.
    Gentzen's systems of natural deduction and sequent calculus were byproducts in his program of proving the consistency of arithmetic and analysis. It is suggested that the central component in his results on logical calculi was the use of a tree form for derivations. It allows the composition of derivations and the permutation of the order of application of rules, with a full control over the structure of derivations as a result. Recently found documents shed new light on the discovery of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Which Quantifiers Are Logical?Solomon Feferman - unknown
    ✤ It is the characterization of those forms of reasoning that lead invariably from true sentences to true sentences, independently of the subject matter.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Reality of Existence and Identity.Allen Hazen - 1985 - Canadian Journal of Philosophy 15 (1):25 - 35.
    Ian Hacking's [6] is a spirited romp though a broad field of metaphysics, touching on a variety of important questions, and appealing to deep results in mathematical logic while remaining free of logical pedantry. Philosophical journals might be more fun to read if others could write in his style. It is an essay in applying the theory of logic expounded in more detail in his very interesting [7]. Unfortunately, despite my sympathy for his project, I have a number of criticisms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Extensions of the Finitist Point of View.Matthias Schirn & Karl-Georg Niebergall - 2001 - History and Philosophy of Logic 22 (3):135-161.
    Hilbert developed his famous finitist point of view in several essays in the 1920s. In this paper, we discuss various extensions of it, with particular emphasis on those suggested by Hilbert and Bernays in Grundlagen der Mathematik (vol. I 1934, vol. II 1939). The paper is in three sections. The first deals with Hilbert's introduction of a restricted ? -rule in his 1931 paper ?Die Grundlegung der elementaren Zahlenlehre?. The main question we discuss here is whether the finitist (meta-)mathematician would (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Expanding the universe of universal logic.James Trafford - 2014 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 29 (3):325-343.
    In [5], Béziau provides a means by which Gentzen’s sequent calculus can be combined with the general semantic theory of bivaluations. In doing so, according to Béziau, it is possible to construe the abstract “core” of logics in general, where logical syntax and semantics are “two sides of the same coin”. The central suggestion there is that, by way of a modification of the notion of maximal consistency, it is possible to prove the soundness and completeness for any normal logic. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Completeness before Post: Bernays, Hilbert, and the development of propositional logic.Richard Zach - 1999 - Bulletin of Symbolic Logic 5 (3):331-366.
    Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917-1923. The aim of this paper is to describe these results, focussing (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The mathematical development of set theory from Cantor to Cohen.Akihiro Kanamori - 1996 - Bulletin of Symbolic Logic 2 (1):1-71.
    Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions cast in set-theoretic terms and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The problem of logical constants.Mario Gómez-Torrente - 2002 - Bulletin of Symbolic Logic 8 (1):1-37.
    There have been several different and even opposed conceptions of the problem of logical constants, i.e. of the requirements that a good theory of logical constants ought to satisfy. This paper is in the first place a survey of these conceptions and a critique of the theories they have given rise to. A second aim of the paper is to sketch some ideas about what a good theory would look like. A third aim is to draw from these ideas and (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Cut-elimination and a permutation-free sequent calculus for intuitionistic logic.Roy Dyckhoff & Luis Pinto - 1998 - Studia Logica 60 (1):107-118.
    We describe a sequent calculus, based on work of Herbelin, of which the cut-free derivations are in 1-1 correspondence with the normal natural deduction proofs of intuitionistic logic. We present a simple proof of Herbelin's strong cut-elimination theorem for the calculus, using the recursive path ordering theorem of Dershowitz.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Contraction-free sequent calculi for intuitionistic logic.Roy Dyckhoff - 1992 - Journal of Symbolic Logic 57 (3):795-807.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Types as graphs: Continuations in type logical grammar. [REVIEW]Chris Barker & Chung-Chieh Shan - 2006 - Journal of Logic, Language and Information 15 (4):331-370.
    Using the programming-language concept of continuations, we propose a new, multimodal analysis of quantification in Type Logical Grammar. Our approach provides a geometric view of in-situ quantification in terms of graphs, and motivates the limited use of empty antecedents in derivations. Just as continuations are the tool of choice for reasoning about evaluation order and side effects in programming languages, our system provides a principled, type-logical way to model evaluation order and side effects in natural language. We illustrate with an (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Definite Formulae, Negation-as-Failure, and the Base-Extension Semantics of Intuitionistic Propositional Logic.Alexander V. Gheorghiu & David J. Pym - 2023 - Bulletin of the Section of Logic 52 (2):239-266.
    Proof-theoretic semantics (P-tS) is the paradigm of semantics in which meaning in logic is based on proof (as opposed to truth). A particular instance of P-tS for intuitionistic propositional logic (IPL) is its base-extension semantics (B-eS). This semantics is given by a relation called support, explaining the meaning of the logical constants, which is parameterized by systems of rules called bases that provide the semantics of atomic propositions. In this paper, we interpret bases as collections of definite formulae and use (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What Types Should Not Be.Bruno Bentzen - 2020 - Philosophia Mathematica 28 (1):60-76.
    In a series of papers Ladyman and Presnell raise an interesting challenge of providing a pre-mathematical justification for homotopy type theory. In response, they propose what they claim to be an informal semantics for homotopy type theory where types and terms are regarded as mathematical concepts. The aim of this paper is to raise some issues which need to be resolved for the successful development of their types-as-concepts interpretation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Negation and infinity.Kazimierz Trzęsicki - 2018 - Studies in Logic, Grammar and Rhetoric 54 (1):131-148.
    Infinity and negation are in various relations and interdependencies one to another. The analysis of negation and infinity aims to better understanding them. Semantical, syntactical, and pragmatic issues will be considered.
    Download  
     
    Export citation  
     
    Bookmark  
  • Supposition and representation in human reasoning.Simon J. Handley & Jonathan StB. T. Evans - 2000 - Thinking and Reasoning 6 (4):273-311.
    We report the results of three experiments designed to assess the role of suppositions in human reasoning. Theories of reasoning based on formal rules propose that the ability to make suppositions is central to deductive reasoning. Our first experiment compared two types of problem that could be solved by a suppositional strategy. Our results showed no difference in difficulty between problems requiring affirmative or negative suppositions and very low logical solution rates throughout. Further analysis of the error data showed a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Pure logic of iterated full ground.Jon Erling Litland - 2018 - Review of Symbolic Logic 11 (3):411-435.
    This article develops the Pure Logic of Iterated Full Ground (PLIFG), a logic of ground that can deal with claims of the form “ϕ grounds that (ψ grounds θ)”—what we call iterated grounding claims. The core idea is that some truths Γ ground a truth ϕ when there is an explanatory argument (of a certain sort) from premisses Γ to conclusion ϕ. By developing a deductive system that distinguishes between explanatory and nonexplanatory arguments we can give introduction rules for operators (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Enciclopédia de Termos Lógico-Filosóficos.João Miguel Biscaia Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.
    Esta enciclopédia abrange, de uma forma introdutória mas desejavelmente rigorosa, uma diversidade de conceitos, temas, problemas, argumentos e teorias localizados numa área relativamente recente de estudos, os quais tem sido habitual qualificar como «estudos lógico-filosóficos». De uma forma apropriadamente genérica, e apesar de o território teórico abrangido ser extenso e de contornos por vezes difusos, podemos dizer que na área se investiga um conjunto de questões fundamentais acerca da natureza da linguagem, da mente, da cognição e do raciocínio humanos, bem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Labelled Tree Sequents, Tree Hypersequents and Nested Sequents.Rajeev Goré & Revantha Ramanayake - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 279-299.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism, constructivity and Hilbert's program.Solomon Feferman - 2008 - Dialectica 62 (2):179-203.
    This is a survey of Gödel's perennial preoccupations with the limits of finitism, its relations to constructivity, and the significance of his incompleteness theorems for Hilbert's program, using his published and unpublished articles and lectures as well as the correspondence between Bernays and Gödel on these matters. There is also an important subtext, namely the shadow of Hilbert that loomed over Gödel from the beginning to the end.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Weak disharmony: Some lessons for proof-theoretic semantics.Bogdan Dicher - 2016 - Review of Symbolic Logic (3):1-20.
    A logical constant is weakly disharmonious if its elimination rules are weaker than its introduction rules. Substructural weak disharmony is the weak disharmony generated by structural restrictions on the eliminations. I argue that substructural weak disharmony is not a defect of the constants which exhibit it. To the extent that it is problematic, it calls into question the structural properties of the derivability relation. This prompts us to rethink the issue of controlling the structural properties of a logic by means (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A New Unified Account of Truth and Paradox.N. Tennant - 2015 - Mind 124 (494):571-605.
    I propose an anti-realist account of truth and paradox according to which the logico-semantic paradoxes are not genuine inconsistencies. The ‘global’ proofs of absurdity associated with these paradoxes cannot be brought into normal form. The account combines epistemicism about truth with a proof-theoretic diagnosis of paradoxicality. The aim is to combine a substantive philosophical account of truth with a more rigorous and technical diagnosis of the source of paradox for further consideration by logicians. Core Logic plays a central role in (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The processing of negations in conditional reasoning: A meta-analytic case study in mental model and/or mental logic theory.Walter J. Schroyens, Walter Schaeken & Géry D'Ydewalle - 2001 - Thinking and Reasoning 7 (2):121-172.
    We present a meta-analytic review on the processing of negations in conditional reasoning about affirmation problems (Modus Ponens: “MP”, Affirmation of the Consequent “AC”) and denial problems (Denial of the Antecedent “DA”, and Modus Tollens “MT”). Findings correct previous generalisations about the phenomena. First, the effects of negation in the part of the conditional about which an inference is made, are not constrained to denial problems. These inferential-negation effects are also observed on AC. Second, there generally are reliable effects of (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Mathematical Infinity, Its Inventors, Discoverers, Detractors, Defenders, Masters, Victims, Users, and Spectators.Edward G. Belaga - manuscript
    "The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
    Download  
     
    Export citation  
     
    Bookmark  
  • Natural deduction and sequent calculus for intuitionistic relevant logic.Neil Tennant - 1987 - Journal of Symbolic Logic 52 (3):665-680.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Sequent calculus in natural deduction style.Sara Negri & Jan von Plato - 2001 - Journal of Symbolic Logic 66 (4):1803-1816.
    A sequent calculus is given in which the management of weakening and contraction is organized as in natural deduction. The latter has no explicit weakening or contraction, but vacuous and multiple discharges in rules that discharge assumptions. A comparison to natural deduction is given through translation of derivations between the two systems. It is proved that if a cut formula is never principal in a derivation leading to the right premiss of cut, it is a subformula of the conclusion. Therefore (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Takeuti's Well-Ordering Proof: Finitistically Fine?Eamon Darnell & Aaron Thomas-Bolduc - 2018 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics The CSHPM 2017 Annual Meeting in Toronto, Ontario. New York: Birkhäuser.
    If it could be shown that one of Gentzen's consistency proofs for pure number theory could be shown to be finitistically acceptable, an important part of Hilbert's program would be vindicated. This paper focuses on whether the transfinite induction on ordinal notations needed for Gentzen's second proof can be finitistically justified. In particular, the focus is on Takeuti's purportedly finitistically acceptable proof of the well-ordering of ordinal notations in Cantor normal form. The paper begins with a historically informed discussion of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Reflecting rules: A note on generalizing the deduction theorem.Gillman Payette - 2015 - Journal of Applied Logic 13 (3):188-196.
    The purpose of this brief note is to prove a limitative theorem for a generalization of the deduction theorem. I discuss the relationship between the deduction theorem and rules of inference. Often when the deduction theorem is claimed to fail, particularly in the case of normal modal logics, it is the result of a confusion over what the deduction theorem is trying to show. The classic deduction theorem is trying to show that all so-called ‘derivable rules’ can be encoded into (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dialogical Harmony: tonk, constructive type theory and rules for anonymous players.Juan Redmond & Shahid Rahman - unknown
    Recent literature on dialogical logic discusses the case of tonk and the notion harmony in the context of a rule-based theory of meaning. Now, since the publications of those papers, a dialogical version of constructive type theory has been developed. The aim of the present paper is to show that, from the dialogical point of view, the harmony of the CTT-rules is the consequence of a more fundamental level of meaning characterized by the independence of players. We hope that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hilbert's 'Verunglückter Beweis', the first epsilon theorem, and consistency proofs.Richard Zach - 2004 - History and Philosophy of Logic 25 (2):79-94.
    In the 1920s, Ackermann and von Neumann, in pursuit of Hilbert's programme, were working on consistency proofs for arithmetical systems. One proposed method of giving such proofs is Hilbert's epsilon-substitution method. There was, however, a second approach which was not reflected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert's first epsilon theorem and a certain "general consistency result" due to Bernays. An analysis of the form of this so-called "failed proof" (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Phase transitions for Gödel incompleteness.Andreas Weiermann - 2009 - Annals of Pure and Applied Logic 157 (2-3):281-296.
    Gödel’s first incompleteness result from 1931 states that there are true assertions about the natural numbers which do not follow from the Peano axioms. Since 1931 many researchers have been looking for natural examples of such assertions and breakthroughs were obtained in the seventies by Jeff Paris [Some independence results for Peano arithmetic. J. Symbolic Logic 43 725–731] , Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977] and Laurie Kirby [L. Kirby, Jeff Paris, Accessible independence results for Peano Arithmetic, Bull. of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Does the deduction theorem fail for modal logic?Raul Hakli & Sara Negri - 2012 - Synthese 187 (3):849-867.
    Various sources in the literature claim that the deduction theorem does not hold for normal modal or epistemic logic, whereas others present versions of the deduction theorem for several normal modal systems. It is shown here that the apparent problem arises from an objectionable notion of derivability from assumptions in an axiomatic system. When a traditional Hilbert-type system of axiomatic logic is generalized into a system for derivations from assumptions, the necessitation rule has to be modified in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Does reductive proof theory have a viable rationale?Solomon Feferman - 2000 - Erkenntnis 53 (1-2):63-96.
    The goals of reduction andreductionism in the natural sciences are mainly explanatoryin character, while those inmathematics are primarily foundational.In contrast to global reductionistprograms which aim to reduce all ofmathematics to one supposedly ``universal'' system or foundational scheme, reductive proof theory pursues local reductions of one formal system to another which is more justified in some sense. In this direction, two specific rationales have been proposed as aims for reductive proof theory, the constructive consistency-proof rationale and the foundational reduction rationale. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The consistency of number theory via herbrand's theorem.T. M. Scanlon - 1973 - Journal of Symbolic Logic 38 (1):29-58.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An epistemic approach to paraconsistency: a logic of evidence and truth.Walter Carnielli & Abilio Rodrigues - 2019 - Synthese 196 (9):3789-3813.
    The purpose of this paper is to present a paraconsistent formal system and a corresponding intended interpretation according to which true contradictions are not tolerated. Contradictions are, instead, epistemically understood as conflicting evidence, where evidence for a proposition A is understood as reasons for believing that A is true. The paper defines a paraconsistent and paracomplete natural deduction system, called the Basic Logic of Evidence, and extends it to the Logic of Evidence and Truth. The latter is a logic of (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Hilbert's program relativized: Proof-theoretical and foundational reductions.Solomon Feferman - 1988 - Journal of Symbolic Logic 53 (2):364-384.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Decoding Gentzen's Notation.Luca Bellotti - 2018 - History and Philosophy of Logic 39 (3):270-288.
    In this note we consider Gentzen's first ordinal notation, used in his first published proof of the consistency of Peano Arithmetic. It is a decimal notation, quite different from our current notations. We give a rule to translate this notation into our usual set-theoretic notation and we show some of its peculiarities. Then we indicate how to decode Gentzen's assignment of ordinal notations to derivations and give some examples. Finally, we go through his proof of their decrease after the application (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A sequent calculus isomorphic to gentzen’s natural deduction.Jan von Plato - 2011 - Review of Symbolic Logic 4 (1):43-53.
    Gentzens natural deduction. Thereby the appearance of the cuts in translation is explained.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A semantics of evidence for classical arithmetic.Thierry Coquand - 1995 - Journal of Symbolic Logic 60 (1):325-337.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • An ecumenical notion of entailment.Elaine Pimentel, Luiz Carlos Pereira & Valeria de Paiva - 2019 - Synthese 198 (S22):5391-5413.
    Much has been said about intuitionistic and classical logical systems since Gentzen’s seminal work. Recently, Prawitz and others have been discussing how to put together Gentzen’s systems for classical and intuitionistic logic in a single unified system. We call Prawitz’ proposal the Ecumenical System, following the terminology introduced by Pereira and Rodriguez. In this work we present an Ecumenical sequent calculus, as opposed to the original natural deduction version, and state some proof theoretical properties of the system. We reason that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Note on the Admissibility of Cut in Relevant Tableau Systems.Michael A. McRobbie & Robert K. Meyer - 1979 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 25 (32):511-512.
    Download  
     
    Export citation  
     
    Bookmark  
  • Informal and Absolute Proofs: Some Remarks from a Gödelian Perspective.Gabriella Crocco - 2019 - Topoi 38 (3):561-575.
    After a brief discussion of Kreisel’s notion of informal rigour and Myhill’s notion of absolute proof, Gödel’s analysis of the subject is presented. It is shown how Gödel avoids the notion of informal proof because such a use would contradict one of the senses of “formal” that Gödel wants to preserve. This Gödelian notion of “formal” is directly tied to his notion of absolute proof and to the question of the general applicability of concepts, in a way that overcomes both (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • OMEGA: Resource-Adaptive Processes in an Automated Reasoning Systems.Autexier Serge, Benzmüller Christoph, Dietrich Dominik & Siekmann Jörg - 2010 - In Matthew W. Crocker & Jörg Siekmann (eds.), Resource-Adaptive Cognitive Processes. Springer. pp. 389-423.
    Download  
     
    Export citation  
     
    Bookmark