Switch to: References

Add citations

You must login to add citations.
  1. Predicative Frege Arithmetic and ‘Everyday’ Mathematics.Richard Heck - 2014 - Philosophia Mathematica 22 (3):279-307.
    The primary purpose of this note is to demonstrate that predicative Frege arithmetic naturally interprets certain weak but non-trivial arithmetical theories. It will take almost as long to explain what this means and why it matters as it will to prove the results.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The epistemic significance of numerals.Jan Heylen - 2014 - Synthese 198 (Suppl 5):1019-1045.
    The central topic of this article is (the possibility of) de re knowledge about natural numbers and its relation with names for numbers. It is held by several prominent philosophers that (Peano) numerals are eligible for existential quantification in epistemic contexts (‘canonical’), whereas other names for natural numbers are not. In other words, (Peano) numerals are intimately linked with de re knowledge about natural numbers, whereas the other names for natural numbers are not. In this article I am looking for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Closure of A Priori Knowability Under A Priori Knowable Material Implication.Jan Heylen - 2015 - Erkenntnis 80 (2):359-380.
    The topic of this article is the closure of a priori knowability under a priori knowable material implication: if a material conditional is a priori knowable and if the antecedent is a priori knowable, then the consequent is a priori knowable as well. This principle is arguably correct under certain conditions, but there is at least one counterexample when completely unrestricted. To deal with this, Anderson proposes to restrict the closure principle to necessary truths and Horsten suggests to restrict it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Do Accelerating Turing Machines Compute the Uncomputable?B. Jack Copeland & Oron Shagrir - 2011 - Minds and Machines 21 (2):221-239.
    Accelerating Turing machines have attracted much attention in the last decade or so. They have been described as “the work-horse of hypercomputation” (Potgieter and Rosinger 2010: 853). But do they really compute beyond the “Turing limit”—e.g., compute the halting function? We argue that the answer depends on what you mean by an accelerating Turing machine, on what you mean by computation, and even on what you mean by a Turing machine. We show first that in the current literature the term (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Computable Diagonalizations and Turing’s Cardinality Paradox.Dale Jacquette - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (2):239-262.
    A. N. Turing’s 1936 concept of computability, computing machines, and computable binary digital sequences, is subject to Turing’s Cardinality Paradox. The paradox conjoins two opposed but comparably powerful lines of argument, supporting the propositions that the cardinality of dedicated Turing machines outputting all and only the computable binary digital sequences can only be denumerable, and yet must also be nondenumerable. Turing’s objections to a similar kind of diagonalization are answered, and the implications of the paradox for the concept of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Jaroslav Peregrin.Jaroslav Peregrin - unknown
    The paper presents an argument against a "metaphysical'* conception of logic according to which logic spells out a specific kind of mathematical structure that is somehow inherently related to our factual reasoning. In contrast, it is argued that it is always an empirical question as to whether a given mathematical structure really does captures a principle of reasoning. lMore generally, it is argued that it is not meaningful to replace an empirical investigation of a thing by an investigation of its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Replies to Dorr, Fine, and Hirsch.Theodore Sider - 2013 - Philosophy and Phenomenological Research 87 (3):733-754.
    This is a symposium on my book, Writing the Book of the World, containing a precis from me, criticisms from Dorr, Fine, and Hirsch, and replies by me.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On the logic of common belief and common knowledge.Luc Lismont & Philippe Mongin - 1994 - Theory and Decision 37 (1):75-106.
    The paper surveys the currently available axiomatizations of common belief (CB) and common knowledge (CK) by means of modal propositional logics. (Throughout, knowledge- whether individual or common- is defined as true belief.) Section 1 introduces the formal method of axiomatization followed by epistemic logicians, especially the syntax-semantics distinction, and the notion of a soundness and completeness theorem. Section 2 explains the syntactical concepts, while briefly discussing their motivations. Two standard semantic constructions, Kripke structures and neighbourhood structures, are introduced in Sections (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Variations on a Montagovian theme.Wolfgang Schwarz - 2013 - Synthese 190 (16):3377-3395.
    What are the objects of knowledge, belief, probability, apriority or analyticity? For at least some of these properties, it seems plausible that the objects are sentences, or sentence-like entities. However, results from mathematical logic indicate that sentential properties are subject to severe formal limitations. After surveying these results, I argue that they are more problematic than often assumed, that they can be avoided by taking the objects of the relevant property to be coarse-grained (“sets of worlds”) propositions, and that all (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Modal-Epistemic Arithmetic and the problem of quantifying in.Jan Heylen - 2013 - Synthese 190 (1):89-111.
    The subject of this article is Modal-Epistemic Arithmetic (MEA), a theory introduced by Horsten to interpret Epistemic Arithmetic (EA), which in turn was introduced by Shapiro to interpret Heyting Arithmetic. I will show how to interpret MEA in EA such that one can prove that the interpretation of EA is MEA is faithful. Moreover, I will show that one can get rid of a particular Platonist assumption. Then I will discuss models for MEA in light of the problems of logical (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)The Absence of Multiple Universes of Discourse in the 1936 Tarski Consequence-Definition Paper.John Corcoran & José Miguel Sagüillo - 2011 - History and Philosophy of Logic 32 (4):359-374.
    This paper discusses the history of the confusion and controversies over whether the definition of consequence presented in the 11-page 1936 Tarski consequence-definition paper is based on a monistic fixed-universe framework?like Begriffsschrift and Principia Mathematica. Monistic fixed-universe frameworks, common in pre-WWII logic, keep the range of the individual variables fixed as the class of all individuals. The contrary alternative is that the definition is predicated on a pluralistic multiple-universe framework?like the 1931 Gödel incompleteness paper. A pluralistic multiple-universe framework recognizes multiple (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Zombie Attack on the Computational Conception of Mind.Selmer Bringsjord - 1999 - Philosophy and Phenomenological Research 59 (1):41-69.
    Is it true that if zombies---creatures who are behaviorally indistinguishable from us, but no more conscious than a rock-are logically possible, the computational conception of mind is false? Are zombies logically possible? Are they physically possible? This paper is a careful, sustained argument for affirmative answers to these three questions.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Everything you always wanted to know about structural realism but were afraid to ask.Roman Frigg & Ioannis Votsis - 2011 - European Journal for Philosophy of Science 1 (2):227-276.
    Everything you always wanted to know about structural realism but were afraid to ask Content Type Journal Article Pages 227-276 DOI 10.1007/s13194-011-0025-7 Authors Roman Frigg, Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, Houghton Street, London, WC2A 2AE UK Ioannis Votsis, Philosophisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Geb. 23.21/04.86, 40225 Düsseldorf, Germany Journal European Journal for Philosophy of Science Online ISSN 1879-4920 Print ISSN 1879-4912 Journal Volume Volume 1 Journal Issue Volume 1, Number 2.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Modeling Bounded Rationality.Ariel Rubinstein - 1998 - MIT Press.
    p. cm. — (Zeuthen lecture book series) Includes bibliographical references (p. ) and index. ISBN 0-262-18187-8 (hardcover : alk. paper). — ISBN 0-262-68100-5 (pbk. : alk. paper) 1. Decision-making. 2. Economic man. 3. Game theory. 4. Rational expectations (Economic theory) I. Title. II. Series.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Against Logicist Cognitive Science.Mike Oaksford & Nick Chater - 1991 - Mind and Language 6 (1):1-38.
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Open problems in the philosophy of information.Luciano Floridi - 2004 - Metaphilosophy 35 (4):554-582.
    The philosophy of information (PI) is a new area of research with its own field of investigation and methodology. This article, based on the Herbert A. Simon Lecture of Computing and Philosophy I gave at Carnegie Mellon University in 2001, analyses the eighteen principal open problems in PI. Section 1 introduces the analysis by outlining Herbert Simon's approach to PI. Section 2 discusses some methodological considerations about what counts as a good philosophical problem. The discussion centers on Hilbert's famous analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Indistinguishable from magic: Computation is cognitive technology. [REVIEW]John Kadvany - 2010 - Minds and Machines 20 (1):119-143.
    This paper explains how mathematical computation can be constructed from weaker recursive patterns typical of natural languages. A thought experiment is used to describe the formalization of computational rules, or arithmetical axioms, using only orally-based natural language capabilities, and motivated by two accomplishments of ancient Indian mathematics and linguistics. One accomplishment is the expression of positional value using versified Sanskrit number words in addition to orthodox inscribed numerals. The second is Pāṇini’s invention, around the fifth century BCE, of a formal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Plurals and complexes.Keith Hossack - 2000 - British Journal for the Philosophy of Science 51 (3):411-443.
    Atomism denies that complexes exist. Common-sense metaphysics may posit masses, composite individuals and sets, but atomism says there are only simples. In a singularist logic, it is difficult to make a plausible case for atomism. But we should accept plural logic, and then atomism can paraphrase away apparent reference to complexes. The paraphrases require unfamiliar plural universals, but these are of independent interest; for example, we can identify numbers and sets with plural universals. The atomist paraphrases would fail if plurals (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Intensionality and the gödel theorems.David D. Auerbach - 1985 - Philosophical Studies 48 (3):337--51.
    Philosophers of language have drawn on metamathematical results in varied ways. Extensionalist philosophers have been particularly impressed with two, not unrelated, facts: the existence, due to Frege/Tarski, of a certain sort of semantics, and the seeming absence of intensional contexts from mathematical discourse. The philosophical import of these facts is at best murky. Extensionalists will emphasize the success and clarity of the model theoretic semantics; others will emphasize the relative poverty of the mathematical idiom; still others will question the aptness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computability and recursion.Robert I. Soare - 1996 - Bulletin of Symbolic Logic 2 (3):284-321.
    We consider the informal concept of "computability" or "effective calculability" and two of the formalisms commonly used to define it, "(Turing) computability" and "(general) recursiveness". We consider their origin, exact technical definition, concepts, history, general English meanings, how they became fixed in their present roles, how they were first and are now used, their impact on nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection to other related areas. After a careful (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • (1 other version)Second-order languages and mathematical practice.Stewart Shapiro - 1985 - Journal of Symbolic Logic 50 (3):714-742.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Self-reference and the languages of arithmetic.Richard Heck - 2007 - Philosophia Mathematica 15 (1):1-29.
    I here investigate the sense in which diagonalization allows one to construct sentences that are self-referential. Truly self-referential sentences cannot be constructed in the standard language of arithmetic: There is a simple theory of truth that is intuitively inconsistent but is consistent with Peano arithmetic, as standardly formulated. True self-reference is possible only if we expand the language to include function-symbols for all primitive recursive functions. This language is therefore the natural setting for investigations of self-reference.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On interpreting Chaitin's incompleteness theorem.Panu Raatikainen - 1998 - Journal of Philosophical Logic 27 (6):569-586.
    The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin's famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be good measure of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • In Memory of Richard Jeffrey: Some Reminiscences and Some Reflections on The Logic of Decision.Alan Hájek - 2006 - Philosophy of Science 73 (5):947-958.
    This paper is partly a tribute to Richard Jeffrey, partly a reflection on some of his writings, The Logic of Decision in particular. I begin with a brief biography and some fond reminiscences of Dick. I turn to some of the key tenets of his version of Bayesianism. All of these tenets are deployed in my discussion of his response to the St. Petersburg paradox, a notorious problem for decision theory that involves a game of infinite expectation. Prompted by that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A defense of Isaacson’s thesis, or how to make sense of the boundaries of finite mathematics.Pablo Dopico - 2024 - Synthese 203 (2):1-22.
    Daniel Isaacson has advanced an epistemic notion of arithmetical truth according to which the latter is the set of truths that we grasp on the basis of our understanding of the structure of natural numbers alone. Isaacson’s thesis is then the claim that Peano Arithmetic (PA) is the theory of finite mathematics, in the sense that it proves all and only arithmetical truths thus understood. In this paper, we raise a challenge for the thesis and show how it can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forever Finite: The Case Against Infinity (Expanded Edition).Kip K. Sewell - 2023 - Alexandria, VA: Rond Books.
    EXPANDED EDITION (eBook): -/- Infinity Is Not What It Seems...Infinity is commonly assumed to be a logical concept, reliable for conducting mathematics, describing the Universe, and understanding the divine. Most of us are educated to take for granted that there exist infinite sets of numbers, that lines contain an infinite number of points, that space is infinite in expanse, that time has an infinite succession of events, that possibilities are infinite in quantity, and over half of the world’s population believes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Electrophysiological connectivity of logical deduction: Early cortical MEG study.Anton Toro Luis F., Salto Francisco, Requena Carmen & Maestu Fernando - 2023 - Cortex 166:365-376.
    Complex human reasoning involves minimal abilities to extract conclusions implied in the available information. These abilities are considered “deductive” because they exemplify certain abstract relations among propositions or probabilities called deductive arguments. However, the electrophysiological dynamics which supports such complex cognitive pro- cesses has not been addressed yet. In this work we consider typically deductive logico- probabilistically valid inferences and aim to verify or refute their electrophysiological functional connectivity differences from invalid inferences with the same content (same relational variables, same (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Transcendental Knowability, Closure, Luminosity and Factivity: Reply to Stephenson.Jan Heylen & Felipe Morales Carbonell - 2023 - History of Philosophy & Logical Analysis 27 (1).
    Stephenson (2022) has argued that Kant’s thesis that all transcendental truths are transcendentally a priori knowable leads to omniscience of all transcendental truths. His arguments depend on luminosity principles and closure principles for transcendental knowability. We will argue that one pair of a luminosity and a closure principle should not be used, because the closure principle is too strong, while the other pair of a luminosity and a closure principle should not be used, because the luminosity principle is too strong. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why Machines Will Never Rule the World: Artificial Intelligence without Fear.Jobst Landgrebe & Barry Smith - 2022 - Abingdon, England: Routledge.
    The book’s core argument is that an artificial intelligence that could equal or exceed human intelligence—sometimes called artificial general intelligence (AGI)—is for mathematical reasons impossible. It offers two specific reasons for this claim: Human intelligence is a capability of a complex dynamic system—the human brain and central nervous system. Systems of this sort cannot be modelled mathematically in a way that allows them to operate inside a computer. In supporting their claim, the authors, Jobst Landgrebe and Barry Smith, marshal evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Against Fregean Quantification.Bryan Pickel & Brian Rabern - 2023 - Ergo: An Open Access Journal of Philosophy 9 (37):971-1007.
    There are two dominant approaches to quantification: the Fregean and the Tarskian. While the Tarskian approach is standard and familiar, deep conceptual objections have been pressed against its employment of variables as genuine syntactic and semantic units. Because they do not explicitly rely on variables, Fregean approaches are held to avoid these worries. The apparent result is that the Fregean can deliver something that the Tarskian is unable to, namely a compositional semantic treatment of quantification centered on truth and reference. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Contrastando reconstrucciones con herramientas computacionales: una aplicación a la cladística.Ariel Jonathan Roffé - 2020 - Dissertation, Universidad de Buenos Aires (Uba)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What Have Google’s Random Quantum Circuit Simulation Experiments Demonstrated about Quantum Supremacy?Jack K. Horner & John Symons - 2021 - In Hamid R. Arabnia, Leonidas Deligiannidis, Fernando G. Tinetti & Quoc-Nam Tran (eds.), Advances in Software Engineering, Education, and E-Learning: Proceedings From Fecs'20, Fcs'20, Serp'20, and Eee'20. Springer.
    Quantum computing is of high interest because it promises to perform at least some kinds of computations much faster than classical computers. Arute et al. 2019 (informally, “the Google Quantum Team”) report the results of experiments that purport to demonstrate “quantum supremacy” – the claim that the performance of some quantum computers is better than that of classical computers on some problems. Do these results close the debate over quantum supremacy? We argue that they do not. In the following, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The ineffability of God.Omar Fakhri - 2020 - International Journal for Philosophy of Religion 89 (1):25-41.
    I defend an account of God’s ineffability that depends on the distinction between fundamental and non-fundamental truths. I argue that although there are fundamentally true propositions about God, no creature can have them as the object of a propositional attitude, and no sentence can perfectly carve out their structures. Why? Because these propositions have non-enumerable structures. In principle, no creature can fully grasp God’s intrinsic nature, nor can they develop a language that fully describes it. On this account, the ineffability (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rosenkranz’s Logic of Justification and Unprovability.Jan Heylen - 2020 - Journal of Philosophical Logic 49 (6):1243-1256.
    Rosenkranz has recently proposed a logic for propositional, non-factive, all-things-considered justification, which is based on a logic for the notion of being in a position to know, 309–338 2018). Starting from three quite weak assumptions in addition to some of the core principles that are already accepted by Rosenkranz, I prove that, if one has positive introspective and modally robust knowledge of the axioms of minimal arithmetic, then one is in a position to know that a sentence is not provable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Apophatic Finitism and Infinitism.Jan Heylen - 2019 - Logique Et Analyse 62 (247):319-337.
    This article is about the ontological dispute between finitists, who claim that only finitely many numbers exist, and infinitists, who claim that infinitely many numbers exist. Van Bendegem set out to solve the 'general problem' for finitism: how can one recast finite fragments of classical mathematics in finitist terms? To solve this problem Van Bendegem comes up with a new brand of finitism, namely so-called 'apophatic finitism'. In this article it will be argued that apophatic finitism is unable to represent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Counterfactual Logic and the Necessity of Mathematics.Samuel Elgin - manuscript
    This paper is concerned with counterfactual logic and its implications for the modal status of mathematical claims. It is most directly a response to an ambitious program by Yli-Vakkuri and Hawthorne (2018), who seek to establish that mathematics is committed to its own necessity. I claim that their argument fails to establish this result for two reasons. First, their assumptions force our hand on a controversial debate within counterfactual logic. In particular, they license counterfactual strengthening— the inference from ‘If A (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Compositionality.Martin Jönsson - 2008 - Dissertation, Lund University
    The goal of inquiry in this essay is to ascertain to what extent the Principle of Compositionality – the thesis that the meaning of a complex expression is determined by the meaning of its parts and its mode of composition – can be justifiably imposed as a constraint on semantic theories, and thereby provide information about what meanings are. Apart from the introduction and the concluding chapter the thesis is divided into five chapters addressing different questions pertaining to the overarching (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Realism and Empirical Equivalence.Eric Johannesson - 2020 - Journal of Philosophical Logic 49 (3):475-495.
    The main purpose of this paper is to investigate various notions of empirical equivalence in relation to the two main arguments for realism in the philosophy of science, namely the no-miracles argument and the indispensability argument. According to realism, one should believe in the existence of the theoretical entities postulated by empirically adequate theories. According to the no-miracles argument, one should do so because truth is the the best explanation of empirical adequacy. According to the indispensability argument, one should do (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • There is no general AI.Jobst Landgrebe & Barry Smith - 2020 - arXiv.
    The goal of creating Artificial General Intelligence (AGI) – or in other words of creating Turing machines (modern computers) that can behave in a way that mimics human intelligence – has occupied AI researchers ever since the idea of AI was first proposed. One common theme in these discussions is the thesis that the ability of a machine to conduct convincing dialogues with human beings can serve as at least a sufficient criterion of AGI. We argue that this very ability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Enhanced Indispensability Argument, the circularity problem, and the interpretability strategy.Jan Heylen & Lars Arthur Tump - 2019 - Synthese 198 (4):3033-3045.
    Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely mathematical, according to Baker (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Making AI Meaningful Again.Jobst Landgrebe & Barry Smith - 2021 - Synthese 198 (March):2061-2081.
    Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the 1970s and 80s. But this enthusiasm was tempered by a long interlude of frustration when genuinely useful AI applications failed to be forthcoming. Today, we are experiencing once again a period of enthusiasm, fired above all by the successes of the technology of deep neural networks or deep machine learning. In this paper we draw attention to what we take to be serious problems underlying current views of artificial (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Paradoxical Desires.Ethan Jerzak - 2019 - Proceedings of the Aristotelian Society 119 (3):335-355.
    I present a paradoxical combination of desires. I show why it's paradoxical, and consider ways of responding. The paradox saddles us with an unappealing trilemma: either we reject the possibility of the case by placing surprising restrictions on what we can desire, or we deny plausibly constitutive principles linking desires to the conditions under which they are satisfied, or we revise some bit of classical logic. I argue that denying the possibility of the case is unmotivated on any reasonable way (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Factive knowability and the problem of possible omniscience.Jan Heylen - 2020 - Philosophical Studies 177 (1):65-87.
    Famously, the Church–Fitch paradox of knowability is a deductive argument from the thesis that all truths are knowable to the conclusion that all truths are known. In this argument, knowability is analyzed in terms of having the possibility to know. Several philosophers have objected to this analysis, because it turns knowability into a nonfactive notion. In addition, they claim that, if the knowability thesis is reformulated with the help of factive concepts of knowability, then omniscience can be avoided. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Necessity of Mathematics.Juhani Yli‐Vakkuri & John Hawthorne - 2018 - Noûs 52 (3):549-577.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Truth via Satisfaction?Nicholas J. J. Smith - 2017 - In Arazim Pavel & Lávička Tomáš (eds.), The Logica Yearbook 2016. College Publications. pp. 273-287.
    One of Tarski’s stated aims was to give an explication of the classical conception of truth—truth as ‘saying it how it is’. Many subsequent commentators have felt that he achieved this aim. Tarski’s core idea of defining truth via satisfaction has now found its way into standard logic textbooks. This paper looks at such textbook definitions of truth in a model for standard first-order languages and argues that they fail from the point of view of explication of the classical notion (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How Arithmetic is about Numbers. A Wittgenestinian Perspective.Felix Mühlhölzer - 2014 - Grazer Philosophische Studien 89 (1):39-59.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Axiomatic Theories of Partial Ground II: Partial Ground and Hierarchies of Typed Truth.Johannes Korbmacher - 2018 - Journal of Philosophical Logic 47 (2):193-226.
    This is part two of a two-part paper in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. In this part of the paper, we extend the base theory of the first part of the paper with hierarchically typed truth-predicates and principles about the interaction of partial ground and truth. We show that our theory is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations