Switch to: Citations

References in:

From Euclidean geometry to knots and nets

Synthese 196 (7):2715-2736 (2019)

Add references

You must login to add references.
  1. An Inquiry into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2014 - In Giorgio Venturi, Marco Panza & Gabriele Lolli (eds.), From Logic to Practice: Italian Studies in the Philosophy of Mathematics. Cham: Springer International Publishing. pp. 315-336.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Why Do We Prove Theorems?Yehuda Rav - 1998 - Philosophia Mathematica 6 (3):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • On formal and informal provability.Hannes Leitgeb - 2009 - In Ø. Linnebo O. Bueno (ed.), New Waves in Philosophy of Mathematics. Palgrave-Macmillan. pp. 263--299.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Forms and Roles of Diagrams in Knot Theory.Silvia De Toffoli & Valeria Giardino - 2014 - Erkenntnis 79 (4):829-842.
    The aim of this article is to explain why knot diagrams are an effective notation in topology. Their cognitive features and epistemic roles will be assessed. First, it will be argued that different interpretations of a figure give rise to different diagrams and as a consequence various levels of representation for knots will be identified. Second, it will be shown that knot diagrams are dynamic by pointing at the moves which are commonly applied to them. For this reason, experts must (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Diagrams and proofs in analysis.Jessica Carter - 2010 - International Studies in the Philosophy of Science 24 (1):1 – 14.
    This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • And so on... : reasoning with infinite diagrams.Solomon Feferman - 2012 - Synthese 186 (1):371-386.
    This paper presents examples of infinite diagrams whose use is more or less essential for understanding and accepting various proofs in higher mathematics. The significance of these is discussed with respect to the thesis that every proof can be formalized, and a “pre” form of this thesis that every proof can be presented in everyday statements-only form.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Proof: Its nature and significance.Michael Detlefsen - 2008 - In Bonnie Gold & Roger A. Simons (eds.), Proof and Other Dilemmas: Mathematics and Philosophy. Mathematical Association of America. pp. 1.
    I focus on three preoccupations of recent writings on proof. -/- I. The role and possible effects of empirical reasoning in mathematics. Do recent developments (specifically, the computer-assisted proof of the 4CT) point to something essentially new as regards the need for and/or effects of using broadly empirical and inductive reasoning in mathematics? In particular, should we see such things as the computer-assisted proof of the 4CT as pointing to the existence of mathematical truths of which we cannot have a (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Heterogeneous reasoning and its logic.Sun-Joo Shin - 2004 - Bulletin of Symbolic Logic 10 (1):86-106.
    Let me start by saying that I had the privilege of witnessing the birth of Jon Barwise's new research on heterogeneous logic and its subsequent developments. I entered the Stanford philosophy graduate program in the Fall of 1987, became Barwise and Etchemendy's first research assistant on the project of diagrammatic/heterogeneous reasoning during summer of 1989, and under their guidance completed my thesis, “Valid reasoning and visual representation,” in August, 1991. With this experience I would like to focus on the more (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Why the Naïve Derivation Recipe Model Cannot Explain How Mathematicians’ Proofs Secure Mathematical Knowledge.Brendan Larvor - 2016 - Philosophia Mathematica 24 (3):401-404.
    The view that a mathematical proof is a sketch of or recipe for a formal derivation requires the proof to function as an argument that there is a suitable derivation. This is a mathematical conclusion, and to avoid a regress we require some other account of how the proof can establish it.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Problem with the Dependence of Informal Proofs on Formal Proofs.Fenner Tanswell - 2015 - Philosophia Mathematica 23 (3):295-310.
    Derivationists, those wishing to explain the correctness and rigour of informal proofs in terms of associated formal proofs, are generally held to be supported by the success of the project of translating informal proofs into computer-checkable formal counterparts. I argue, however, that this project is a false friend for the derivationists because there are too many different associated formal proofs for each informal proof, leading to a serious worry of overgeneration. I press this worry primarily against Azzouni's derivation-indicator account, but (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Computers in mathematical inquiry.Jeremy Avigad - manuscript
    In Section 2, I survey some of the ways that computers are used in mathematics. These raise questions that seem to have a generally epistemological character, although they do not fall squarely under a traditional philosophical purview. The goal of this article is to try to articulate some of these questions more clearly, and assess the philosophical methods that may be brought to bear. In Section 3, I note that most of the issues can be classified under two headings: some (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Prove—once more and again.Reuben Hersh - 1997 - Philosophia Mathematica 5 (2):153-165.
    There are two distinct meanings to ‘mathematical proof’. The connection between them is an unsolved problem. The first step in attacking it is noticing that it is an unsolved problem.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Why Do We Prove Theorems?Yehuda Rav - 1999 - Philosophia Mathematica 7 (1):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Diagram-Based Geometric Practice.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 65--79.
    This chapter provides a survey of issues about diagrams in traditional geometrical reasoning. After briefly refuting several common philosophical objections, and giving a sketch of diagram-based reasoning practice in Euclidean plane geometry, discussion focuses first on problems of diagram sensitivity, and then on the relationship between uniform treatment and geometrical generality. Here, one finds a balance between representationally enforced unresponsiveness (to differences among diagrams) and the intellectual agent's contribution to such unresponsiveness that is somewhat different from what one has come (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Proofs, pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • The Relationship of Derivations in Artificial Languages to Ordinary Rigorous Mathematical Proof.J. Azzouni - 2013 - Philosophia Mathematica 21 (2):247-254.
    The relationship is explored between formal derivations, which occur in artificial languages, and mathematical proof, which occurs in natural languages. The suggestion that ordinary mathematical proofs are abbreviations or sketches of formal derivations is presumed false. The alternative suggestion that the existence of appropriate derivations in formal logical languages is a norm for ordinary rigorous mathematical proof is explored and rejected.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A formal system for euclid’s elements.Jeremy Avigad, Edward Dean & John Mumma - 2009 - Review of Symbolic Logic 2 (4):700--768.
    We present a formal system, E, which provides a faithful model of the proofs in Euclid's Elements, including the use of diagrammatic reasoning.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • The derivation-indicator view of mathematical practice.Jody Azzouni - 2004 - Philosophia Mathematica 12 (2):81-106.
    The form of nominalism known as 'mathematical fictionalism' is examined and found wanting, mainly on grounds that go back to an early antinominalist work of Rudolf Carnap that has unfortunately not been paid sufficient attention by more recent writers.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Towards a new epistemology of mathematics.Bernd Buldt, Benedikt Löwe & Thomas Müller - 2008 - Erkenntnis 68 (3):309 - 329.
    In this introduction we discuss the motivation behind the workshop “Towards a New Epistemology of Mathematics” of which this special issue constitutes the proceedings. We elaborate on historical and empirical aspects of the desired new epistemology, connect it to the public image of mathematics, and give a summary and an introduction to the contributions to this issue.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Why do mathematicians need different ways of presenting mathematical objects? The case of cayley graphs.Irina Starikova - 2010 - Topoi 29 (1):41-51.
    This paper investigates the role of pictures in mathematics in the particular case of Cayley graphs—the graphic representations of groups. I shall argue that their principal function in that theory—to provide insight into the abstract structure of groups—is performed employing their visual aspect. I suggest that the application of a visual graph theory in the purely non-visual theory of groups resulted in a new effective approach in which pictures have an essential role. Cayley graphs were initially developed as exact mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mathematical Knowledge and the Interplay of Practices.José Ferreirós - 2015 - Princeton, USA: Princeton University Press.
    On knowledge and practices: a manifesto -- The web of practices -- Agents and frameworks -- Complementarity in mathematics -- Ancient Greek mathematics: a role for diagrams -- Advanced math: the hypothetical conception -- Arithmetic certainty -- Mathematics developed: the case of the reals -- Objectivity in mathematical knowledge -- The problem of conceptual understanding.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Representation and Productive Ambiguity in Mathematics and the Sciences.Emily R. Grosholz - 2006 - Studia Leibnitiana 38 (2):244-246.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Confronting Ideals of Proof with the Ways of Proving of the Research Mathematician.Norma B. Goethe & Michèle Friend - 2010 - Studia Logica 96 (2):273-288.
    In this paper, we discuss the prevailing view amongst philosophers and many mathematicians concerning mathematical proof. Following Cellucci, we call the prevailing view the “axiomatic conception” of proof. The conception includes the ideas that: a proof is finite, it proceeds from axioms and it is the final word on the matter of the conclusion. This received view can be traced back to Frege, Hilbert and Gentzen, amongst others, and is prevalent in both mathematical text books and logic text books.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Non-Formal Properties of Real Mathematical Proofs.Jean Paul van Bendegem - 1988 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1988:249-254.
    The heuristics and strategies presented in Lakatos' Proofs and Refutations are well-known. However they hardly present the whole story as many authors have shown. In this paper a recent, rather spectacular, event in the history of mathematics is examined to gather evidence for two new strategies. The first heuristic concerns the expectations mathematicians have that a statement will be proved using given methods. The second heuristic tries to make sense of the mathematicians' notion of the quality of a proof.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematics, Form and Function.Saunders MacLane - 1986 - Journal of Philosophy 84 (1):33-37.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Philosophical Relevance of Computers in Mathematics.Jeremy Avigad - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • A Critique of a Formalist-Mechanist Version of the Justification of Arguments in Mathematicians' Proof Practices.Yehuda Rav - 2007 - Philosophia Mathematica 15 (3):291-320.
    In a recent article, Azzouni has argued in favor of a version of formalism according to which ordinary mathematical proofs indicate mechanically checkable derivations. This is taken to account for the quasi-universal agreement among mathematicians on the validity of their proofs. Here, the author subjects these claims to a critical examination, recalls the technical details about formalization and mechanical checking of proofs, and illustrates the main argument with aanalysis of examples. In the author's view, much of mathematical reasoning presents genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • On the roles of proof in mathematics.Joseph Auslander - 2008 - In Bonnie Gold & Roger A. Simons (eds.), Proof and Other Dilemmas: Mathematics and Philosophy. Mathematical Association of America. pp. 61--77.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Informal proof, formal proof, formalism.Alan Weir - 2016 - Review of Symbolic Logic 9 (1):23-43.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Why do informal proofs conform to formal norms?Jody Azzouni - 2009 - Foundations of Science 14 (1-2):9-26.
    Kant discovered a philosophical problem with mathematical proof. Despite being a priori , its methodology involves more than analytic truth. But what else is involved? This problem is widely taken to have been solved by Frege’s extension of logic beyond its restricted (and largely Aristotelian) form. Nevertheless, a successor problem remains: both traditional and contemporary (classical) mathematical proofs, although conforming to the norms of contemporary (classical) logic, never were, and still aren’t, executed by mathematicians in a way that transparently reveals (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Towards a Philosophy of Real Mathematics.David Corfield - 2003 - Studia Logica 81 (2):285-289.
    In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically, and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of new ways to think philosophically about mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures are doing real mathematics, (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Reuben Hersh. Experiencing Mathematics: What Do We Do, When We Do Mathematics?. Providence, Rhode Island: American Mathematical Society, 2014. ISBN 978-0-8218-9420-0. Pp. xvii + 291. [REVIEW]Stephen Pollard - 2014 - Philosophia Mathematica 22 (2):271-274.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why do we believe theorems?Andrzej Pelc - 2009 - Philosophia Mathematica 17 (1):84-94.
    The formalist point of view maintains that formal derivations underlying proofs, although usually not carried out in practice, contribute to the confidence in mathematical theorems. Opposing this opinion, the main claim of the present paper is that such a gain of confidence obtained from any link between proofs and formal derivations is, even in principle, impossible in the present state of knowledge. Our argument is based on considerations concerning length of formal derivations. Thanks to Jody Azzouni for enlightening discussions concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • What Philosophy of Mathematical Practice Can Teach Argumentation Theory About Diagrams and Pictures.Brendan Larvor - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 239--253.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematics: Form and Function.Saunders Mac Lane - 1990 - Studia Logica 49 (3):424-426.
    Download  
     
    Export citation  
     
    Bookmark   28 citations