Switch to: Citations

Add references

You must login to add references.
  1. Fundamental and Emergent Geometry in Newtonian Physics.David Wallace - 2020 - British Journal for the Philosophy of Science 71 (1):1-32.
    Using as a starting point recent and apparently incompatible conclusions by Saunders and Knox, I revisit the question of the correct spacetime setting for Newtonian physics. I argue that understood correctly, these two versions of Newtonian physics make the same claims both about the background geometry required to define the theory, and about the inertial structure of the theory. In doing so I illustrate and explore in detail the view—espoused by Knox, and also by Brown —that inertial structure is defined (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Physical relativity from a functionalist perspective.Eleanor Knox - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:118-124.
    This paper looks at the relationship between spacetime functionalism and Harvey Brown’s dynamical relativity. One popular way of reading and extending Brown’s programme in the literature rests on viewing his position as a version of relationism. But a kind of spacetime functionalism extends the project in a different way, by focussing on the account Brown gives of the role of spacetime in relativistic theories. It is then possible to see this as giving a functional account of the concept of spacetime (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Inertial motion, explanation, and the foundations of classical spacetime theories.James Owen Weatherall - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser. pp. 13-42.
    I begin by reviewing some recent work on the status of the geodesic principle in general relativity and the geometrized formulation of Newtonian gravitation. I then turn to the question of whether either of these theories might be said to ``explain'' inertial motion. I argue that there is a sense in which both theories may be understood to explain inertial motion, but that the sense of ``explain'' is rather different from what one might have expected. This sense of explanation is (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • On the Explanation of Inertia.Adán Sus - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (2):293-315.
    In General Relativity (GR), it has been claimed that inertia receives a dynamical explanation. This is in contrast to the situation in other theories, such as Special Relativity, because the geodesic principle of GR can be derived from Einstein’s field equations. The claim can be challenged in different ways, all of which question whether the status of inertia in GR is physically different from its status in previous spacetime theories. In this paper I state the original argument for the claim (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Effective spacetime geometry.Eleanor Knox - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):346-356.
    I argue that the need to understand spacetime structure as emergent in quantum gravity is less radical and surprising it might appear. A clear understanding of the link between general relativity's geometrical structures and empirical geometry reveals that this empirical geometry is exactly the kind of thing that could be an effective and emergent matter. Furthermore, any theory with torsion will involve an effective geometry, even though these theories look, at first glance, like theories with straightforward spacetime geometry. As it's (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • On (Some) Explanations in Physics.James Owen Weatherall - 2011 - Philosophy of Science 78 (3):421-447.
    I offer an explanation of why inertial and gravitational mass are equal in Newtonian gravitation. I then argue that this is an example of a kind of explanation that is not captured by standard philosophical accounts of scientific explanation. Moreover, this form of explanation is particularly important, at least in physics, because demands for this kind of explanation are used to motivate and shape research into the next generation of physical theories. I suggest that explanations of the sort I describe (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • A remark about the "geodesic principle" in general relativity.David Malament - unknown
    It is often claimed that the geodesic principle can be recovered as a theorem in general relativity. Indeed, it is claimed that it is a consequence of Einstein's equation (or of the conservation principle that is, itself, a consequence of that equation). These claims are certainly correct, but it may be worth drawing attention to one small qualification. Though the geodesic principle can be recovered as theorem in general relativity, it is not a consequence of Einstein's equation (or the conservation (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (1 other version)Presentism and relativity. [REVIEW]Yuri Balashov & Michel Janssen - 2003 - British Journal for the Philosophy of Science 54 (2):327-346.
    In this critical notice we argue against William Craig's recent attempt to reconcile presentism (roughly, the view that only the present is real) with relativity theory. Craig's defense of his position boils down to endorsing a ‘neo-Lorentzian interpretation’ of special relativity. We contend that his reconstruction of Lorentz's theory and its historical development is fatally flawed and that his arguments for reviving this theory fail on many counts. 1 Rival theories of time 2 Relativity and the present 3 Special relativity: (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Newton–Cartan theory and teleparallel gravity: The force of a formulation.Eleanor Knox - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (4):264-275.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Physical relativity: Space–time structure from a dynamical perspective.Harvey Brown - 2005 - Philosophy 82 (321):498-503.
    Download  
     
    Export citation  
     
    Bookmark   229 citations  
  • Foundations of Space-Time Theories.Michael Friedman - 1987 - Noûs 21 (4):595-601.
    Download  
     
    Export citation  
     
    Bookmark   241 citations  
  • (3 other versions)Theory and Evidence.Clark Glymour - 1981 - Philosophy of Science 48 (3):498-500.
    Download  
     
    Export citation  
     
    Bookmark   296 citations  
  • Who's afraid of coordinate systems? An essay on representation of spacetime structure.David Wallace - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:125-136.
    Coordinate-based approaches to physical theories remain standard in mainstream physics but are largely eschewed in foundational discussion in favour of coordinate-free differential-geometric approaches. I defend the conceptual and mathematical legitimacy of the coordinate-based approach for foundational work. In doing so, I provide an account of the Kleinian conception of geometry as a theory of invariance under symmetry groups; I argue that this conception continues to play a very substantial role in contemporary mathematical physics and indeed that supposedly ``coordinate-free'' differential geometry (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • There Is No Conspiracy of Inertia.Ryan Samaroo - 2018 - British Journal for the Philosophy of Science 69 (4):957-982.
    I examine two claims that arise in Brown’s account of inertial motion. Brown claims there is something objectionable about the way in which the motions of free particles in Newtonian theory and special relativity are coordinated. Brown also claims that since a geodesic principle can be derived in Einsteinian gravitation, the objectionable feature is explained away. I argue that there is nothing objectionable about inertia and that while the theorems that motivate Brown’s second claim can be said to figure in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Maxwell-Huygens, Newton-Cartan, and Saunders-Knox Space-Times.James Owen Weatherall - 2016 - Philosophy of Science 83 (1):82-92.
    I address a question recently raised by Simon Saunders concerning the relationship between the space-time structure of Newton-Cartan theory and that of what I will call “Maxwell-Huygens space-time.” This discussion will also clarify a connection between Saunders’s work and a recent paper by Eleanor Knox.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Space-Time-Matter.Hermann Weyl - 1922 - London,: E.P. Dutton and Company. Edited by Henry L. Brose.
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Foundations of Space-Time Theories.Micheal Friedman - 1983 - Princeton University Press.
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  • Substantivalist and Relationalist Approaches to Spacetime.Oliver Pooley - 2013 - In Robert W. Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA.
    Substantivalists believe that spacetime and its parts are fundamental constituents of reality. Relationalists deny this, claiming that spacetime enjoys only a derivative existence. I begin by describing how the Galilean symmetries of Newtonian physics tell against both Newton's brand of substantivalism and the most obvious relationalist alternative. I then review the obvious substantivalist response to the problem, which is to ditch substantival space for substantival spacetime. The resulting position has many affinities with what are arguably the most natural interpretations of (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Newtonian space-time.Howard Stein - 1967 - Texas Quarterly 10 (3):174--200.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • The meaning and status of Newton's law of inertia and the nature of gravitational forces.J. Earman & M. Friedman - 1973 - Philosophy of Science 40 (3):329-359.
    A four dimensional approach to Newtonian physics is used to distinguish between a number of different structures for Newtonian space-time and a number of different formulations of Newtonian gravitational theory. This in turn makes possible an in-depth study of the meaning and status of Newton's Law of Inertia and a detailed comparison of the Newtonian and Einsteinian versions of the Law of Inertia and the Newtonian and Einsteinian treatments of gravitational forces. Various claims about the status of Newton's Law of (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • A Primer on Energy Conditions.Erik Curiel - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser. pp. 43-104.
    An energy condition, in the context of a wide class of spacetime theories, is, crudely speaking, a relation one demands the stress-energy tensor of matter satisfy in order to try to capture the idea that "energy should be positive". The remarkable fact I will discuss in this paper is that such simple, general, almost trivial seeming propositions have profound and far-reaching import for our understanding of the structure of relativistic spacetimes. It is therefore especially surprising when one also learns that (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Spacetime structure.Thomas William Barrett - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 51:37-43.
    This paper makes an observation about the ``amount of structure'' that different classical and relativistic spacetimes posit. The observation substantiates a suggestion made by Earman and yields a cautionary remark concerning the scope and applicability of structural parsimony principles.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Newtonian Spacetime Structure in Light of the Equivalence Principle.Eleanor Knox - 2014 - British Journal for the Philosophy of Science 65 (4):863-880.
    I argue that the best spacetime setting for Newtonian gravitation (NG) is the curved spacetime setting associated with geometrized Newtonian gravitation (GNG). Appreciation of the ‘Newtonian equivalence principle’ leads us to conclude that the gravitational field in NG itself is a gauge quantity, and that the freely falling frames are naturally identified with inertial frames. In this context, the spacetime structure of NG is represented not by the flat neo-Newtonian connection usually made explicit in formulations, but by the sum of (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Light Clocks and the Clock Hypothesis.Samuel C. Fletcher - 2013 - Foundations of Physics 43 (11):1369-1383.
    The clock hypothesis of relativity theory equates the proper time experienced by a point particle along a timelike curve with the length of that curve as determined by the metric. Is it possible to prove that particular types of clocks satisfy the clock hypothesis, thus genuinely measure proper time, at least approximately? Because most real clocks would be enormously complicated to study in this connection, focusing attention on an idealized light clock is attractive. The present paper extends and generalized partial (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The cosmological constant, the fate of the universe, unimodular gravity, and all that.John Earman - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (4):559-577.
    The cosmological constant is back. Several lines of evidence point to the conclusion that either there is a positive cosmological constant or else the universe is filled with a strange form of matter (“quintessence”) that mimics some of the effects of a positive lambda. This paper investigates the implications of the former possibility. Two senses in which the cosmological constant can be a constant are distinguished: the capital Λ sense in which lambda is a universal constant on a par with (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Minkowski space-time: A glorious non-entity.Harvey R. Brown & Oliver Pooley - 2006 - In Dennis Geert Bernardus Johan Dieks (ed.), The ontology of spacetime. Boston: Elsevier. pp. 67--89.
    It is argued that Minkowski space-time cannot serve as the deep structure within a ``constructive'' version of the special theory of relativity, contrary to widespread opinion in the philosophical community.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Drawing the line between kinematics and dynamics in special relativity.Michel Janssen - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (1):26-52.
    In his book, Physical Relativity, Harvey Brown challenges the orthodox view that special relativity is preferable to those parts of Lorentz's classical ether theory it replaced because it revealed various phenomena that were given a dynamical explanation in Lorentz's theory to be purely kinematical. I want to defend this orthodoxy. The phenomena most commonly discussed in this context in the philosophical literature are length contraction and time dilation. I consider three other phenomena of this kind that played a role in (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Theories of Newtonian gravity and empirical indistinguishability.Jonathan Bain - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):345-376.
    In this essay, I examine the curved spacetime formulation of Newtonian gravity known as Newton–Cartan gravity and compare it with flat spacetime formulations. Two versions of Newton–Cartan gravity can be identified in the physics literature—a ‘‘weak’’ version and a ‘‘strong’’ version. The strong version has a constrained Hamiltonian formulation and consequently a well-defined gauge structure, whereas the weak version does not (with some qualifications). Moreover, the strong version is best compared with the structure of what Earman (World enough and spacetime. (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • What’s the Problem with the Cosmological Constant?Mike D. Schneider - 2020 - Philosophy of Science 87 (1):1-20.
    The “Cosmological Constant Problem” is widely considered a crisis in contemporary theoretical physics. Unfortunately, the search for its resolution is hampered by open disagreement about what is, strictly, the problem. This disagreement stems from the observation that the CCP is not a problem within any of our current theories, and nearly all of the details of those future theories for which the CCP could be made a problem are up for grabs. Given this state of affairs, I discuss how one (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the reduction of general relativity to Newtonian gravitation.Samuel C. Fletcher - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:1-15.
    Intertheoretic reduction in physics aspires to be both to be explanatory and perfectly general: it endeavors to explain why an older, simpler theory continues to be as successful as it is in terms of a newer, more sophisticated theory, and it aims to relate or otherwise account for as many features of the two theories as possible. Despite often being introduced as straightforward cases of intertheoretic reduction, candidate accounts of the reduction of general relativity to Newtonian gravitation have either been (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (3 other versions)Theory and Evidence.Clark Glymour - 1980 - Ethics 93 (3):613-615.
    Download  
     
    Export citation  
     
    Bookmark   196 citations  
  • Topics in the Foundations of General Relativity and Newtonian Gravitation Theory.David B. Malament - 2012 - Chicago: Chicago University Press.
    1.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Tangent Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (...)
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Some philosophical prehistory of general relativity.Howard Stein - 1974 - In John Earman, Clark N. Glymour & John J. Stachel (eds.), Foundations of Space-Time Theories: Minnesota Studies in the Philosophy of Science. University of Minnesota Press. pp. 3-49.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?James Owen Weatherall - 2016 - Erkenntnis 81 (5):1073-1091.
    I argue that a criterion of theoretical equivalence due to Glymour :227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Proving the principle: Taking geodesic dynamics too seriously in Einstein’s theory.Michael Tamir - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (2):137-154.
    In this paper I critically review the long history of attempts to formulate and derive the geodesic principle, which claims that massive bodies follow geodesic paths in general relativity theory. I argue that if the principle is interpreted as a dynamical law of motion describing the actual evolution of gravitating bodies as endorsed by Einstein, then it is impossible to apply the law to massive bodies in a way that is coherent with his own field equations. Rejecting this canonical interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Gravity and spatial geometry‘.David Malament - unknown
    Philosophers of science have written at great length about the geometric structure of physical space. But they have devoted their attention primarily to the question of the epistemic status of our attributions of geometric structure. They have debated whether our attributions are a priori truths, empirical discoveries, or, in a special sense, matters of stipulation or convention. lt is the goal of this paper to explore a quite different issue the role played by assumptions of spatial geometry within physical theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Foundations and current problems of general relativity (notes by graham dixon, petros florides and gerald lemmer).Andrzej Trautman - 1965 - In A. Trautman (ed.), Lectures on general relativity. Englewood Cliffs, N.J.,: Prentice-Hall. pp. 1--1.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • How could relativity be anything other than physical.Wayne C. Myrvold - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:137-143.
    Harvey Brown’s Physical Relativity defends a view, the dynamical perspective, on the nature of spacetime that goes beyond the familiar dichotomy of substantivalist/relationist views. A full defense of this view requires attention to the way that our use of spacetime concepts connect with the physical world. Reflection on such matters, I argue, reveals that the dynamical perspective affords the only possible view about the ontological status of spacetime, in that putative rivals fail to express anything, either true or false. I (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On the status of the geodesic principle in Newtonian and relativistic physics.James Owen Weatherall - 2011 - Studies in History and Philosophy of Science Part A 42 (4):276-281.
    A theorem due to Bob Geroch and Pong Soo Jang ["Motion of a Body in General Relativity." Journal of Mathematical Physics 16, ] provides a sense in which the geodesic principle has the status of a theorem in General Relativity. I have recently shown that a similar theorem holds in the context of geometrized Newtonian gravitation [Weatherall, J. O. "The Motion of a Body in Newtonian Theories." Journal of Mathematical Physics 52, ]. Here I compare the interpretations of these two (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • A Brief Remark on Energy Conditions and the Geroch-Jang Theorem.James Owen Weatherall - 2012 - Foundations of Physics 42 (2):209-214.
    The status of the geodesic principle in General Relativity has been a topic of some interest in the recent literature on the foundations of spacetime theories. Part of this discussion has focused on the role that a certain energy condition plays in the proof of a theorem due to Bob Geroch and Pong-Soo Jang [“Motion of a Body in General Relativity.” Journal of Mathematical Physics16(1) (1975)] that can be taken to make precise the claim that the geodesic principle is a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Motion of a Body in Newtonian Theories.James Owen Weatherall - 2011 - Journal of Mathematical Physics 52 (3):032502.
    A theorem due to Bob Geroch and Pong Soo Jang [“Motion of a Body in General Relativity.” Journal of Mathematical Physics 16, ] provides the sense in which the geodesic principle has the status of a theorem in General Relativity. Here we show that a similar theorem holds in the context of geometrized Newtonian gravitation. It follows that in Newtonian gravitation, as in GR, inertial motion can be derived from other central principles of the theory.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Space-Time-Matter.Hermann Weyl & Henry L. Brose - 1953 - British Journal for the Philosophy of Science 3 (12):382-382.
    Download  
     
    Export citation  
     
    Bookmark   49 citations