Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Computability and Logic.George S. Boolos, John P. Burgess & Richard C. Jeffrey - 2003 - Bulletin of Symbolic Logic 9 (4):520-521.
    Download  
     
    Export citation  
     
    Bookmark   153 citations  
  • Proof Theory.Gaisi Takeuti - 1990 - Studia Logica 49 (1):160-161.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • (2 other versions)An Introduction to Gödel's Theorems.Peter Smith - 2007 - New York: Cambridge University Press.
    In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • (1 other version)Deontic Logic.Paul McNamara - 2006 - In Dov Gabbay & John Woods (eds.), The Handbook of the History of Logic, vol. 7: Logic and the Modalities in the Twentieth Century. Elsevier Press. pp. 197-288.
    Overview of fundamental work in deontic logic.
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Contraction-free sequent calculi for geometric theories with an application to Barr's theorem.Sara Negri - 2003 - Archive for Mathematical Logic 42 (4):389-401.
    Geometric theories are presented as contraction- and cut-free systems of sequent calculi with mathematical rules following a prescribed rule-scheme that extends the scheme given in Negri and von Plato. Examples include cut-free calculi for Robinson arithmetic and real closed fields. As an immediate consequence of cut elimination, it is shown that if a geometric implication is classically derivable from a geometric theory then it is intuitionistically derivable.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The Revision Theory of Truth.Anil Gupta & Nuel D. Belnap - 1993 - MIT Press.
    In this rigorous investigation into the logic of truth Anil Gupta and Nuel Belnap explain how the concept of truth works in both ordinary and pathological..
    Download  
     
    Export citation  
     
    Bookmark   217 citations  
  • Conservatively extending classical logic with transparent truth.David Ripley - 2012 - Review of Symbolic Logic 5 (2):354-378.
    This paper shows how to conservatively extend classical logic with a transparent truth predicate, in the face of the paradoxes that arise as a consequence. All classical inferences are preserved, and indeed extended to the full (truth—involving) vocabulary. However, not all classical metainferences are preserved; in particular, the resulting logical system is nontransitive. Some limits on this nontransitivity are adumbrated, and two proof systems are presented and shown to be sound and complete. (One proof system allows for Cut—elimination, but the (...)
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • An Axiomatic Approach to Self-Referential Truth.Harvey Friedman & Michael Sheard - 1987 - Annals of Pure and Applied Logic 33 (1):1--21.
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • Computability and Logic.George Boolos, John Burgess, Richard P. & C. Jeffrey - 1980 - New York: Cambridge University Press. Edited by John P. Burgess & Richard C. Jeffrey.
    Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Godel's incompleteness theorems, but also a large number of optional topics, from Turing's theory of computability to Ramsey's theorem. This 2007 fifth edition has been thoroughly revised by John Burgess. Including a selection of exercises, adjusted for this edition, at the end of each chapter, it offers a (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • The concept of truth in formalized languages.Alfred Tarski - 1956 - In Logic, semantics, metamathematics. Oxford,: Clarendon Press. pp. 152--278.
    Download  
     
    Export citation  
     
    Bookmark   600 citations  
  • (1 other version)Proof theory.Gaisi Takeuti - 1975 - New York, N.Y., U.S.A.: Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co..
    This comprehensive monograph is a cornerstone in the area of mathematical logic and related fields. Focusing on Gentzen-type proof theory, the book presents a detailed overview of creative works by the author and other 20th-century logicians that includes applications of proof theory to logic as well as other areas of mathematics. 1975 edition.
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • (1 other version)Deontic logic.Paul McNamara - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Self-reference and the languages of arithmetic.Richard Heck - 2007 - Philosophia Mathematica 15 (1):1-29.
    I here investigate the sense in which diagonalization allows one to construct sentences that are self-referential. Truly self-referential sentences cannot be constructed in the standard language of arithmetic: There is a simple theory of truth that is intuitively inconsistent but is consistent with Peano arithmetic, as standardly formulated. True self-reference is possible only if we expand the language to include function-symbols for all primitive recursive functions. This language is therefore the natural setting for investigations of self-reference.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Computability and Logic.G. S. Boolos & R. C. Jeffrey - 1977 - British Journal for the Philosophy of Science 28 (1):95-95.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • (1 other version)Cut Elimination in the Presence of Axioms.Sara Negri & Jan Von Plato - 1998 - Bulletin of Symbolic Logic 4 (4):418-435.
    A way is found to add axioms to sequent calculi that maintains the eliminability of cut, through the representation of axioms as rules of inference of a suitable form. By this method, the structural analysis of proofs is extended from pure logic to free-variable theories, covering all classical theories, and a wide class of constructive theories. All results are proved for systems in which also the rules of weakening and contraction can be eliminated. Applications include a system of predicate logic (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Proof Analysis. A Contribution to Hilbert's Last Problem. [REVIEW]F. Poggiolesi - 2013 - History and Philosophy of Logic 34 (1):98-99.
    S. Negri and J. von Plato, Proof Analysis. A Contribution to Hilbert's Last Problem. Cambridge University Press: Cambridge, 2011. 278 pp. $90.00. ISBN:978-1-107-00895-3. Reviewed by F. Poggiolesi,...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reaching Transparent Truth.Pablo Cobreros, Paul Égré, David Ripley & Robert van Rooij - 2013 - Mind 122 (488):841-866.
    This paper presents and defends a way to add a transparent truth predicate to classical logic, such that and A are everywhere intersubstitutable, where all T-biconditionals hold, and where truth can be made compositional. A key feature of our framework, called STTT (for Strict-Tolerant Transparent Truth), is that it supports a non-transitive relation of consequence. At the same time, it can be seen that the only failures of transitivity STTT allows for arise in paradoxical cases.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Proof Theory for Modal Logic.Sara Negri - 2011 - Philosophy Compass 6 (8):523-538.
    The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Axiomatizing Kripke’s Theory of Truth.Volker Halbach & Leon Horsten - 2006 - Journal of Symbolic Logic 71 (2):677 - 712.
    We investigate axiomatizations of Kripke's theory of truth based on the Strong Kleene evaluation scheme for treating sentences lacking a truth value. Feferman's axiomatization KF formulated in classical logic is an indirect approach, because it is not sound with respect to Kripke's semantics in the straightforward sense: only the sentences that can be proved to be true in KF are valid in Kripke's partial models. Reinhardt proposed to focus just on the sentences that can be proved to be true in (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Theories of truth which have no standard models.Hannes Leitgeb - 2001 - Studia Logica 68 (1):69-87.
    This papers deals with the class of axiomatic theories of truth for semantically closed languages, where the theories do not allow for standard models; i.e., those theories cannot be interpreted as referring to the natural number codes of sentences only (for an overview of axiomatic theories of truth in general, see Halbach[6]). We are going to give new proofs for two well-known results in this area, and we also prove a new theorem on the nonstandardness of a certain theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Non-classical Elegance for Sequent Calculus Enthusiasts.Andreas Fjellstad - 2017 - Studia Logica 105 (1):93-119.
    In this paper we develop what we can describe as a “dual two-sided” cut-free sequent calculus system for the non-classical logics of truth lp, k3, stt and a non-reflexive logic ts which is, arguably, more elegant than the three-sided sequent calculus developed by Ripley for the same logics. Its elegance stems from how it employs more or less the standard sequent calculus rules for the various connectives and truth, and the fact that it offers a rather neat connection between derivable (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Proof Analysis in Modal Logic.Sara Negri - 2005 - Journal of Philosophical Logic 34 (5-6):507-544.
    A general method for generating contraction- and cut-free sequent calculi for a large family of normal modal logics is presented. The method covers all modal logics characterized by Kripke frames determined by universal or geometric properties and it can be extended to treat also Gödel-Löb provability logic. The calculi provide direct decision methods through terminating proof search. Syntactic proofs of modal undefinability results are obtained in the form of conservativity theorems.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • The Revision Theory of Truth. [REVIEW]Vann McGee - 1996 - Philosophy and Phenomenological Research 56 (3):727-730.
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • An Introduction to Gödel's Theorems.Peter Smith - 2009 - Bulletin of Symbolic Logic 15 (2):218-222.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Weak and strong theories of truth.Michael Sheard - 2001 - Studia Logica 68 (1):89-101.
    A subtheory of the theory of self-referential truth known as FS is shown to be weak as a theory of truth but equivalent to full FS in its proof-theoretic strength.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • How truthlike can a predicate be? A negative result.Vann McGee - 1985 - Journal of Philosophical Logic 14 (4):399 - 410.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Comparing modal sequent systems.Greg Restall - unknown
    This is an exploratory and expository paper, comparing display logic formulations of normal modal logics with labelled sequent systems. We provide a translation from display sequents into labelled sequents. The comparison between different systems gives us a different way to understand the difference between display systems and other sequent calculi as a difference between local and global views of consequence. The mapping between display and labelled systems also gives us a way to understand labelled systems as properly structural and not (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Theories of Truth without Standard Models and Yablo’s Sequences.Eduardo Alejandro Barrio - 2010 - Studia Logica 96 (3):375-391.
    The aim of this paper is to show that it’s not a good idea to have a theory of truth that is consistent but ω-inconsistent. In order to bring out this point, it is useful to consider a particular case: Yablo’s Paradox. In theories of truth without standard models, the introduction of the truth-predicate to a first order theory does not maintain the standard ontology. Firstly, I exhibit some conceptual problems that follow from so introducing it. Secondly, I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Naive Set Theory and Nontransitive Logic.David Ripley - 2015 - Review of Symbolic Logic 8 (3):553-571.
    In a recent series of papers, I and others have advanced new logical approaches to familiar paradoxes. The key to these approaches is to accept full classical logic, and to accept the principles that cause paradox, while preventing trouble by allowing a certain sort ofnontransitivity. Earlier papers have treated paradoxes of truth and vagueness. The present paper will begin to extend the approach to deal with the familiar paradoxes arising in naive set theory, pointing out some of the promises and (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A System of Complete and Consistent Truth.Volker Halbach - 1994 - Notre Dame Journal of Formal Logic 35 (1):311--27.
    To the axioms of Peano arithmetic formulated in a language with an additional unary predicate symbol T we add the rules of necessitation and conecessitation T and axioms stating that T commutes with the logical connectives and quantifiers. By a result of McGee this theory is -inconsistent, but it can be approximated by models obtained by a kind of rule-of-revision semantics. Furthermore we prove that FS is equivalent to a system already studied by Friedman and Sheard and give an analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Structural Reflexivity and the Paradoxes of Self-Reference.Rohan French - 2016 - Ergo: An Open Access Journal of Philosophy 3.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Revising Up: Strengthening Classical Logic in the Face of Paradox.David Ripley - 2013 - Philosophers' Imprint 13.
    This paper provides a defense of the full strength of classical logic, in a certain form, against those who would appeal to semantic paradox or vagueness in an argument for a weaker logic. I will not argue that these paradoxes are based on mistaken principles; the approach I recommend will extend a familiar formulation of classical logic by including a fully transparent truth predicate and fully tolerant vague predicates. It has been claimed that these principles are not compatible with classical (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Assertion, denial and non-classical theories.Greg Restall - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 81--99.
    In this paper I urge friends of truth-value gaps and truth-value gluts – proponents of paracomplete and paraconsistent logics – to consider theories not merely as sets of sentences, but as pairs of sets of sentences, or what I call ‘bitheories,’ which keep track not only of what holds according to the theory, but also what fails to hold according to the theory. I explain the connection between bitheories, sequents, and the speech acts of assertion and denial. I illustrate the (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations