Switch to: References

Add citations

You must login to add citations.
  1. Predicative Frege Arithmetic and ‘Everyday’ Mathematics.Richard Heck - 2014 - Philosophia Mathematica 22 (3):279-307.
    The primary purpose of this note is to demonstrate that predicative Frege arithmetic naturally interprets certain weak but non-trivial arithmetical theories. It will take almost as long to explain what this means and why it matters as it will to prove the results.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Do Accelerating Turing Machines Compute the Uncomputable?B. Jack Copeland & Oron Shagrir - 2011 - Minds and Machines 21 (2):221-239.
    Accelerating Turing machines have attracted much attention in the last decade or so. They have been described as “the work-horse of hypercomputation” (Potgieter and Rosinger 2010: 853). But do they really compute beyond the “Turing limit”—e.g., compute the halting function? We argue that the answer depends on what you mean by an accelerating Turing machine, on what you mean by computation, and even on what you mean by a Turing machine. We show first that in the current literature the term (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Jaroslav Peregrin.Jaroslav Peregrin - unknown
    The paper presents an argument against a "metaphysical'* conception of logic according to which logic spells out a specific kind of mathematical structure that is somehow inherently related to our factual reasoning. In contrast, it is argued that it is always an empirical question as to whether a given mathematical structure really does captures a principle of reasoning. lMore generally, it is argued that it is not meaningful to replace an empirical investigation of a thing by an investigation of its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the logic of common belief and common knowledge.Luc Lismont & Philippe Mongin - 1994 - Theory and Decision 37 (1):75-106.
    The paper surveys the currently available axiomatizations of common belief (CB) and common knowledge (CK) by means of modal propositional logics. (Throughout, knowledge- whether individual or common- is defined as true belief.) Section 1 introduces the formal method of axiomatization followed by epistemic logicians, especially the syntax-semantics distinction, and the notion of a soundness and completeness theorem. Section 2 explains the syntactical concepts, while briefly discussing their motivations. Two standard semantic constructions, Kripke structures and neighbourhood structures, are introduced in Sections (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Variations on a Montagovian theme.Wolfgang Schwarz - 2013 - Synthese 190 (16):3377-3395.
    What are the objects of knowledge, belief, probability, apriority or analyticity? For at least some of these properties, it seems plausible that the objects are sentences, or sentence-like entities. However, results from mathematical logic indicate that sentential properties are subject to severe formal limitations. After surveying these results, I argue that they are more problematic than often assumed, that they can be avoided by taking the objects of the relevant property to be coarse-grained (“sets of worlds”) propositions, and that all (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)The Absence of Multiple Universes of Discourse in the 1936 Tarski Consequence-Definition Paper.John Corcoran & José Miguel Sagüillo - 2011 - History and Philosophy of Logic 32 (4):359-374.
    This paper discusses the history of the confusion and controversies over whether the definition of consequence presented in the 11-page 1936 Tarski consequence-definition paper is based on a monistic fixed-universe framework?like Begriffsschrift and Principia Mathematica. Monistic fixed-universe frameworks, common in pre-WWII logic, keep the range of the individual variables fixed as the class of all individuals. The contrary alternative is that the definition is predicated on a pluralistic multiple-universe framework?like the 1931 Gödel incompleteness paper. A pluralistic multiple-universe framework recognizes multiple (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Metamathematics of Putnam’s Model-Theoretic Arguments.Tim Button - 2011 - Erkenntnis 74 (3):321-349.
    Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted models. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I examine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to metamathematical challenges.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Zombie Attack on the Computational Conception of Mind.Selmer Bringsjord - 1999 - Philosophy and Phenomenological Research 59 (1):41-69.
    Is it true that if zombies---creatures who are behaviorally indistinguishable from us, but no more conscious than a rock-are logically possible, the computational conception of mind is false? Are zombies logically possible? Are they physically possible? This paper is a careful, sustained argument for affirmative answers to these three questions.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Everything you always wanted to know about structural realism but were afraid to ask.Roman Frigg & Ioannis Votsis - 2011 - European Journal for Philosophy of Science 1 (2):227-276.
    Everything you always wanted to know about structural realism but were afraid to ask Content Type Journal Article Pages 227-276 DOI 10.1007/s13194-011-0025-7 Authors Roman Frigg, Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, Houghton Street, London, WC2A 2AE UK Ioannis Votsis, Philosophisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Geb. 23.21/04.86, 40225 Düsseldorf, Germany Journal European Journal for Philosophy of Science Online ISSN 1879-4920 Print ISSN 1879-4912 Journal Volume Volume 1 Journal Issue Volume 1, Number 2.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Modeling Bounded Rationality.Ariel Rubinstein - 1998 - MIT Press.
    p. cm. — (Zeuthen lecture book series) Includes bibliographical references (p. ) and index. ISBN 0-262-18187-8 (hardcover : alk. paper). — ISBN 0-262-68100-5 (pbk. : alk. paper) 1. Decision-making. 2. Economic man. 3. Game theory. 4. Rational expectations (Economic theory) I. Title. II. Series.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ethical robots: the future can heed us. [REVIEW]Selmer Bringsjord - 2008 - AI and Society 22 (4):539-550.
    Bill Joy’s deep pessimism is now famous. Why the Future Doesn’t Need Us, his defense of that pessimism, has been read by, it seems, everyone—and many of these readers, apparently, have been converted to the dark side, or rather more accurately, to the future-is-dark side. Fortunately (for us; unfortunately for Joy), the defense, at least the part of it that pertains to AI and robotics, fails. Ours may be a dark future, but we cannot know that on the basis of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Against Logicist Cognitive Science.Mike Oaksford & Nick Chater - 1991 - Mind and Language 6 (1):1-38.
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Open problems in the philosophy of information.Luciano Floridi - 2004 - Metaphilosophy 35 (4):554-582.
    The philosophy of information (PI) is a new area of research with its own field of investigation and methodology. This article, based on the Herbert A. Simon Lecture of Computing and Philosophy I gave at Carnegie Mellon University in 2001, analyses the eighteen principal open problems in PI. Section 1 introduces the analysis by outlining Herbert Simon's approach to PI. Section 2 discusses some methodological considerations about what counts as a good philosophical problem. The discussion centers on Hilbert's famous analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Indistinguishable from magic: Computation is cognitive technology. [REVIEW]John Kadvany - 2010 - Minds and Machines 20 (1):119-143.
    This paper explains how mathematical computation can be constructed from weaker recursive patterns typical of natural languages. A thought experiment is used to describe the formalization of computational rules, or arithmetical axioms, using only orally-based natural language capabilities, and motivated by two accomplishments of ancient Indian mathematics and linguistics. One accomplishment is the expression of positional value using versified Sanskrit number words in addition to orthodox inscribed numerals. The second is Pāṇini’s invention, around the fifth century BCE, of a formal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the nature of quantum information. (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (2 other versions)Scientific representation and the semantic view of theories.Roman Frigg - 2006 - Theoria 21 (1):49-65.
    It is now part and parcel of the official philosophical wisdom that models are essential to the acquisition and organisation of scientific knowledge. It is also generally accepted that most models represent their target systems in one way or another. But what does it mean for a model to represent its target system? I begin by introducing three conundrums that a theory of scientific representation has to come to terms with and then address the question of whether the semantic view (...)
    Download  
     
    Export citation  
     
    Bookmark   139 citations  
  • Intensionality and the gödel theorems.David D. Auerbach - 1985 - Philosophical Studies 48 (3):337--51.
    Philosophers of language have drawn on metamathematical results in varied ways. Extensionalist philosophers have been particularly impressed with two, not unrelated, facts: the existence, due to Frege/Tarski, of a certain sort of semantics, and the seeming absence of intensional contexts from mathematical discourse. The philosophical import of these facts is at best murky. Extensionalists will emphasize the success and clarity of the model theoretic semantics; others will emphasize the relative poverty of the mathematical idiom; still others will question the aptness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Supermachines and superminds.Eric Steinhart - 2003 - Minds and Machines 13 (1):155-186.
    If the computational theory of mind is right, then minds are realized by machines. There is an ordered complexity hierarchy of machines. Some finite machines realize finitely complex minds; some Turing machines realize potentially infinitely complex minds. There are many logically possible machines whose powers exceed the Church–Turing limit (e.g. accelerating Turing machines). Some of these supermachines realize superminds. Superminds perform cognitive supertasks. Their thoughts are formed in infinitary languages. They perceive and manipulate the infinite detail of fractal objects. They (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logically possible machines.Eric Steinhart - 2002 - Minds and Machines 12 (2):259-280.
    I use modal logic and transfinite set-theory to define metaphysical foundations for a general theory of computation. A possible universe is a certain kind of situation; a situation is a set of facts. An algorithm is a certain kind of inductively defined property. A machine is a series of situations that instantiates an algorithm in a certain way. There are finite as well as transfinite algorithms and machines of any degree of complexity (e.g., Turing and super-Turing machines and more). There (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Self-reference and the languages of arithmetic.Richard Heck - 2007 - Philosophia Mathematica 15 (1):1-29.
    I here investigate the sense in which diagonalization allows one to construct sentences that are self-referential. Truly self-referential sentences cannot be constructed in the standard language of arithmetic: There is a simple theory of truth that is intuitively inconsistent but is consistent with Peano arithmetic, as standardly formulated. True self-reference is possible only if we expand the language to include function-symbols for all primitive recursive functions. This language is therefore the natural setting for investigations of self-reference.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On interpreting Chaitin's incompleteness theorem.Panu Raatikainen - 1998 - Journal of Philosophical Logic 27 (6):569-586.
    The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin's famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be good measure of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The "natural" and the "formal".Jaroslav Peregrin - 2000 - Journal of Philosophical Logic 29 (1):75-101.
    The paper presents an argument against a "metaphysical" conception of logic according to which logic spells out a specific kind of mathematical structure that is somehow inherently related to our factual reasoning. In contrast, it is argued that it is always an empirical question as to whether a given mathematical structure really does captures a principle of reasoning. (More generally, it is argued that it is not meaningful to replace an empirical investigation of a thing by an investigation of its (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Creativity, the Turing test, and the (better) Lovelace test.Selmer Bringsjord, P. Bello & David A. Ferrucci - 2001 - Minds and Machines 11 (1):3-27.
    The Turing Test is claimed by many to be a way to test for the presence, in computers, of such ``deep'' phenomena as thought and consciousness. Unfortunately, attempts to build computational systems able to pass TT have devolved into shallow symbol manipulation designed to, by hook or by crook, trick. The human creators of such systems know all too well that they have merely tried to fool those people who interact with their systems into believing that these systems really have (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Symmetric relations, symmetric theories, and Pythagrapheanism.Tim Button - 2022 - Philosophy and Phenomenological Research (3):583-612.
    It is a metaphysical orthodoxy that interesting non-symmetric relations cannot be reduced to symmetric ones. This orthodoxy is wrong. I show this by exploring the expressive power of symmetric theories, i.e. theories which use only symmetric predicates. Such theories are powerful enough to raise the possibility of Pythagrapheanism, i.e. the possibility that the world is just a vast, unlabelled, undirected graph.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Against Fregean Quantification.Bryan Pickel & Brian Rabern - 2023 - Ergo: An Open Access Journal of Philosophy 9 (37):971-1007.
    There are two dominant approaches to quantification: the Fregean and the Tarskian. While the Tarskian approach is standard and familiar, deep conceptual objections have been pressed against its employment of variables as genuine syntactic and semantic units. Because they do not explicitly rely on variables, Fregean approaches are held to avoid these worries. The apparent result is that the Fregean can deliver something that the Tarskian is unable to, namely a compositional semantic treatment of quantification centered on truth and reference. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Counterfactual Logic and the Necessity of Mathematics.Samuel Elgin - manuscript
    This paper is concerned with counterfactual logic and its implications for the modal status of mathematical claims. It is most directly a response to an ambitious program by Yli-Vakkuri and Hawthorne (2018), who seek to establish that mathematics is committed to its own necessity. I claim that their argument fails to establish this result for two reasons. First, their assumptions force our hand on a controversial debate within counterfactual logic. In particular, they license counterfactual strengthening— the inference from ‘If A (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Compositionality.Martin Jönsson - 2008 - Dissertation, Lund University
    The goal of inquiry in this essay is to ascertain to what extent the Principle of Compositionality – the thesis that the meaning of a complex expression is determined by the meaning of its parts and its mode of composition – can be justifiably imposed as a constraint on semantic theories, and thereby provide information about what meanings are. Apart from the introduction and the concluding chapter the thesis is divided into five chapters addressing different questions pertaining to the overarching (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A simple theory containing its own truth predicate.Nicholas Shackel - 2018 - South American Journal of Logic 4 (1):121-131.
    Tarski's indefinability theorem shows us that truth is not definable in arithmetic. The requirement to define truth for a language in a stronger language (if contradiction is to be avoided) lapses for particularly weak languages. A weaker language, however, is not necessary for that lapse. It also lapses for an adequately weak theory. It turns out that the set of G{\"o}del numbers of sentences true in arithmetic modulo $n$ is definable in arithmetic modulo $n$.
    Download  
     
    Export citation  
     
    Bookmark  
  • Making AI Meaningful Again.Jobst Landgrebe & Barry Smith - 2021 - Synthese 198 (March):2061-2081.
    Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the 1970s and 80s. But this enthusiasm was tempered by a long interlude of frustration when genuinely useful AI applications failed to be forthcoming. Today, we are experiencing once again a period of enthusiasm, fired above all by the successes of the technology of deep neural networks or deep machine learning. In this paper we draw attention to what we take to be serious problems underlying current views of artificial (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Truth via Satisfaction?Nicholas J. J. Smith - 2017 - In Arazim Pavel & Lávička Tomáš (eds.), The Logica Yearbook 2016. College Publications. pp. 273-287.
    One of Tarski’s stated aims was to give an explication of the classical conception of truth—truth as ‘saying it how it is’. Many subsequent commentators have felt that he achieved this aim. Tarski’s core idea of defining truth via satisfaction has now found its way into standard logic textbooks. This paper looks at such textbook definitions of truth in a model for standard first-order languages and argues that they fail from the point of view of explication of the classical notion (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How Arithmetic is about Numbers. A Wittgenestinian Perspective.Felix Mühlhölzer - 2014 - Grazer Philosophische Studien 89 (1):39-59.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Axiomatic Theories of Partial Ground II: Partial Ground and Hierarchies of Typed Truth.Johannes Korbmacher - 2018 - Journal of Philosophical Logic 47 (2):193-226.
    This is part two of a two-part paper in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. In this part of the paper, we extend the base theory of the first part of the paper with hierarchically typed truth-predicates and principles about the interaction of partial ground and truth. We show that our theory is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Wittgenstein and Gödel: An Attempt to Make ‘Wittgenstein’s Objection’ Reasonable†.Timm Lampert - 2018 - Philosophia Mathematica 26 (3):324-345.
    According to some scholars, such as Rodych and Steiner, Wittgenstein objects to Gödel’s undecidability proof of his formula $$G$$, arguing that given a proof of $$G$$, one could relinquish the meta-mathematical interpretation of $$G$$ instead of relinquishing the assumption that Principia Mathematica is correct. Most scholars agree that such an objection, be it Wittgenstein’s or not, rests on an inadequate understanding of Gödel’s proof. In this paper, I argue that there is a possible reading of such an objection that is, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Omega-inconsistency without cuts and nonstandard models.Andreas Fjellstad - 2016 - Australasian Journal of Logic 13 (5).
    This paper concerns the relationship between transitivity of entailment, omega-inconsistency and nonstandard models of arithmetic. First, it provides a cut-free sequent calculus for non-transitive logic of truth STT based on Robinson Arithmetic and shows that this logic is omega-inconsistent. It then identifies the conditions in McGee for an omega-inconsistent logic as quantified standard deontic logic, presents a cut-free labelled sequent calculus for quantified standard deontic logic based on Robinson Arithmetic where the deontic modality is treated as a predicate, proves omega-inconsistency (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Axiomatic Theories of Partial Ground I: The Base Theory.Johannes Korbmacher - 2018 - Journal of Philosophical Logic 47 (2):161-191.
    This is part one of a two-part paper, in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. This allows us to connect theories of partial ground with axiomatic theories of truth. In this part of the paper, we develop an axiomatization of the relation of partial ground over the truths of arithmetic and show that (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Yablo's paradox.Graham Priest - 1997 - Analysis 57 (4):236-242.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Boolos and the Metamathematics of Quine's Definitions of Logical Truth and Consequence.Günther Eder - 2016 - History and Philosophy of Logic 37 (2):170-193.
    The paper is concerned with Quine's substitutional account of logical truth. The critique of Quine's definition tends to focus on miscellaneous odds and ends, such as problems with identity. However, in an appendix to his influential article On Second Order Logic, George Boolos offered an ingenious argument that seems to diminish Quine's account of logical truth on a deeper level. In the article he shows that Quine's substitutional account of logical truth cannot be generalized properly to the general concept of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Effective Computation by Humans and Machines.Shagrir Oron - 2002 - Minds and Machines 12 (2):221-240.
    There is an intensive discussion nowadays about the meaning of effective computability, with implications to the status and provability of the Church–Turing Thesis (CTT). I begin by reviewing what has become the dominant account of the way Turing and Church viewed, in 1936, effective computability. According to this account, to which I refer as the Gandy–Sieg account, Turing and Church aimed to characterize the functions that can be computed by a human computer. In addition, Turing provided a highly convincing argument (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Perlis on strong and weak self-reference--a mirror reversal.Damjan Bojadziev - 2000 - Journal of Consciousness Studies 7 (5):60-66.
    The kind of self-reference which Perlis characterizes as strong, as opposed to formal self-reference which he characterizes as weak, is actually already present in standard forms of formal self-reference. Even if formal self-reference is weak because it is delegated, there is no specific delegation of reference for self-referential sentences, and their ‘self’ part is strong enough. In particular, the structure of self-reference in Godel's sentence, with its application of a self-referential process to itself, provides a model of Perlis’ characterization of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • There is No Paradox of Logical Validity.Roy T. Cook - 2014 - Logica Universalis 8 (3-4):447-467.
    A number of authors have argued that Peano Arithmetic supplemented with a logical validity predicate is inconsistent in much the same manner as is PA supplemented with an unrestricted truth predicate. In this paper I show that, on the contrary, there is no genuine paradox of logical validity—a completely general logical validity predicate can be coherently added to PA, and the resulting system is consistent. In addition, this observation lead to a number of novel, and important, insights into the nature (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Emergence, Reduction and Supervenience: A Varied Landscape. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):920-959.
    This is one of two papers about emergence, reduction and supervenience. It expounds these notions and analyses the general relations between them. The companion paper analyses the situation in physics, especially limiting relations between physical theories. I shall take emergence as behaviour that is novel and robust relative to some comparison class. I shall take reduction as deduction using appropriate auxiliary definitions. And I shall take supervenience as a weakening of reduction, viz. to allow infinitely long definitions. The overall claim (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Peirce, logic diagrams, and the elementary operations of reasoning.P. N. Johnson-Laird - 2002 - Thinking and Reasoning 8 (1):69 – 95.
    This paper describes Peirce's systems of logic diagrams, focusing on the so-called ''existential'' graphs, which are equivalent to the first-order predicate calculus. It analyses their implications for the nature of mental representations, particularly mental models with which they have many characteristics in common. The graphs are intended to be iconic, i.e., to have a structure analogous to the structure of what they represent. They have emergent logical consequences and a single graph can capture all the different ways in which a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Deciding arithmetic using SAD computers.Mark Hogarth - 2004 - British Journal for the Philosophy of Science 55 (4):681-691.
    Presented here is a new result concerning the computational power of so-called SADn computers, a class of Turing-machine-based computers that can perform some non-Turing computable feats by utilising the geometry of a particular kind of general relativistic spacetime. It is shown that SADn can decide n-quantifier arithmetic but not (n+1)-quantifier arithmetic, a result that reveals how neatly the SADn family maps into the Kleene arithmetical hierarchy. Introduction Axiomatising computers The power of SAD computers Remarks regarding the concept of computability.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The intentionality of formal systems.Ard Van Moer - 2006 - Foundations of Science 11 (1-2):81-119.
    One of the most interesting and entertaining philosophical discussions of the last few decades is the discussion between Daniel Dennett and John Searle on the existence of intrinsic intentionality. Dennett denies the existence of phenomena with intrinsic intentionality. Searle, however, is convinced that some mental phenomena exhibit intrinsic intentionality. According to me, this discussion has been obscured by some serious misunderstandings with regard to the concept ‘intrinsic intentionality’. For instance, most philosophers fail to realize that it is possible that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inconsistent models of arithmetic part I: Finite models. [REVIEW]Graham Priest - 1997 - Journal of Philosophical Logic 26 (2):223-235.
    The paper concerns interpretations of the paraconsistent logic LP which model theories properly containing all the sentences of first order arithmetic. The paper demonstrates the existence of such models and provides a complete taxonomy of the finite ones.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • What are sets and what are they for?Alex Oliver & Timothy Smiley - 2006 - Philosophical Perspectives 20 (1):123–155.
    Download  
     
    Export citation  
     
    Bookmark   4 citations