Results for ' Data Genetic Algorithms'

965 found
Order:
  1.  69
    Advanced Phishing Content Identification Using Dynamic Weighting Integrated with Genetic Algorithm Optimization.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):500-520.
    The Genetic Ranking Optimization Algorithm (GROA) is used to rank phishing content based on multiple features by optimizing the ranking system through iterative selection and weighting. Dynamic weighting further enhances the process by adjusting the weights of features based on their importance in real-time. This hybrid approach enables the model to learn from the data, improving classification over time. The classification system was evaluated using benchmark phishing datasets, and the results demonstrated a significant improvement in detection accuracy and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  76
    ENHANCED SLA-DRIVEN LOAD BALANCING ALGORITHMS FOR DATA CENTER OPTIMIZATION USING ADVANCED OPTIMIZATION TECHNIQUES.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):369-376.
    In modern data centers, managing the distribution of workloads efficiently is crucial for ensuring optimal performance and meeting Service Level Agreements (SLAs). Load balancing algorithms play a vital role in this process by distributing workloads across computing resources to avoid overloading any single resource. However, the effectiveness of these algorithms can be significantly enhanced through the integration of advanced optimization techniques. This paper proposes an SLA-driven load balancing algorithm optimized using methods such as genetic algorithms, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  52
    Real-Time Phishing Detection Using Genetic Algorithm-Based Ranking and Dynamic Weighting Optimization.A. Manoj Prabaharan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):491-500.
    The rapid evolution of phishing techniques necessitates more sophisticated detection and classification methods. In this paper, we propose a novel approach to phishing content classification using a Genetic Ranking Optimization Algorithm (GROA), combined with dynamic weighting, to improve the accuracy and ranking of phishing versus legitimate content. Our method leverages features such as URL structure, email content analysis, and user behavior patterns to enhance the detection system's decision-making process. The Genetic Ranking Optimization Algorithm (GROA) is used to rank (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  76
    Optimization Algorithms for Load Balancing in Data-Intensive Systems with Multipath Routing.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):377-382.
    : In today's data-driven world, the efficient management of network resources is crucial for optimizing performance in data centers and large-scale networks. Load balancing is a critical process in ensuring the equitable distribution of data across multiple paths, thereby enhancing network throughput and minimizing latency. This paper presents a comprehensive approach to load balancing using advanced optimization techniques integrated with multipath routing protocols. The primary focus is on dynamically allocating network resources to manage the massive volume of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  81
    Efficient Aggregated Data Transmission Scheme for Energy-Constrained Wireless Sensor Networks.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):445-460.
    Optimization algorithms such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are employed to determine the optimal aggregation and transmission schedules, taking into account factors such as network topology, node energy levels, and data urgency. The proposed approach is validated through extensive simulations, demonstrating significant improvements in energy consumption, packet delivery ratio, and overall network performance. The results suggest that the optimized aggregated packet transmission method can effectively extend the lifespan of duty-cycled WSNs while ensuring (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  71
    Efficient Data Center Management: Advanced SLA-Driven Load Balancing Solutions.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):368-376.
    In modern data centers, managing the distribution of workloads efficiently is crucial for ensuring optimal performance and meeting Service Level Agreements (SLAs). Load balancing algorithms play a vital role in this process by distributing workloads across computing resources to avoid overloading any single resource. However, the effectiveness of these algorithms can be significantly enhanced through the integration of advanced optimization techniques. This paper proposes an SLA-driven load balancing algorithm optimized using methods such as genetic algorithms, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  84
    OPTIMIZATION TECHNIQUES FOR LOAD BALANCING IN DATA-INTENSIVE APPLICATIONS USING MULTIPATH ROUTING NETWORKS.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):377-382.
    In today's data-driven world, the efficient management of network resources is crucial for optimizing performance in data centers and large-scale networks. Load balancing is a critical process in ensuring the equitable distribution of data across multiple paths, thereby enhancing network throughput and minimizing latency. This paper presents a comprehensive approach to load balancing using advanced optimization techniques integrated with multipath routing protocols. The primary focus is on dynamically allocating network resources to manage the massive volume of (...) generated by modern applications. By leveraging algorithms such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), the proposed method efficiently distributes data across multiple paths, ensuring balanced network utilization. The combination of these algorithms with multipath routing significantly reduces congestion and improves overall network performance. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  60
    Automated Phishing Classification Model Utilizing Genetic Optimization and Dynamic Weighting Algorithms.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):520-530.
    The classification system was evaluated using benchmark phishing datasets, and the results demonstrated a significant improvement in detection accuracy and reduced false positives. The proposed model outperformed traditional machine learning algorithms, showing promise for real-world deployment in phishing detection systems. We conclude with suggestions for future improvements, such as incorporating more behavioral data and deploying the system in realtime monitoring applications.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Coding the Self: The Infopolitics and Biopolitics of Genetic Sciences.Colin Koopman - 2020 - Hastings Center Report 50 (S1):6-14.
    This article compares three models for conceptualizing the political and ethical challenges of contemporary genetics, genomics, and postgenomics. The three analytical approaches are referred to as the state-politics model, the biopolitical model, and the infopolitical model. Each of these models is valuable for different purposes. But comparing these models in terms of their influence in contemporary discussions, the first is by far the dominant approach, the second is gaining in importance, and the third is almost entirely neglected. The widespread neglect (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  10.  70
    Advanced Driver Drowsiness Detection Model Using Optimized Machine Learning Algorithms.S. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):396-402.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Multipath Routing Optimization for Enhanced Load Balancing in Data-Heavy Networks.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):377-382.
    In today's data-driven world, the efficient management of network resources is crucial for optimizing performance in data centers and large-scale networks. Load balancing is a critical process in ensuring the equitable distribution of data across multiple paths, thereby enhancing network throughput and minimizing latency. This paper presents a comprehensive approach to load balancing using advanced optimization techniques integrated with multipath routing protocols. The primary focus is on dynamically allocating network resources to manage the massive volume of (...) generated by modern applications. By leveraging algorithms such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), the proposed method efficiently distributes data across multiple paths, ensuring balanced network utilization. The combination of these algorithms with multipath routing significantly reduces congestion and improves overall network performance. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  12. SAR-BSO meta-heuristic hybridization for feature selection and classification using DBNover stream data.Dharani Talapula, Kiran Ravulakollu, Manoj Kumar & Adarsh Kumar - forthcoming - Artificial Intelligence Review.
    Advancements in cloud technologies have increased the infrastructural needs of data centers due to storage needs and processing of extensive dimensional data. Many service providers envisage anomaly detection criteria to guarantee availability to avoid breakdowns and complexities caused due to large-scale operations. The streaming log data generated is associated with multi-dimensional complexity and thus poses a considerable challenge to detect the anomalies or unusual occurrences in the data. In this research, a hybrid model is proposed that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  76
    Cloud-Based IoT System for Outdoor Pollution Detection and Data Analysis.Prathap Jeyapandi - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):424-430.
    Air pollution is a significant environmental concern that affects human health, ecosystems, and climate change. Effective monitoring and management of outdoor air quality are crucial for mitigating its adverse effects. This paper presents an advanced approach to outdoor pollution measurement utilizing Internet of Things (IoT) technology, combined with optimization techniques to enhance system efficiency and data accuracy. The proposed framework integrates a network of IoT sensors that continuously monitor various air pollutants, such as particulate matter (PM), carbon monoxide (CO), (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14.  76
    Latency-Aware Packet Transmission Optimization in Duty-Cycled WSNs.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):444-459.
    Wireless Sensor Networks (WSNs) have become increasingly prevalent in various applications, ranging from environmental monitoring to smart cities. However, the limited energy resources of sensor nodes pose significant challenges in maintaining network longevity and data transmission efficiency. Duty-cycled WSNs, where sensor nodes alternate between active and sleep states to conserve energy, offer a solution to these challenges but introduce new complexities in data transmission. This paper presents an optimized approach to aggregated packet transmission in duty-cycled WSNs, utilizing advanced (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15.  64
    Intelligent Phishing Content Detection System Using Genetic Ranking and Dynamic Weighting Techniques.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):480-490.
    The Genetic Ranking Optimization Algorithm (GROA) is used to rank phishing content based on multiple features by optimizing the ranking system through iterative selection and weighting. Dynamic weighting further enhances the process by adjusting the weights of features based on their importance in real-time. This hybrid approach enables the model to learn from the data, improving classification over time.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Beyond categorical definitions of life: a data-driven approach to assessing lifeness.Christophe Malaterre & Jean-François Chartier - 2019 - Synthese 198 (5):4543-4572.
    The concept of “life” certainly is of some use to distinguish birds and beavers from water and stones. This pragmatic usefulness has led to its construal as a categorical predicate that can sift out living entities from non-living ones depending on their possessing specific properties—reproduction, metabolism, evolvability etc. In this paper, we argue against this binary construal of life. Using text-mining methods across over 30,000 scientific articles, we defend instead a degrees-of-life view and show how these methods can contribute to (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  17.  53
    Hybrid Cloud-Machine Learning Framework for Efficient Cardiovascular Disease Risk Prediction and Treatment Planning.Kannan K. S. - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):460-480.
    Data preparation, feature engineering, model training, and performance evaluation are all part of the study methodology. To ensure reliable and broadly applicable models, we utilize optimization techniques like Grid Search and Genetic Algorithms to precisely adjust model parameters. Features including age, blood pressure, cholesterol levels, and lifestyle choices are employed as inputs for the machine learning models in the dataset, which consists of patient medical information. The predictive capacity of the model is evaluated using evaluation measures, such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18.  86
    Analysis of the amount of latent carbon in the reconstruction of residential buildings with a multi-objective optimization approach.Nima Amani, Abdulamir Rezasoroush & Ehsan Kiaee - 2024 - International Journal of Energy Sector Management (Ijesm) (ahead-of-print).
    Purpose: Due to the increase in energy demand and the effects of global warming, energy-efficient buildings have gained significant importance in the modern construction industry. To create a suitable framework with the aim of reducing energy consumption in the building sector, the external walls of a residential building were considered with two criteria of global warming potential and energy consumption. -/- Design/methodology/approach: In the first stage, to achieve a nearly zero-energy building, energy analysis was performed for 37 different states of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19.  52
    Machine Learning-Driven Optimization for Accurate Cardiovascular Disease Prediction.Yoheswari S. - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):350-359.
    The research methodology involves data preprocessing, feature engineering, model training, and performance evaluation. We employ optimization methods such as Genetic Algorithms and Grid Search to fine-tune model parameters, ensuring robust and generalizable models. The dataset used includes patient medical records, with features like age, blood pressure, cholesterol levels, and lifestyle habits serving as inputs for the ML models. Evaluation metrics, including accuracy, precision, recall, F1-score, and the area under the ROC curve (AUC-ROC), assess the model's predictive power.
    Download  
     
    Export citation  
     
    Bookmark  
  20.  95
    OPTIMIZED DRIVER DROWSINESS DETECTION USING MACHINE LEARNING TECHNIQUES.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):395-400.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Automated Cyberbullying Detection Framework Using NLP and Supervised Machine Learning Models.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):421-432.
    The rise of social media has created a new platform for communication and interaction, but it has also facilitated the spread of harmful behaviors such as cyberbullying. Detecting and mitigating cyberbullying on social media platforms is a critical challenge that requires advanced technological solutions. This paper presents a novel approach to cyberbullying detection using a combination of supervised machine learning (ML) and natural language processing (NLP) techniques, enhanced by optimization algorithms. The proposed system is designed to identify and classify (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22.  82
    Machine Learning-Based Cyberbullying Detection System with Enhanced Accuracy and Speed.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):421-429.
    The rise of social media has created a new platform for communication and interaction, but it has also facilitated the spread of harmful behaviors such as cyberbullying. Detecting and mitigating cyberbullying on social media platforms is a critical challenge that requires advanced technological solutions. This paper presents a novel approach to cyberbullying detection using a combination of supervised machine learning (ML) and natural language processing (NLP) techniques, enhanced by optimization algorithms. The proposed system is designed to identify and classify (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23.  68
    Low-Power IoT Sensors for Real-Time Outdoor Environmental Pollution Measurement.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):430-440.
    The data collected by these sensors are transmitted to a centralized system where optimization algorithms, such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA), are applied to optimize sensor placement, data transmission, and processing efficiency. This ensures accurate, real-time pollution monitoring and data analysis, providing actionable insights for policymakers, environmental agencies, and the general public. The system's performance is evaluated through simulations and real-world experiments, demonstrating its capability to deliver reliable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24.  73
    Intelligent Driver Drowsiness Detection System Using Optimized Machine Learning Models.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):397-405.
    : Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25.  58
    Cloud-Enabled Risk Management of Cardiovascular Diseases Using Optimized Predictive Machine Learning Models.Kannan K. S. - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):460-475.
    Data preparation, feature engineering, model training, and performance evaluation are all part of the study methodology. To ensure reliable and broadly applicable models, we utilize optimization techniques like Grid Search and Genetic Algorithms to precisely adjust model parameters. Features including age, blood pressure, cholesterol levels, and lifestyle choices are employed as inputs for the machine learning models in the dataset, which consists of patient medical information. The predictive capacity of the model is evaluated using evaluation measures, such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26.  67
    Wireless IoT Sensors for Environmental Pollution Monitoring in Urban Areas.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):434-441.
    The data collected by these sensors are transmitted to a centralized system where optimization algorithms, such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA), are applied to optimize sensor placement, data transmission, and processing efficiency. This ensures accurate, real-time pollution monitoring and data analysis, providing actionable insights for policymakers, environmental agencies, and the general public. The system's performance is evaluated through simulations and real-world experiments, demonstrating its capability to deliver reliable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Neutrosophic Genetic Algorithm for solving the Vehicle Routing Problem with uncertain travel times.Rafael Rojas-Gualdron & Florentin Smarandache - 2022 - Neutrosophic Sets and Systems 52.
    The Vehicle Routing Problem (VRP) has been extensively studied by different researchers from all over the world in recent years. Multiple solutions have been proposed for different variations of the problem, such as Capacitive Vehicle Routing Problem (CVRP), Vehicle Routing Problem with Time Windows (VRP-TW), Vehicle Routing Problem with Pickup and Delivery (VRPPD), among others, all of them with deterministic times. In the last years, researchers have been interested in including in their different models the variations that travel times may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Environmental Variability and the Emergence of Meaning: Simulational Studies across Imitation, Genetic Algorithms, and Neural Nets.Patrick Grim - 2006 - In Angelo Loula, Ricardo Gudwin & Jo?O. Queiroz (eds.), Artificial Cognition Systems. Idea Group Publishers. pp. 284-326.
    A crucial question for artificial cognition systems is what meaning is and how it arises. In pursuit of that question, this paper extends earlier work in which we show that emergence of simple signaling in biologically inspired models using arrays of locally interactive agents. Communities of "communicators" develop in an environment of wandering food sources and predators using any of a variety of mechanisms: imitation of successful neighbors, localized genetic algorithms and partial neural net training on successful neighbors. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Evolutionary Theory and Computerised Genetic Algorithms.Derek Philip Hough - 2018 - Researchgate.
    Neo-Darwinism can be usefully studied with the help of a Computerised Genetic Algorithm. Only a mathematical approach can reveal the shortcomings of the current dogma and point the way to a revised definition of the theory of evolution.
    Download  
     
    Export citation  
     
    Bookmark  
  30. The Political Theory of Data: Institutions, Algorithms, & Formats in Racial Redlining.Colin Koopman - 2022 - Political Theory 50 (2):337-361.
    Despite widespread recognition of an emergent politics of data in our midst, we strikingly lack a political theory of data. We readily acknowledge the presence of data across our political lives, but we often do not know how to conceptualize the politics of all those data points—the forms of power they constitute and the kinds of political subjects they implicate. Recent work in numerous academic disciplines is evidence of the first steps toward a political theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Neutrosophic Association Rule Mining Algorithm for Big Data Analysis.Mohamed Abdel-Basset, Mai Mohamed, Florentin Smarandache & Victor Chang - 2018 - Symmetry 10 (4):1-19.
    Big Data is a large-sized and complex dataset, which cannot be managed using traditional data processing tools. Mining process of big data is the ability to extract valuable information from these large datasets. Association rule mining is a type of data mining process, which is indented to determine interesting associations between items and to establish a set of association rules whose support is greater than a specific threshold. The classical association rules can only be extracted from (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. Implementation of Data Mining on a Secure Cloud Computing over a Web API using Supervised Machine Learning Algorithm.Tosin Ige - 2022 - International Journal of Advanced Computer Science and Applications 13 (5):1 - 4.
    Ever since the era of internet had ushered in cloud computing, there had been increase in the demand for the unlimited data available through cloud computing for data analysis, pattern recognition and technology advancement. With this also bring the problem of scalability, efficiency and security threat. This research paper focuses on how data can be dynamically mine in real time for pattern detection in a secure cloud computing environment using combination of decision tree algorithm and Random Forest (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. Democratizing Algorithmic Fairness.Pak-Hang Wong - 2020 - Philosophy and Technology 33 (2):225-244.
    Algorithms can now identify patterns and correlations in the (big) datasets, and predict outcomes based on those identified patterns and correlations with the use of machine learning techniques and big data, decisions can then be made by algorithms themselves in accordance with the predicted outcomes. Yet, algorithms can inherit questionable values from the datasets and acquire biases in the course of (machine) learning, and automated algorithmic decision-making makes it more difficult for people to see algorithms (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  34. Zemblanity and Big Data: the ugly truths the algorithms remind us of.Ricardo Cavassane - 2022 - Acta Scientiarum. Human and Social Sciences 44 (1):1-7.
    In this paper, we will argue that, while Big Data enthusiasts imply that the analysis of massive data sets can produce serendipitous (that is, unexpected and fortunate) discoveries, the way those models are currently designed not only does not create serendipity so easily but also frequently generates zemblanitous (that is, expected and unfortunate) findings.
    Download  
     
    Export citation  
     
    Bookmark  
  35. Algorithms, Agency, and Respect for Persons.Alan Rubel, Clinton Castro & Adam Pham - 2020 - Social Theory and Practice 46 (3):547-572.
    Algorithmic systems and predictive analytics play an increasingly important role in various aspects of modern life. Scholarship on the moral ramifications of such systems is in its early stages, and much of it focuses on bias and harm. This paper argues that in understanding the moral salience of algorithmic systems it is essential to understand the relation between algorithms, autonomy, and agency. We draw on several recent cases in criminal sentencing and K–12 teacher evaluation to outline four key ways (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  36.  47
    PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):471-485.
    Phishing attacks remain one of the most prevalent cybersecurity threats, affecting individuals and organizations globally. The rapid evolution of phishing techniques necessitates more sophisticated detection and classification methods. In this paper, we propose a novel approach to phishing content classification using a Genetic Ranking Optimization Algorithm (GROA), combined with dynamic weighting, to improve the accuracy and ranking of phishing versus legitimate content. Our method leverages features such as URL structure, email content analysis, and user behavior patterns to enhance the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. The ethics of algorithms: mapping the debate.Brent Mittelstadt, Patrick Allo, Mariarosaria Taddeo, Sandra Wachter & Luciano Floridi - 2016 - Big Data and Society 3 (2):2053951716679679.
    In information societies, operations, decisions and choices previously left to humans are increasingly delegated to algorithms, which may advise, if not decide, about how data should be interpreted and what actions should be taken as a result. More and more often, algorithms mediate social processes, business transactions, governmental decisions, and how we perceive, understand, and interact among ourselves and with the environment. Gaps between the design and operation of algorithms and our understanding of their ethical implications (...)
    Download  
     
    Export citation  
     
    Bookmark   220 citations  
  38. Algorithmic paranoia: the temporal governmentality of predictive policing.Bonnie Sheehey - 2019 - Ethics and Information Technology 21 (1):49-58.
    In light of the recent emergence of predictive techniques in law enforcement to forecast crimes before they occur, this paper examines the temporal operation of power exercised by predictive policing algorithms. I argue that predictive policing exercises power through a paranoid style that constitutes a form of temporal governmentality. Temporality is especially pertinent to understanding what is ethically at stake in predictive policing as it is continuous with a historical racialized practice of organizing, managing, controlling, and stealing time. After (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  39. The algorithm audit: Scoring the algorithms that score us.Jovana Davidovic, Shea Brown & Ali Hasan - 2021 - Big Data and Society 8 (1).
    In recent years, the ethical impact of AI has been increasingly scrutinized, with public scandals emerging over biased outcomes, lack of transparency, and the misuse of data. This has led to a growing mistrust of AI and increased calls for mandated ethical audits of algorithms. Current proposals for ethical assessment of algorithms are either too high level to be put into practice without further guidance, or they focus on very specific and technical notions of fairness or transparency (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  40. Algorithms and the Individual in Criminal Law.Renée Jorgensen - 2022 - Canadian Journal of Philosophy 52 (1):1-17.
    Law-enforcement agencies are increasingly able to leverage crime statistics to make risk predictions for particular individuals, employing a form of inference that some condemn as violating the right to be “treated as an individual.” I suggest that the right encodes agents’ entitlement to a fair distribution of the burdens and benefits of the rule of law. Rather than precluding statistical prediction, it requires that citizens be able to anticipate which variables will be used as predictors and act intentionally to avoid (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  41. Algorithmic Fairness and Structural Injustice: Insights from Feminist Political Philosophy.Atoosa Kasirzadeh - 2022 - Aies '22: Proceedings of the 2022 Aaai/Acm Conference on Ai, Ethics, and Society.
    Data-driven predictive algorithms are widely used to automate and guide high-stake decision making such as bail and parole recommendation, medical resource distribution, and mortgage allocation. Nevertheless, harmful outcomes biased against vulnerable groups have been reported. The growing research field known as 'algorithmic fairness' aims to mitigate these harmful biases. Its primary methodology consists in proposing mathematical metrics to address the social harms resulting from an algorithm's biased outputs. The metrics are typically motivated by -- or substantively rooted in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Algorithmic Colonization of Love.Hao Wang - 2023 - Techné Research in Philosophy and Technology 27 (2):260-280.
    Love is often seen as the most intimate aspect of our lives, but it is increasingly engineered by a few programmers with Artificial Intelligence (AI). Nowadays, numerous dating platforms are deploying so-called smart algorithms to identify a greater number of potential matches for a user. These AI-enabled matchmaking systems, driven by a rich trove of data, can not only predict what a user might prefer but also deeply shape how people choose their partners. This paper draws on Jürgen (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. The Algorithmic Leviathan: Arbitrariness, Fairness, and Opportunity in Algorithmic Decision-Making Systems.Kathleen Creel & Deborah Hellman - 2022 - Canadian Journal of Philosophy 52 (1):26-43.
    This article examines the complaint that arbitrary algorithmic decisions wrong those whom they affect. It makes three contributions. First, it provides an analysis of what arbitrariness means in this context. Second, it argues that arbitrariness is not of moral concern except when special circumstances apply. However, when the same algorithm or different algorithms based on the same data are used in multiple contexts, a person may be arbitrarily excluded from a broad range of opportunities. The third contribution is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  44. Are Algorithms Value-Free?Gabbrielle M. Johnson - 2023 - Journal Moral Philosophy 21 (1-2):1-35.
    As inductive decision-making procedures, the inferences made by machine learning programs are subject to underdetermination by evidence and bear inductive risk. One strategy for overcoming these challenges is guided by a presumption in philosophy of science that inductive inferences can and should be value-free. Applied to machine learning programs, the strategy assumes that the influence of values is restricted to data and decision outcomes, thereby omitting internal value-laden design choice points. In this paper, I apply arguments from feminist philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  45. What is data ethics?Luciano Floridi & Mariarosaria Taddeo - 2016 - Philosophical Transactions of the Royal Society A 374 (2083):20160360.
    This theme issue has the founding ambition of landscaping Data Ethics as a new branch of ethics that studies and evaluates moral problems related to data (including generation, recording, curation, processing, dissemination, sharing, and use), algorithms (including AI, artificial agents, machine learning, and robots), and corresponding practices (including responsible innovation, programming, hacking, and professional codes), in order to formulate and support morally good solutions (e.g. right conducts or right values). Data Ethics builds on the foundation provided (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  46. Algorithmic decision-making: the right to explanation and the significance of stakes.Lauritz Munch, Jens Christian Bjerring & Jakob Mainz - 2024 - Big Data and Society.
    The stakes associated with an algorithmic decision are often said to play a role in determining whether the decision engenders a right to an explanation. More specifically, “high stakes” decisions are often said to engender such a right to explanation whereas “low stakes” or “non-high” stakes decisions do not. While the overall gist of these ideas is clear enough, the details are lacking. In this paper, we aim to provide these details through a detailed investigation of what we will call (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  47. Algorithms Advise, Humans Decide: the Evidential Role of the Patient Preference Predictor.Nicholas Makins - forthcoming - Journal of Medical Ethics.
    An AI-based “patient preference predictor” (PPP) is a proposed method for guiding healthcare decisions for patients who lack decision-making capacity. The proposal is to use correlations between sociodemographic data and known healthcare preferences to construct a model that predicts the unknown preferences of a particular patient. In this paper, I highlight a distinction that has been largely overlooked so far in debates about the PPP–that between algorithmic prediction and decision-making–and argue that much of the recent philosophical disagreement stems from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  62
    Optimizing Data Center Operations with Enhanced SLA-Driven Load Balancing".S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):368-376.
    The research introduces a novel framework that incorporates real-time monitoring, dynamic resource allocation, and adaptive threshold settings to ensure consistent SLA adherence while optimizing computing performance. Extensive simulations are conducted using synthetic and real-world datasets to evaluate the performance of the proposed algorithm. The results demonstrate that the optimized load balancing approach outperforms traditional algorithms in terms of SLA compliance, resource utilization, and energy efficiency. The findings suggest that the integration of optimization techniques into load balancing algorithms can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Clinical applications of machine learning algorithms: beyond the black box.David S. Watson, Jenny Krutzinna, Ian N. Bruce, Christopher E. M. Griffiths, Iain B. McInnes, Michael R. Barnes & Luciano Floridi - 2019 - British Medical Journal 364:I886.
    Machine learning algorithms may radically improve our ability to diagnose and treat disease. For moral, legal, and scientific reasons, it is essential that doctors and patients be able to understand and explain the predictions of these models. Scalable, customisable, and ethical solutions can be achieved by working together with relevant stakeholders, including patients, data scientists, and policy makers.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  50. Introduction to Data Ethics.James Brusseau - 2018 - In Introduction to Data Ethics. Boston, USA: Boston Academic Publishing / Flatworld Knowledge. pp. 349-376.
    An Introduction to data ethics, focusing on questions of privacy and personal identity in the economic world as it is defined by big data technologies, artificial intelligence, and algorithmic capitalism. -/- Originally published in The Business Ethics Workshop, 3rd Edition, by Boston Acacdemic Publishing / FlatWorld Knowledge.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 965