Switch to: References

Add citations

You must login to add citations.
  1. Set Theory, Topology, and the Possibility of Junky Worlds.Thomas Mormann - 2014 - Notre Dame Journal of Formal Logic 55 (1): 79 - 90.
    A possible world is a junky world if and only if each thing in it is a proper part. The possibility of junky worlds contradicts the principle of general fusion. Bohn (2009) argues for the possibility of junky worlds, Watson (2010) suggests that Bohn‘s arguments are flawed. This paper shows that the arguments of both authors leave much to be desired. First, relying on the classical results of Cantor, Zermelo, Fraenkel, and von Neumann, this paper proves the possibility of junky (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Foundations for Mathematical Structuralism.Uri Nodelman & Edward N. Zalta - 2014 - Mind 123 (489):39-78.
    We investigate the form of mathematical structuralism that acknowledges the existence of structures and their distinctive structural elements. This form of structuralism has been subject to criticisms recently, and our view is that the problems raised are resolved by proper, mathematics-free theoretical foundations. Starting with an axiomatic theory of abstract objects, we identify a mathematical structure as an abstract object encoding the truths of a mathematical theory. From such foundations, we derive consequences that address the main questions and issues that (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The innateness hypothesis and mathematical concepts.Helen3 De Cruz & Johan De Smedt - 2010 - Topoi 29 (1):3-13.
    In historical claims for nativism, mathematics is a paradigmatic example of innate knowledge. Claims by contemporary developmental psychologists of elementary mathematical skills in human infants are a legacy of this. However, the connection between these skills and more formal mathematical concepts and methods remains unclear. This paper assesses the current debates surrounding nativism and mathematical knowledge by teasing them apart into two distinct claims. First, in what way does the experimental evidence from infants, nonhuman animals and neuropsychology support the nativist (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Abstract objects.Gideon Rosen - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Category theory and the foundations of mathematics: Philosophical excavations.Jean-Pierre Marquis - 1995 - Synthese 103 (3):421 - 447.
    The aim of this paper is to clarify the role of category theory in the foundations of mathematics. There is a good deal of confusion surrounding this issue. A standard philosophical strategy in the face of a situation of this kind is to draw various distinctions and in this way show that the confusion rests on divergent conceptions of what the foundations of mathematics ought to be. This is the strategy adopted in the present paper. It is divided into 5 (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Epistemic logicism & Russell's regressive method.A. D. Irvine - 1989 - Philosophical Studies 55 (3):303 - 327.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On creeping minimalism and the nature of minimal entities.Luca Moretti - 2008 - In Heather Dyke (ed.), From Truth to Reality: New Essays in Logic and Metaphysics. New York: Routledge.
    The general tendency or attitude that Dreier 2004 calls creeping minimalism is ramping up in contemporary analytic philosophy. Those who entertain this attitude will take for granted a framework of deflationary or minimal notions – principally semantical1 and ontological – by means of which to analyse problems in different philosophical fields – e.g. theory of truth, metaethics, philosophy of language, the debate on realism and antirealism, etc. Let us call sweeping minimalist the philosopher affected by creeping minimalism. The framework of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematics and reality.Stewart Shapiro - 1983 - Philosophy of Science 50 (4):523-548.
    The subject of this paper is the philosophical problem of accounting for the relationship between mathematics and non-mathematical reality. The first section, devoted to the importance of the problem, suggests that many of the reasons for engaging in philosophy at all make an account of the relationship between mathematics and reality a priority, not only in philosophy of mathematics and philosophy of science, but also in general epistemology/metaphysics. This is followed by a (rather brief) survey of the major, traditional philosophies (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Kitcher, ideal agents, and fictionalism.Sarah Hoffman - 2004 - Philosophia Mathematica 12 (1):3-17.
    Kitcher urges us to think of mathematics as an idealized science of human operations, rather than a theory describing abstract mathematical objects. I argue that Kitcher's invocation of idealization cannot save mathematical truth and avoid platonism. Nevertheless, what is left of Kitcher's view is worth holding onto. I propose that Kitcher's account should be fictionalized, making use of Walton's and Currie's make-believe theory of fiction, and argue that the resulting ideal-agent fictionalism has advantages over mathematical-object fictionalism.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Languages and Other Abstract Structures.Ryan Mark Nefdt - 2018 - In Martin Neef & Christina Behme (eds.), Essays on Linguistic Realism. Philadelphia: John Benjamins Publishing Company. pp. 139-184.
    My aim in this chapter is to extend the Realist account of the foundations of linguistics offered by Postal, Katz and others. I first argue against the idea that naive Platonism can capture the necessary requirements on what I call a ‘mixed realist’ view of linguistics, which takes aspects of Platonism, Nominalism and Mentalism into consideration. I then advocate three desiderata for an appropriate ‘mixed realist’ account of linguistic ontology and foundations, namely (1) linguistic creativity and infinity, (2) linguistics as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Chains of Being: Infinite Regress, Circularity, and Metaphysical Explanation.Ross P. Cameron - 2022 - Oxford: Oxford University Press.
    'Chains of Being' argues that there can be infinite chains of dependence or grounding. Cameron also defends the view that there can be circular relations of ontological dependence or grounding, and uses these claims to explore issues in logic and ontology.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Homotopy Type Theory and Structuralism.Teruji Thomas - 2014 - Dissertation, University of Oxford
    I explore the possibility of a structuralist interpretation of homotopy type theory (HoTT) as a foundation for mathematics. There are two main aspects to HoTT's structuralist credentials. First, it builds on categorical set theory (CST), of which the best-known variant is Lawvere's ETCS. I argue that CST has merit as a structuralist foundation, in that it ascribes only structural properties to typical mathematical objects. However, I also argue that this success depends on the adoption of a strict typing system which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part B†.Hannes Leitgeb - 2021 - Philosophia Mathematica 29 (1):64-87.
    This is Part B of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A motivated an understanding of unlabeled graphs as structures sui generis and developed a corresponding axiomatic theory of unlabeled graphs. Part B turns to the philosophical interpretation and assessment of the theory: it points out how the theory avoids well-known problems concerning identity, objecthood, and reference that have been attributed to non-eliminative structuralism. The part (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Frege’nin Özel Ad Kuramındaki Sonsuz Gerileme Sorunu.Alper Yavuz - 2018 - In Vedat Kamer & Şafak Ural (eds.), VIII. Mantık Çalıştayı Kitabı. İstanbul, Turkey: Mantık Derneği Yayınları. pp. 513-527.
    Öz: Frege özel adların (ve diğer dilsel simgelerin) anlamları ve gönderimleri arasında ünlü ayrımını yaptığı “Anlam ve Gönderim Üzerine” (1948) adlı makalesinde, bu ayrımın önemi, gerekliliği ve sonuçları üzerine uzun değerlendirmeler yapar ancak özel adın anlamından tam olarak ne anlaşılması gerektiğinden yalnızca bir dipnotta kısaca söz eder. Örneğin “Aristoteles” özel adının anlamının Platon’un öğrencisi ve Büyük İskender’in öğretmeni ya da Stagira’da doğan Büyük İskender’in öğretmeni olarak alınabileceğini söyler. Burada dikkat çeken nokta örnekteki özel adın olası anlamları olarak gösterilen belirli betimlemelerin (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inferentialism and Structuralism: A Tale of Two Theories.Ryan Mark Nefdt - 2018 - Logique Et Analyse 61 (244):489-512.
    This paper aims to unite two seemingly disparate themes in the philosophy of mathematics and language respectively, namely ante rem structuralism and inferentialism. My analysis begins with describing both frameworks in accordance with their genesis in the work of Hilbert. I then draw comparisons between these philosophical views in terms of their similar motivations and similar objections to the referential orthodoxy. I specifically home in on two points of comparison, namely the role of norms and the relation of ontological dependence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Consciousness and the Philosophy of Signs: How Peircean Semiotics Combines Phenomenal Qualia and Practical Effects.Marc Champagne - 2018 - Cham: Springer.
    It is often thought that consciousness has a qualitative dimension that cannot be tracked by science. Recently, however, some philosophers have argued that this worry stems not from an elusive feature of the mind, but from the special nature of the concepts used to describe conscious states. Marc Champagne draws on the neglected branch of philosophy of signs or semiotics to develop a new take on this strategy. The term “semiotics” was introduced by John Locke in the modern period – (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Structuralism, Invariance, and Univalence.Steve Awodey - 2014 - Philosophia Mathematica 22 (1):1-11.
    The recent discovery of an interpretation of constructive type theory into abstract homotopy theory suggests a new approach to the foundations of mathematics with intrinsic geometric content and a computational implementation. Voevodsky has proposed such a program, including a new axiom with both geometric and logical significance: the Univalence Axiom. It captures the familiar aspect of informal mathematical practice according to which one can identify isomorphic objects. While it is incompatible with conventional foundations, it is a powerful addition to homotopy (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Numerical cognition and mathematical realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that they prima (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Evolutionary Relevance of Abstraction and Representation.Andrew M. Winters - 2014 - Biosemiotics 7 (1):125-139.
    This paper investigates the roles that abstraction and representation have in activities associated with language. Activities such as associative learning and counting require both the abilities to abstract from and accurately represent the environment. These activities are successfully carried out among vocal learners aside from humans, thereby suggesting that nonhuman animals share something like our capacity for abstraction and representation. The identification of these capabilities in other species provides additional insights into the development of language.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Platonism in metaphysics.Mark Balaguer - 2008 - Stanford Encyclopedia of Philosophy.
    Platonism is the view that there exist such things as abstract objects — where an abstract object is an object that does not exist in space or time and which is therefore entirely non-physical and nonmental. Platonism in this sense is a contemporary view. It is obviously related to the views of Plato in important ways, but it is not entirely clear that Plato endorsed this view, as it is defined here. In order to remain neutral on this question, the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Structuralism and the notion of dependence.Øystein Linnebo - 2008 - Philosophical Quarterly 58 (230):59-79.
    This paper has two goals. The first goal is to show that the structuralists’ claims about dependence are more significant to their view than is generally recognized. I argue that these dependence claims play an essential role in the most interesting and plausible characterization of this brand of structuralism. The second goal is to defend a compromise view concerning the dependence relations that obtain between mathematical objects. Two extreme views have tended to dominate the debate, namely the view that all (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Indefiniteness of mathematical objects.Ken Akiba - 2000 - Philosophia Mathematica 8 (1):26--46.
    The view that mathematical objects are indefinite in nature is presented and defended, hi the first section, Field's argument for fictionalism, given in response to Benacerraf's problem of identification, is closely examined, and it is contended that platonists can solve the problem equally well if they take the view that mathematical objects are indefinite. In the second section, two general arguments against the intelligibility of objectual indefiniteness are shown erroneous, hi the final section, the view is compared to mathematical structuralism, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2017 - British Journal for the Philosophy of Science:axy004.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this paper, we argue that the structuralist thesis, even (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Believing the axioms. II.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (3):736-764.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • (1 other version)The roots of contemporary Platonism.Penelope Maddy - 1989 - Journal of Symbolic Logic 54 (4):1121-1144.
    Though many working mathematicians embrace a rough and ready form of Platonism, that venerable position has suffered a checkered philosophical career. Indeed the three schools of thought with which most of us began our official philosophizing about mathematics—Intuitionism, Formalism, and Logicism—all stand in fundamental disagreement with Platonism. Nevertheless, various versions of Platonistic thinking survive in contemporary philosophical circles. The aim of this paper is to describe these views, and, as my title suggests, to trace their roots.I'll begin with some preliminary (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (15 other versions)2005 Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '05.Stan S. Wainer - 2006 - Bulletin of Symbolic Logic 12 (2):310-361.
    Download  
     
    Export citation  
     
    Bookmark  
  • Naturalizing Badiou: mathematical ontology and structural realism.Fabio Gironi - 2014 - New York: Palgrave-Macmillan.
    This thesis offers a naturalist revision of Alain Badiou’s philosophy. This goal is pursued through an encounter of Badiou’s mathematical ontology and theory of truth with contemporary trends in philosophy of mathematics and philosophy of science. I take issue with Badiou’s inability to elucidate the link between the empirical and the ontological, and his residual reliance on a Heideggerian project of fundamental ontology, which undermines his own immanentist principles. I will argue for both a bottom-up naturalisation of Badiou’s philosophical approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical structuralism today.Julian C. Cole - 2010 - Philosophy Compass 5 (8):689-699.
    Two topics figure prominently in recent discussions of mathematical structuralism: challenges to the purported metaphysical insight provided by sui generis structuralism and the significance of category theory for understanding and articulating mathematical structuralism. This article presents an overview of central themes related to these topics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Nicolas Bourbaki and the concept of mathematical structure.Leo Corry - 1992 - Synthese 92 (3):315 - 348.
    In the present article two possible meanings of the term mathematical structure are discussed: a formal and a nonformal one. It is claimed that contemporary mathematics is structural only in the nonformal sense of the term. Bourbaki's definition of structure is presented as one among several attempts to elucidate the meaning of that nonformal idea by developing a formal theory which allegedly accounts for it. It is shown that Bourbaki's concept of structure was, from a mathematical point of view, a (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • A platonist epistemology.Mark Balaguer - 1995 - Synthese 103 (3):303 - 325.
    A response is given here to Benacerraf's 1973 argument that mathematical platonism is incompatible with a naturalistic epistemology. Unlike almost all previous platonist responses to Benacerraf, the response given here is positive rather than negative; that is, rather than trying to find a problem with Benacerraf's argument, I accept his challenge and meet it head on by constructing an epistemology of abstract (i.e., aspatial and atemporal) mathematical objects. Thus, I show that spatio-temporal creatures like ourselves can attain knowledge about mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Naturalism and ontology.Penelope Maddy - 1995 - Philosophia Mathematica 3 (3):248-270.
    Naturalism in philosophy is sometimes thought to imply both scientific realism and a brand of mathematical realism that has methodological consequences for the practice of mathematics. I suggest that naturalism does not yield such a brand of mathematical realism, that naturalism views ontology as irrelevant to mathematical methodology, and that approaching methodological questions from this naturalistic perspective illuminates issues and considerations previously overshadowed by (irrelevant) ontological concerns.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Logical structuralism and Benacerraf’s problem.Audrey Yap - 2009 - Synthese 171 (1):157-173.
    There are two general questions which many views in the philosophy of mathematics can be seen as addressing: what are mathematical objects, and how do we have knowledge of them? Naturally, the answers given to these questions are linked, since whatever account we give of how we have knowledge of mathematical objects surely has to take into account what sorts of things we claim they are; conversely, whatever account we give of the nature of mathematical objects must be accompanied by (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Actuality and Essence.William G. Lycan & Stewart Shapiro - 1986 - Midwest Studies in Philosophy 11 (1):343-377.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Structures and structuralism in contemporary philosophy of mathematics.Erich H. Reck & Michael P. Price - 2000 - Synthese 125 (3):341-383.
    In recent philosophy of mathematics avariety of writers have presented ``structuralist''views and arguments. There are, however, a number ofsubstantive differences in what their proponents take``structuralism'' to be. In this paper we make explicitthese differences, as well as some underlyingsimilarities and common roots. We thus identifysystematically and in detail, several main variants ofstructuralism, including some not often recognized assuch. As a result the relations between thesevariants, and between the respective problems theyface, become manifest. Throughout our focus is onsemantic and metaphysical issues, (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Dedekind and Cassirer on Mathematical Concept Formation†.Audrey Yap - 2014 - Philosophia Mathematica 25 (3):369-389.
    Dedekind's major work on the foundations of arithmetic employs several techniques that have left him open to charges of psychologism, and through this, to worries about the objectivity of the natural-number concept he defines. While I accept that Dedekind takes the foundation for arithmetic to lie in certain mental powers, I will also argue that, given an appropriate philosophical background, this need not make numbers into subjective mental objects. Even though Dedekind himself did not provide that background, one can nevertheless (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Philosophy of the Matrix.A. C. Paseau - 2017 - Philosophia Mathematica 25 (2):246-267.
    A mathematical matrix is usually defined as a two-dimensional array of scalars. And yet, as I explain, matrices are not in fact two-dimensional arrays. So are we to conclude that matrices do not exist? I show how to resolve the puzzle, for both contemporary and older mathematics. The solution generalises to the interpretation of all mathematical discourse. The paper as a whole attempts to reinforce mathematical structuralism by reflecting on how best to interpret mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • De la posibilidad a la existencia matemática: los casos de Shapiro y de Balaguer.Max Fernández de Castro - 2009 - Signos Filosóficos 11 (21):73-101.
    En este artículo me gustaría concentrarme en al forma de tratar el problema de Benacerraf respecto de la inaccesibilidad de los objetos abstractos. Este es el principio (llamado FBP por Balaguer) que caracteriza a los objetos por axiomas de una teoría de la existencia consistente. Analizo los argume..
    Download  
     
    Export citation  
     
    Bookmark  
  • Can structuralism solve the ‘access’ problem?Fraser MacBride - 2004 - Analysis 64 (4):309–317.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • What mathematics is about.Aron Edidin - 1995 - Philosophical Studies 78 (1):1 - 31.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (2 other versions)Review. [REVIEW]Donald A.: Gillies - 1992 - British Journal for the Philosophy of Science 43 (2):263-278.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logic, ontology, mathematical practice.Stewart Shapiro - 1989 - Synthese 79 (1):13 - 50.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Generic Structures.Leon Horsten - 2019 - Philosophia Mathematica 27 (3):362-380.
    In this article ideas from Kit Fine’s theory of arbitrary objects are applied to questions regarding mathematical structuralism. I discuss how sui generis mathematical structures can be viewed as generic systems of mathematical objects, where mathematical objects are conceived of as arbitrary objects in Fine’s sense.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How nominalist is Hartry field's nominalism?Michael D. Resnik - 1985 - Philosophical Studies 47 (2):163 - 181.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Platonism in Metaphysics.Markn D. Balaguer - 2016 - Stanford Encyclopedia of Philosophy 1 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Mathematics. A science of patterns?Gianluigi Oliveri - 1997 - Synthese 112 (3):379-402.
    The present article aims at showing that it is possible to construct a realist philosophy of mathematics which commits one neither to dream the dreams of Platonism nor to reduce the word ''realism'' to mere noise. It is argued that mathematics is a science of patterns, where patterns are not objects (or properties of objects), but aspects, or aspects of aspects, etc. of objects. (The notion of aspect originates from ideas sketched by Wittgenstein in the Philosophical Investigations.).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Problematic Objects between Mathematics and Mechanics.Emily R. Grosholz - 1990 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990 (2):385-395.
    The relationship between the objects of mathematics and physics has been a recurrent source of philosophical debate. Rationalist philosophers can minimize the distance between mathematical and physical domains by appealing to transcendental categories, but then are left with the problem of where to locate those categories ontologically. Empiricists can locate their objects in the material realm, but then have difficulty explaining certain peculiar “transcendental” features of mathematics like the timelessness of its objects and the unfalsifiability of (at least some of) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophical Problems of Mathematics in the Light of Evolutionary Epistemology.Yehuda Rav - 1989 - Philosophica 43.
    Download  
     
    Export citation  
     
    Bookmark   5 citations