Switch to: Citations

Add references

You must login to add references.
  1. What we cannot learn from analogue experiments.Karen Crowther, Niels S. Linnemann & Christian Wüthrich - 2019 - Synthese (Suppl 16):1-26.
    Analogue experiments have attracted interest for their potential to shed light on inaccessible domains. For instance, ‘dumb holes’ in fluids and Bose–Einstein condensates, as analogues of black holes, have been promoted as means of confirming the existence of Hawking radiation in real black holes. We compare analogue experiments with other cases of experiment and simulation in physics. We argue—contra recent claims in the philosophical literature—that analogue experiments are not capable of confirming the existence of particular phenomena in inaccessible target systems. (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Defining a crisis: the roles of principles in the search for a theory of quantum gravity.Karen Crowther - 2021 - Synthese 198 (Suppl 14):3489-3516.
    In times of crisis, when current theories are revealed as inadequate to task, and new physics is thought to be required—physics turns to re-evaluate its principles, and to seek new ones. This paper explores the various types, and roles of principles that feature in the problem of quantum gravity as a current crisis in physics. I illustrate the diversity of the principles being appealed to, and show that principles serve in a variety of roles in all stages of the crisis, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Additivity Requirements in Classical and Quantum Probability.John Earman - unknown
    The discussion of different principles of additivity for probability functions has been largely focused on the personalist interpretation of probability. Very little attention has been given to additivity principles for physical probabilities. The form of additivity for quantum probabilities is determined by the algebra of observables that characterize a physical system and the type of quantum state that is realizable and preparable for that system. We assess arguments designed to show that only normal quantum states are realizable and preparable and, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Inter-theory Relations in Quantum Gravity: Correspondence, Reduction and Emergence.Karen Crowther - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:74-85.
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using examples (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Evidence amalgamation, plausibility, and cancer research.Marta Bertolaso & Fabio Sterpetti - 2019 - Synthese 196 (8):3279-3317.
    Cancer research is experiencing ‘paradigm instability’, since there are two rival theories of carcinogenesis which confront themselves, namely the somatic mutation theory and the tissue organization field theory. Despite this theoretical uncertainty, a huge quantity of data is available thanks to the improvement of genome sequencing techniques. Some authors think that the development of new statistical tools will be able to overcome the lack of a shared theoretical perspective on cancer by amalgamating as many data as possible. We think instead (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Renormalizability, fundamentality and a final theory: The role of UV-completion in the search for quantum gravity.Karen Crowther & Niels Linnemann - 2017 - British Journal for the Philosophy of Science 70 (2):377–406.
    Principles are central to physical reasoning, particularly in the search for a theory of quantum gravity (QG), where novel empirical data is lacking. One principle widely adopted in the search for QG is UV completion: the idea that a theory should (formally) hold up to all possible high energies. We argue---/contra/ standard scientific practice---that UV-completion is poorly-motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for QG. For this, we explore (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Models and Analogies in Science.Mary Hesse - 1965 - British Journal for the Philosophy of Science 16 (62):161-163.
    Download  
     
    Export citation  
     
    Bookmark   286 citations  
  • Correspondence, Invariance and Heuristics: In Praise of Conservative Induction.H. R. Post - 1971 - Studies in History and Philosophy of Science Part A 2 (3):213.
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • Interpretation neutrality in the classical domain of quantum theory.Joshua Rosaler - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:54-72.
    I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie-Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)The Structure of Science.Ernest Nagel - 1961 - Les Etudes Philosophiques 17 (2):275-275.
    Download  
     
    Export citation  
     
    Bookmark   883 citations  
  • On Space-Time Singularities, Holes, and Extensions.John Byron Manchak - 2014 - Philosophy of Science 81 (5):1066-1076.
    Here, we clarify the relationship among three space-time conditions of interest: geodesic completeness, hole-freeness, and inextendibility. In addition, we introduce a related fourth condition: effective completeness.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Why be normal?Laura Ruetsche - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):107-115.
    A normal state on a von Neumann algebra defines a countably additive probability measure over its projection lattice. The von Neumann algebras familiar from ordinary QM are algebras of all the bounded operators on a Hilbert space H, aka Type I factor von Neumann algebras. Their normal states are density operator states, and can be pure or mixed. In QFT and the thermodynamic limit of QSM, von Neumann algebras of more exotic types abound. Type III von Neumann algebras, for instance, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • What Is a Physically Reasonable Space-Time?John Byron Manchak - 2011 - Philosophy of Science 78 (3):410-420.
    Cosmologists often use certain global properties to exclude "physically unreasonable" cosmological models from serious consideration. But, on what grounds should these properties be regarded as "physically unreasonable" if we cannot rule out, even with a robust type of inductive reasoning, the possibility of the properties obtaining in our own universe?
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • (1 other version)Forces and fields: the concept of action at a distance in the history of physics.Mary B. Hesse - 1961 - Mineola, N.Y.: Dover Publications.
    This history of physics focuses on the question, "How do bodies act on one another across space?" The variety of answers illustrates the function of fundamental analogies or models in physics as well as the role of so-called unobservable entities. Forces and Fields presents an in-depth look at the science of ancient Greece, and it examines the influence of antique philosophy on seventeenth-century thought. Additional topics embrace many elements of modern physics--the empirical basis of quantum mechanics, wave-particle duality and the (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Between classical and quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the test of time is (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Algebraic quantum field theory.Hans Halvorson & Michael Mueger - 2006 - In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers.
    Algebraic quantum field theory provides a general, mathematically precise description of the structure of quantum field theories, and then draws out consequences of this structure by means of various mathematical tools -- the theory of operator algebras, category theory, etc.. Given the rigor and generality of AQFT, it is a particularly apt tool for studying the foundations of QFT. This paper is a survey of AQFT, with an orientation towards foundational topics. In addition to covering the basics of the theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Symmetry and gauge freedom.Gordon Belot - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (2):189-225.
    The classical field theories that underlie the quantum treatments of the electromagnetic, weak, and strong forces share a peculiar feature: specifying the initial state of the field determines the evolution of some degrees of freedom of the theory while leaving the evolution of some others wholly arbitrary. This strongly suggests that some of the variables of the standard state space lack physical content-intuitively, the space of states of such a theory is of higher dimension than the corresponding space of genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Approaches to reduction.Kenneth F. Schaffner - 1967 - Philosophy of Science 34 (2):137-147.
    Four current accounts of theory reduction are presented, first informally and then formally: (1) an account of direct theory reduction that is based on the contributions of Nagel, Woodger, and Quine, (2) an indirect reduction paradigm due to Kemeny and Oppenheim, (3) an "isomorphic model" schema traceable to Suppes, and (4) a theory of reduction that is based on the work of Popper, Feyerabend, and Kuhn. Reference is made, in an attempt to choose between these schemas, to the explanation of (...)
    Download  
     
    Export citation  
     
    Bookmark   228 citations  
  • A matter of degree: Putting unitary inequivalence to work.Laura Ruetsche - 2003 - Philosophy of Science 70 (5):1329-1342.
    If a classical system has infinitely many degrees of freedom, its Hamiltonian quantization need not be unique up to unitary equivalence. I sketch different approaches (Hilbert space and algebraic) to understanding the content of quantum theories in light of this non‐uniqueness, and suggest that neither approach suffices to support explanatory aspirations encountered in the thermodynamic limit of quantum statistical mechanics.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Heuristics and the generalized correspondence principle.Hans Radder - 1991 - British Journal for the Philosophy of Science 42 (2):195-226.
    Several philosophers of science have claimed that the correspondence principle can be generalized from quantum physics to all of (particularly physical) science and that in fact it constitutes one of the major heuristical rules for the construction of new theories. In order to evaluate these claims, first the use of the correspondence principle in (the genesis of) quantum mechanics will be examined in detail. It is concluded from this and from other examples in the history of science that the principle (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Operational definition and analogy in physical theories.Mary Hesse - 1951 - British Journal for the Philosophy of Science 2 (8):281-294.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Wandering Significance: An Essay on Conceptual Behavior.Mark Wilson - 2006 - Oxford, GB: Oxford: Clarendon Press.
    Mark Wilson presents a highly original and broad-ranging investigation of the way we get to grips with the world conceptually, and the way that philosophical problems commonly arise from this. He combines traditional philosophical concerns about human conceptual thinking with illuminating data derived from a large variety of fields including physics and applied mathematics, cognitive psychology, and linguistics. Wandering Significance offers abundant new insights and perspectives for philosophers of language, mind, and science, and will also reward the interest of psychologists, (...)
    Download  
     
    Export citation  
     
    Bookmark   141 citations  
  • On the reduction of general relativity to Newtonian gravitation.Samuel C. Fletcher - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:1-15.
    Intertheoretic reduction in physics aspires to be both to be explanatory and perfectly general: it endeavors to explain why an older, simpler theory continues to be as successful as it is in terms of a newer, more sophisticated theory, and it aims to relate or otherwise account for as many features of the two theories as possible. Despite often being introduced as straightforward cases of intertheoretic reduction, candidate accounts of the reduction of general relativity to Newtonian gravitation have either been (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Interpreting Quantum Theories: The Art of the Possible.Laura Ruetsche - 2011 - Oxford, GB: Oxford University Press UK.
    Philosophers of quantum mechanics have generally addressed exceedingly simple systems. Laura Ruetsche offers a much-needed study of the interpretation of more complicated systems, and an underexplored family of physical theories, such as quantum field theory and quantum statistical mechanics, showing why they repay philosophical attention. She guides those familiar with the philosophy of ordinary QM into the philosophy of 'QM infinity', by presenting accessible introductions to relevant technical notions and the foundational questions they frame--and then develops and defends answers to (...)
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Deduction and definability in infinite statistical systems.Benjamin H. Feintzeig - 2017 - Synthese 196 (5):1-31.
    Classical accounts of intertheoretic reduction involve two pieces: first, the new terms of the higher-level theory must be definable from the terms of the lower-level theory, and second, the claims of the higher-level theory must be deducible from the lower-level theory along with these definitions. The status of each of these pieces becomes controversial when the alleged reduction involves an infinite limit, as in statistical mechanics. Can one define features of or deduce the behavior of an infinite idealized system from (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The non-miraculous success of formal analogies in quantum theories.Doreen Fraser - 2020 - In Juha Saatsi & Steven French (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    The Higgs model was developed using purely formal analogies to models of superconductivity. This is in contrast to historical case studies such as the development of electromagnetism, which employed physical analogies. As a result, quantum case studies such as the development of the Higgs model carry new lessons for the scientific realism--anti-realism debate. I argue that, by breaking the connection between success and approximate truth, the use of purely formal analogies is a counterexample to two prominent versions of the 'No (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Understanding Scientific Understanding.Henk W. de Regt - 2017 - New York: Oup Usa.
    Understanding is a central aim of science and highly important in present-day society. But what precisely is scientific understanding and how can it be achieved? This book answers these questions, through philosophical analysis and historical case studies, and presents a philosophical theory of scientific understanding that highlights its contextual nature.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Scientific Realism Made Effective.Porter Williams - 2019 - British Journal for the Philosophy of Science 70 (1):209-237.
    I argue that a common philosophical approach to the interpretation of physical theories—particularly quantum field theories—has led philosophers astray. It has driven many to declare the quantum field theories employed by practicing physicists, so-called ‘effective field theories’, to be unfit for philosophical interpretation. In particular, such theories have been deemed unable to support a realist interpretation. I argue that these claims are mistaken: attending to the manner in which these theories are employed in physical practice, I show that interpreting effective (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Forces and Fields.Mary B. Hesse - 1963 - Philosophical Quarterly 13 (51):179-180.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)The Structure of Science: Problems in the Logic of Scientific Explanation.Ernest Nagel - 1961 - Mind 72 (287):429-441.
    Download  
     
    Export citation  
     
    Bookmark   295 citations  
  • Scientific Discovery: Logic and Tinkering. Aharon Kantorovich.Thomas Nickles - 1994 - Isis 85 (2):361-362.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Superselection Rules for Philosophers.John Earman - 2008 - Erkenntnis 69 (3):377-414.
    The overaraching goal of this paper is to elucidate the nature of superselection rules in a manner that is accessible to philosophers of science and that brings out the connections between superselection and some of the most fundamental interpretational issues in quantum physics. The formalism of von Neumann algebras is used to characterize three different senses of superselection rules (dubbed, weak, strong, and very strong) and to provide useful necessary and sufficient conditions for each sense. It is then shown how (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Global Spacetime Structure.John Byron Manchak - 2013 - Cambridge University Press.
    This exploration of the global structure of spacetime within the context of general relativity examines the causal and singular structures of spacetime, revealing some of the curious possibilities that are compatible with the theory, such as `time travel' and `holes' of various types. Investigations into the epistemic and modal structures of spacetime highlight the difficulties in ruling out such possibilities, unlikely as they may seem at first. The upshot seems to be that what counts as a `physically reasonable' spacetime structure (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Local reduction in physics.Joshua Rosaler - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 50 (C):54-69.
    A conventional wisdom about the progress of physics holds that successive theories wholly encompass the domains of their predecessors through a process that is often called reduction. While certain influential accounts of inter-theory reduction in physics take reduction to require a single "global" derivation of one theory's laws from those of another, I show that global reductions are not available in all cases where the conventional wisdom requires reduction to hold. However, I argue that a weaker "local" form of reduction, (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • What is “classical mechanics”, anyway.Mark Wilson - 2013 - In Robert Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA. pp. 43.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • A Flea on Schrödinger’s Cat.Np Klaas Landsman & Robin Reuvers - 2013 - Foundations of Physics 43 (3):373-407.
    We propose a technical reformulation of the measurement problem of quantum mechanics, which is based on the postulate that the final state of a measurement is classical; this accords with experimental practice as well as with Bohr’s views. Unlike the usual formulation (in which the post-measurement state is a unit vector in Hilbert space), our version actually opens the possibility of admitting a purely technical solution within the confines of conventional quantum theory (as opposed to solutions that either modify this (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Yes, but… Some Skeptical Remarks on Realism and Anti‐Realism.Howard Stein - 1989 - Dialectica 43 (1‐2):47-65.
    This paper argues that the much discussed issue between "scientific realism" and "instrumentalism" has not been clearly drawn. Particular attention is paid to the claim that only realism can "explain" the success of scientific theories and---more especially---the progressively increasing success of such theories in a coherent line of inquiry. This claim is used to attempt to reach a clearer conception of the content of the realist thesis that underlies it; but, it is here contended, that attempt fails, and the claim (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Logic of discovery or psychology of invention?Elie Zahar - 1983 - British Journal for the Philosophy of Science 34 (3):243-261.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (1 other version)The role of idealizations in the Aharonov–Bohm effect.John Earman - 2017 - Synthese:1-29.
    On standard accounts of scientific theorizing, the role of idealizations is to facilitate the analysis of some real world system by employing a simplified representation of the target system, raising the obvious worry about how reliable knowledge can be obtained from inaccurate descriptions. The idealizations involved in the Aharonov–Bohm effect do not, it is claimed, fit this paradigm; rather the target system is a fictional system characterized by features that, though physically possible, are not realized in the actual world. The (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (4 other versions)The Logic of Scientific Discovery.Karl Popper - 1959 - Studia Logica 9:262-265.
    Download  
     
    Export citation  
     
    Bookmark   1554 citations  
  • (1 other version)The Structure of Science: Problems in the Logic of Scientific Explanation.Ernest Nagel - 1962 - Philosophy 37 (142):372-374.
    Download  
     
    Export citation  
     
    Bookmark   216 citations  
  • Is the Universe As Large As It Can Be?John Byron Manchak - 2016 - Erkenntnis 81 (6):1341-1344.
    In this note, we cast doubt on the requirement of spacetime inextendibility; it is not at all clear that our universe is “as large as it can be.”.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A Flea on Schrödinger's Cat.P. N. & Robin Reuvers - 2013 - Foundations of Physics 43 (3):373-407.
    We propose a technical reformulation of the measurement problem of quantum mechanics, which is based on the postulate that the final state of a measurement is classical; this accords with experimental practice as well as with Bohr’s views. Unlike the usual formulation (in which the post-measurement state is a unit vector in Hilbert space), our version actually opens the possibility of admitting a purely technical solution within the confines of conventional quantum theory (as opposed to solutions that either modify this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the nature of continuous physical quantities in classical and quantum mechanics.Hans Halvorson - 2001 - Journal of Philosophical Logic 30 (1):27-50.
    Within the traditional Hilbert space formalism of quantum mechanics, it is not possible to describe a particle as possessing, simultaneously, a sharp position value and a sharp momentum value. Is it possible, though, to describe a particle as possessing just a sharp position value (or just a sharp momentum value)? Some, such as Teller, have thought that the answer to this question is No - that the status of individual continuous quantities is very different in quantum mechanics than in classical (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Classical Limit as an Approximation.Benjamin H. Feintzeig - 2020 - Philosophy of Science 87 (4):612-639.
    I argue that it is possible to give an interpretation of the classical ℏ→0 limit of quantum mechanics that results in a partial explanation of the success of classical mechanics. The interpretation...
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Complementarity of representations in quantum mechanics.Hans Halvorson - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (1):45-56.
    We show that Bohr's principle of complementarity between position and momentum descriptions can be formulated rigorously as a claim about the existence of representations of the canonical commutation relations. In particular, in any representation where the position operator has eigenstates, there is no momentum operator, and vice versa. Equivalently, if there are nonzero projections corresponding to sharp position values, all spectral projections of the momentum operator map onto the zero element.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Forces and Fields: The Concept of Action at a Distance in the History of Physics.Edward Rosen - 1962 - Philosophy of Science 29 (4):434-435.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Experience and Prediction.Eleanor Bisbee - 1938 - Philosophy of Science 5 (3):360-366.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Spontaneous symmetry breaking in quantum systems: Emergence or reduction?Nicolaas P. Landsman - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):379-394.
    Beginning with Anderson, spontaneous symmetry breaking in infinite quantum systems is often put forward as an example of emergence in physics, since in theory no finite system should display it. Even the correspondence between theory and reality is at stake here, since numerous real materials show ssb in their ground states, although they are finite. Thus against what is sometimes called ‘Earman's Principle’, a genuine physical effect seems theoretically recovered only in some idealisation, disappearing as soon as the idealisation is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Similarity, Topology, and Physical Significance in Relativity Theory.Samuel C. Fletcher - 2016 - British Journal for the Philosophy of Science 67 (2):365-389.
    Stephen Hawking, among others, has proposed that the topological stability of a property of space-time is a necessary condition for it to be physically significant. What counts as stable, however, depends crucially on the choice of topology. Some physicists have thus suggested that one should find a canonical topology, a single ‘right’ topology for every inquiry. While certain such choices might be initially motivated, some little-discussed examples of Robert Geroch and some propositions of my own show that the main candidates—and (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations