Switch to: References

Citations of:

An Introduction to Gödel's Theorems

New York: Cambridge University Press (2007)

Add citations

You must login to add citations.
  1. Frameworks, models, and case studies: a new methodology for studying conceptual change in science and philosophy.Matteo De Benedetto - 2022 - Dissertation, Ludwig Maximilians Universität, München
    This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • There May Be Many Arithmetical Gödel Sentences.Kaave Lajevardi & Saeed Salehi - 2021 - Philosophia Mathematica 29 (2):278–287.
    We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel’s First Incompleteness Theorem, one cannot, without impropriety, talk about *the* Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel’s theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • CRITIQUE OF IMPURE REASON: Horizons of Possibility and Meaning.Steven James Bartlett - 2021 - Salem, USA: Studies in Theory and Behavior.
    PLEASE NOTE: This is the corrected 2nd eBook edition, 2021. ●●●●● _Critique of Impure Reason_ has now also been published in a printed edition. To reduce the otherwise high price of this scholarly, technical book of nearly 900 pages and make it more widely available beyond university libraries to individual readers, the non-profit publisher and the author have agreed to issue the printed edition at cost. ●●●●● The printed edition was released on September 1, 2021 and is now available through (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Foundations of Greek Arithmetic.Holger A. Leuz - 2009 - History of Philosophy & Logical Analysis 12 (1):13-47.
    The aim of this essay is to develop a formal reconstruction of Greek arithmetic. The reconstruction is based on textual evidence which comes mainly from Euclid, but also from passages in the texts of Plato and Aristotle. Following Paul Pritchard’s investigation into the meaning of the Greek term arithmos, the reconstruction will be mereological rather than set-theoretical. It is shown that the reconstructed system gives rise to an arithmetic comparable in logical strength to Robinson arithmetic. Our reconstructed Greek arithmetic is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sets, Logic, Computation: An Open Introduction to Metalogic.Richard Zach - 2019 - Open Logic Project.
    An introductory textbook on metalogic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. The audience is undergraduate students with some background in formal logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Semantic Criteria of Correct Formalization.Timm Lampert - 2010 - In Lampert Timm (ed.), Proceedings of Gap Conference.
    This paper compares several models of formalization. It articulates criteria of correct formalization and identifies their problems. All of the discussed criteria are so called “semantic” criteria, which refer to the interpretation of logical formulas. However, as will be shown, different versions of an implicitly applied or explicitly stated criterion of correctness depend on different understandings of “interpretation” in this context.
    Download  
     
    Export citation  
     
    Bookmark  
  • Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Gödel on Truth and Proof.Dan Nesher - unknown
    Download  
     
    Export citation  
     
    Bookmark  
  • The formal failure and social success of logic.William Brooke & Andrew Aberdein - 2011 - In Frank Zenker (ed.), Argumentation: Cognition & Community. Proceedings of the 9th International Conference of the Ontario Society for the Study of Argumentation (OSSA), May 18--21, 2011. OSSA.
    Is formal logic a failure? It may be, if we accept the context-independent limits imposed by Russell, Frege, and others. In response to difficulties arising from such limitations I present a Toulmin-esque social recontextualization of formal logic. The results of my project provide a positive view of formal logic as a success while simultaneously reaffirming the social and contextual concerns of argumentation theorists, critical thinking scholars, and rhetoricians.
    Download  
     
    Export citation  
     
    Bookmark  
  • Conventionalism, Consistency, and Consistency Sentences.Jared Warren - 2015 - Synthese 192 (5):1351-1371.
    Conventionalism about mathematics claims that mathematical truths are true by linguistic convention. This is often spelled out by appealing to facts concerning rules of inference and formal systems, but this leads to a problem: since the incompleteness theorems we’ve known that syntactic notions can be expressed using arithmetical sentences. There is serious prima facie tension here: how can mathematics be a matter of convention and syntax a matter of fact given the arithmetization of syntax? This challenge has been pressed in (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Introduction: Process thought, science, and philosophy.Timothy E. Eastman & Franz G. Riffert - 2009 - World Futures 65 (1):1 – 6.
    Download  
     
    Export citation  
     
    Bookmark  
  • SAD computers and two versions of the Church–Turing thesis.Tim Button - 2009 - British Journal for the Philosophy of Science 60 (4):765-792.
    Recent work on hypercomputation has raised new objections against the Church–Turing Thesis. In this paper, I focus on the challenge posed by a particular kind of hypercomputer, namely, SAD computers. I first consider deterministic and probabilistic barriers to the physical possibility of SAD computation. These suggest several ways to defend a Physical version of the Church–Turing Thesis. I then argue against Hogarth's analogy between non-Turing computability and non-Euclidean geometry, showing that it is a non-sequitur. I conclude that the Effective version (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Syntax-Semantics Interaction in Mathematics.Michael Heller - 2018 - Studia Semiotyczne 32 (2):87-105.
    Mathematical tools of category theory are employed to study the syntax-semantics problem in the philosophy of mathematics. Every category has its internal logic, and if this logic is sufficiently rich, a given category provides semantics for a certain formal theory and, vice versa, for each formal theory one can construct a category, providing a semantics for it. There exists a pair of adjoint functors, Lang and Syn, between a category and a category of theories. These functors describe, in a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Contraction, Infinitary Quantifiers, and Omega Paradoxes.Bruno Da Ré & Lucas Rosenblatt - 2018 - Journal of Philosophical Logic 47 (4):611-629.
    Our main goal is to investigate whether the infinitary rules for the quantifiers endorsed by Elia Zardini in a recent paper are plausible. First, we will argue that they are problematic in several ways, especially due to their infinitary features. Secondly, we will show that even if these worries are somehow dealt with, there is another serious issue with them. They produce a truth-theoretic paradox that does not involve the structural rules of contraction.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Consistency in the Sartrean analysis of emotion.Anthony Hatzimoysis - 2014 - Analysis 74 (1):ant084.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Different Ways in which Logic is (said to be) Formal.Catarina Dutilh Novaes - 2011 - History and Philosophy of Logic 32 (4):303 - 332.
    What does it mean to say that logic is formal? The short answer is: it means (or can mean) several different things. In this paper, I argue that there are (at least) eight main variations of the notion of the formal that are relevant for current discussions in philosophy and logic, and that they are structured in two main clusters, namely the formal as pertaining to forms, and the formal as pertaining to rules. To the first cluster belong the formal (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • How Not To Use the Church-Turing Thesis Against Platonism.R. Urbaniak - 2011 - Philosophia Mathematica 19 (1):74-89.
    Olszewski claims that the Church-Turing thesis can be used in an argument against platonism in philosophy of mathematics. The key step of his argument employs an example of a supposedly effectively computable but not Turing-computable function. I argue that the process he describes is not an effective computation, and that the argument relies on the illegitimate conflation of effective computability with there being a way to find out . ‘Ah, but,’ you say, ‘what’s the use of its being right twice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  • Books Received. [REVIEW][author unknown] - 2014 - International Journal of Philosophical Studies 22 (1):149-162.
    The following books have been received and many of them are still available for review. Interested reviewers please contact the reviews editor: [email protected], P., Interpreting Avicenna:...
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein and Gödel: An Attempt to Make ‘Wittgenstein’s Objection’ Reasonable†.Timm Lampert - 2018 - Philosophia Mathematica 26 (3):324-345.
    According to some scholars, such as Rodych and Steiner, Wittgenstein objects to Gödel’s undecidability proof of his formula $$G$$, arguing that given a proof of $$G$$, one could relinquish the meta-mathematical interpretation of $$G$$ instead of relinquishing the assumption that Principia Mathematica is correct. Most scholars agree that such an objection, be it Wittgenstein’s or not, rests on an inadequate understanding of Gödel’s proof. In this paper, I argue that there is a possible reading of such an objection that is, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gödel’s Master Argument: what is it, and what can it do?David Makinson - 2015 - IfCoLog Journal of Logics and Their Applications 2 (2):1-16.
    This text is expository. We explain Gödel’s ‘Master Argument’ for incompleteness as distinguished from the 'official' proof of his 1931 paper, highlight its attractions and limitations, and explain how some of the limitations may be transcended by putting it in a more abstract form that makes no reference to truth.
    Download  
     
    Export citation  
     
    Bookmark  
  • The inexpressibility of validity.Julien Murzi - 2014 - Analysis 74 (1):65-81.
    Tarski's Undefinability of Truth Theorem comes in two versions: that no consistent theory which interprets Robinson's Arithmetic (Q) can prove all instances of the T-Scheme and hence define truth; and that no such theory, if sound, can even express truth. In this note, I prove corresponding limitative results for validity. While Peano Arithmetic already has the resources to define a predicate expressing logical validity, as Jeff Ketland has recently pointed out (2012, Validity as a primitive. Analysis 72: 421-30), no theory (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Induction, more or less.Peter Smith - unknown
    The first main topic of this paper is a weak second-order theory that sits between firstorder Peano Arithmetic PA1 and axiomatized second-order Peano Arithmetic PA2 – namely, that much-investigated theory known in the trade as ACA0. What I’m going to argue is that ACA0, in its standard form, lacks a cogent conceptual motivation. Now, that claim – when the wraps are off – will turn out to be rather less exciting than it sounds. It isn’t that all the work that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Physics is Organized Around Transformations Connecting Contextures in a Polycontextural World.Johannes Falk, Edwin Eichler, Katja Windt & Marc-Thorsten Hütt - 2022 - Foundations of Science 27 (3):1229-1251.
    The rich body of physical theories defines the foundation of our understanding of the world. Its mathematical formulation is based on classical Aristotelian logic. In the philosophy of science the ambiguities, paradoxes, and the possibility of subjective interpretations of facts have challenged binary logic, leading, among other developments, to Gotthard Günther’s theory of polycontexturality. Günther’s theory explains how observers with subjective perception can become aware of their own subjectivity and provides means to describe contradicting or even paradox observations in a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classical recapture and maximality.Lucas Rosenblatt - 2020 - Philosophical Studies 178 (6):1951-1970.
    The idea of classical recapture has played a prominent role for non-classical logicians. In the specific case of non-classical theories of truth, although we know that it is not possible to retain classical logic for every statement involving the truth predicate, it is clear that for many such statements this is in principle feasible, and even desirable. What is not entirely obvious or well-known is how far this idea can be pushed. Can the non-classical theorist retain classical logic for every (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Omega-inconsistency without cuts and nonstandard models.Andreas Fjellstad - 2016 - Australasian Journal of Logic 13 (5).
    This paper concerns the relationship between transitivity of entailment, omega-inconsistency and nonstandard models of arithmetic. First, it provides a cut-free sequent calculus for non-transitive logic of truth STT based on Robinson Arithmetic and shows that this logic is omega-inconsistent. It then identifies the conditions in McGee for an omega-inconsistent logic as quantified standard deontic logic, presents a cut-free labelled sequent calculus for quantified standard deontic logic based on Robinson Arithmetic where the deontic modality is treated as a predicate, proves omega-inconsistency (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Squeezing arguments.P. Smith - 2011 - Analysis 71 (1):22-30.
    Many of our concepts are introduced to us via, and seem only to be constrained by, roughand-ready explanations and some sample paradigm positive and negative applications. This happens even in informal logic and mathematics. Yet in some cases, the concepts in question – although only informally and vaguely characterized – in fact have, or appear to have, entirely determinate extensions. Here’s one familiar example. When we start learning computability theory, we are introduced to the idea of an algorithmically computable function (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (1 other version)A priori truths.Greg Restall - 2009 - In John Shand (ed.), Central Issues of Philosophy. Malden, MA: Wiley-Blackwell.
    Philosophers love a priori knowledge: we delight in truths that can be known from the comfort of our armchairs, without the need to venture out in the world for confirmation. This is due not to laziness, but to two different considerations. First, it seems that many philosophical issues aren’t settled by our experience of the world — the nature of morality; the way concepts pick out objects; the structure of our experience of the world in which we find ourselves — (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Too naturalist and not naturalist enough: Reply to Horsten.Luca Incurvati - 2008 - Erkenntnis 69 (2):261 - 274.
    Leon Horsten has recently claimed that the class of mathematical truths coincides with the class of theorems of ZFC. I argue that the naturalistic character of Horsten’s proposal undermines his contention that this claim constitutes an analogue of a thesis that Daniel Isaacson has advanced for PA. I argue, moreover, that Horsten’s defence of his claim against an obvious objection makes use of a distinction which is not available to him given his naturalistic approach. I suggest a way out of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gödelizing the Yablo Sequence.Cezary Cieśliński & Rafal Urbaniak - 2013 - Journal of Philosophical Logic 42 (5):679-695.
    We investigate what happens when ‘truth’ is replaced with ‘provability’ in Yablo’s paradox. By diagonalization, appropriate sequences of sentences can be constructed. Such sequences contain no sentence decided by the background consistent and sufficiently strong arithmetical theory. If the provability predicate satisfies the derivability conditions, each such sentence is provably equivalent to the consistency statement and to the Gödel sentence. Thus each two such sentences are provably equivalent to each other. The same holds for the arithmetization of the existential Yablo (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • In Defense of the Unprovability of the Church-Turing Thesis.Selmer Bringsjord - unknown
    One of us has previously argued that the Church-Turing Thesis (CTT), contra Elliot Mendelson, is not provable, and is — light of the mind’s capacity for effortless hypercomputation — moreover false (e.g., [13]). But a new, more serious challenge has appeared on the scene: an attempt by Smith [28] to prove CTT. His case is a clever “squeezing argument” that makes crucial use of Kolmogorov-Uspenskii (KU) machines. The plan for the present paper is as follows. After covering some necessary preliminaries (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Scope of Gödel’s First Incompleteness Theorem.Bernd Buldt - 2014 - Logica Universalis 8 (3-4):499-552.
    Guided by questions of scope, this paper provides an overview of what is known about both the scope and, consequently, the limits of Gödel’s famous first incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Seventh Quadrennial Fellows Conference of the Center for Philosophy of Science.-Preprint Volume- - unknown
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Given the Web, What is Intelligence, Really?Selmer Bringsjord & Naveen Sundar Govindarajulu - 2012 - Metaphilosophy 43 (4):464-479.
    This article argues that existing systems on the Web cannot approach human-level intelligence, as envisioned by Descartes, without being able to achieve genuine problem solving on unseen problems. The article argues that this entails committing to a strong intensional logic. In addition to revising extant arguments in favor of intensional systems, it presents a novel mathematical argument to show why extensional systems can never hope to capture the inherent complexity of natural language. The argument makes its case by focusing on (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Does truth equal provability in the maximal theory?Luca Incurvati - 2009 - Analysis 69 (2):233-239.
    According to the received view, formalism – interpreted as the thesis that mathematical truth does not outrun the consequences of our maximal mathematical theory – has been refuted by Goedel's theorem. In support of this claim, proponents of the received view usually invoke an informal argument for the truth of the Goedel sentence, an argument which is supposed to reconstruct our reasoning in seeing its truth. Against this, Field has argued in a series of papers that the principles involved in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Una teoría no transitiva de la verdad sobre PA.Jonathan Dittrich - 2021 - Análisis Filosófico 41 (2):273-283.
    David Ripley ha argumentado extensamente a favor de una teoría no-transitiva de la verdad que abandona la regla de Corte para así evitar las pruebas de trivialidad causadas por paradojas como la del mentiroso. Sin embargo, es problemático comparar su teoría con varias teorías clásicas que se han ofrecido en la bibliografía. La tarea de formular esta teoría sobre la aritmética de Peano no es trivial, ya que Corte no es eliminable en la aritmética de Peano. En este artículo intento (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel’s Incompleteness Theorem and the Anti-Mechanist Argument: Revisited.Yong Cheng - 2020 - Studia Semiotyczne 34 (1):159-182.
    This is a paper for a special issue of Semiotic Studies devoted to Stanislaw Krajewski’s paper. This paper gives some supplementary notes to Krajewski’s on the Anti-Mechanist Arguments based on Gödel’s incompleteness theorem. In Section 3, we give some additional explanations to Section 4–6 in Krajewski’s and classify some misunderstandings of Gödel’s incompleteness theorem related to AntiMechanist Arguments. In Section 4 and 5, we give a more detailed discussion of Gödel’s Disjunctive Thesis, Gödel’s Undemonstrability of Consistency Thesis and the definability (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Sophisticated knowledge representation and reasoning requires philosophy.Selmer Bringsjord, Micah Clark & Joshua Taylor - forthcoming - In Ruth Hagengruber (ed.), Philosophy's Relevance in Information Science.
    Knowledge Representation and Reasoning (KR&R) is based on the idea that propositional content can be rigorously represented in formal languages long the province of logic, in such a way that these representations can be productively reasoned over by humans and machines; and that this reasoning can be used to produce knowledge-based systems (KBSs). As such, KR&R is a discipline conventionally regarded to range across parts of artificial intelligence (AI), computer science, and especially logic. This standard view of KR&R’s participating fields (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Der Zahlbegriff und seine Logik.Vojtěch Kolman - 2008 - History of Philosophy & Logical Analysis 11 (1):65-89.
    Download  
     
    Export citation  
     
    Bookmark  
  • Validity, the Squeezing Argument and Alternative Semantic Systems: the Case of Aristotelian Syllogistic. [REVIEW]Catarina Dutilh Novaes & Edgar Andrade-Lotero - 2012 - Journal of Philosophical Logic 41 (2):387 - 418.
    We investigate the philosophical significance of the existence of different semantic systems with respect to which a given deductive system is sound and complete. Our case study will be Corcoran's deductive system D for Aristotelian syllogistic and some of the different semantic systems for syllogistic that have been proposed in the literature. We shall prove that they are not equivalent, in spite of D being sound and complete with respect to each of them. Beyond the specific case of syllogistic, the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations