Results for ' wave-particle dualism'

1000+ found
Order:
  1. The photon exhibits dualism, constant velocity and nonlocality: What do they have in common?Paul Klevgard - 2021 - Optik 248 (168).
    The photon is typically regarded as a unitary object that is both particle-discrete and wave-continuous. This is a paradoxical position and we live with it by making dualism a fundamental feature of radiation. It is argued here that the photon is not unitary; rather it has two identities, one supporting discrete behavior and the other supporting continuous (wave) behavior. There is photon kinetic energy that is always discrete/localized on arrival; it never splits (on half-silvered mirrors) or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. The Mach-Zehnder Interferometer and Photon Dualism: with an Analysis of Nonlocality (2021).Paul A. Klevgard - 2020 - SPIE 11481, Light in Nature VIII, 114810B (21 August 2020).
    The Mach-Zehnder Interferometer (MZI) is chosen to illustrate the long-standing wave-particle duality problem. Why is which-way (welcher weg) information incompatible with wave interference? How do we explain Wheeler’s delayed choice experiment? Most crucially, how can the photon divide at the first beam splitter and yet terminate on either arm with its undiminished energy? The position advanced is that the photon has two identities, one supporting particle features and the other wave features. There is photon kinetic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Is the Photon Really a Particle?Paul Klevgard - 2021 - Optik 237 (166679):N/A.
    Photons deliver their energy and momentum to a point on a material target. It is commonplace to attribute this to particle impact. But since the in-flight photon also has a wave nature, we are stuck with the paradox of wave-particle duality. It is argued here that the photon’s wave nature is indisputable, but its particle nature is open to question. Photons deliver energy. The problem with invoking impact as a means of delivery is that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Wave Function Ontology.Bradley Monton - 2002 - Synthese 130 (2):265-277.
    I argue that the wave function ontology for quantum mechanics is an undesirable ontology. This ontology holds that the fundamental space in which entities evolve is not three-dimensional, but instead 3N-dimensional, where N is the number of particles standardly thought to exist in three-dimensional space. I show that the state of three-dimensional objects does not supervene on the state of objects in 3N-dimensional space. I also show that the only way to guarantee the existence of the appropriate mental states (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  5. Wave-Particle Duality: A New Look from First Principles.Paul Klevgard - manuscript
    Part I looks at duality for the photon; Part II does the same for the electron. The traditional division of kinetic energy between radiation and matter-in-motion is reexamined permitting new insights into duality. An in-flight photon displays wave characteristics. Such a photon can interfere with itself and take all available space paths as a wave. In addition, photons pass through one another like waves whereas particles impact each other. It is only when the photon terminates on a material (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. No Paradox in WaveParticle Duality.Andrew Knight - 2020 - Foundations of Physics 50 (11):1723-1727.
    The assertion that an experiment by Afshar et al. demonstrates violation of Bohr’s Principle of Complementarity is based on the faulty assumption that which-way information in a double-slit interference experiment can be retroactively determined from a future measurement.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  7. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. Probabilisitic transitions occur (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  8.  79
    Discrete space and the wave-particle duality relation.Sydney Ernest Grimm - manuscript
    Paper about the origin of the wave-particle duality.
    Download  
     
    Export citation  
     
    Bookmark  
  9. UnQuantum Woolf: The Many Intellectual Contexts of To the Lighthouse's Metaphorical Wave-Particle Binary.Xavier Cousin - 2022 - Dissertation, Durham University
    This thesis is a sceptical investigation into the notion that the metaphorical wave-particle binary of Virginia Woolf's To the Lighthouse is related to quantum physics. Indeed, the field of literature and science has employed conceptual similarities as the main means of connecting quantum concepts to novels, however, this has led to a host of scholarly difficulties, prompting the need for a re-examination of analogical linkages. Woolf is the model candidate for such a re-examination, given her historical and philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Discrete space and the wave-particle duality relation.Sydney Ernest Grimm - manuscript
    The paper describes the wav-particle duality with the help of the concept of discrete space (also termed "quantized space").
    Download  
     
    Export citation  
     
    Bookmark  
  11. Negative and complex probability in quantum information.Vasil Penchev - 2012 - Philosophical Alternatives 21 (1):63-77.
    “Negative probability” in practice. Quantum Communication: Very small phase space regions turn out to be thermodynamically analogical to those of superconductors. Macro-bodies or signals might exist in coherent or entangled state. Such physical objects having unusual properties could be the basis of quantum communication channels or even normal physical ones … Questions and a few answers about negative probability: Why does it appear in quantum mechanics? It appears in phase-space formulated quantum mechanics; next, in quantum correlations … and for (...)-particle dualism. Its meaning:- mathematically: a ratio of two measures (of sets), which are not collinear; physically: the ratio of the measurements of two physical quantities, which are not simultaneously measurable. The main innovation is in the mapping between phase and Hilbert space, since both are sums. Phase space is a sum of cells, and Hilbert space is a sum of qubits. The mapping is reduced to the mapping of a cell into a qubit and vice versa. Negative probability helps quantum mechanics to be represented quasi-statistically by quasi-probabilistic distributions. Pure states of negative probability cannot exist, but they, where the conditions for their expression exists, decrease the sum probability of the integrally positive regions of the distributions. They reflect the immediate interaction (interference) of probabilities common in quantum mechanics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Photon Physics and the Classical Ontology.Paul Klevgard - manuscript
    We think of kinetic energy (KE) as a quantity possessed by rest mass in motion. But somehow electromagnetic (EM) radiation transports KE across space without any rest mass. In addition, a single photon passing through a double slit diffracts into multiple paths in space without affecting its KE. This is hard to explain. Quantum theories that confront the double slit problem do not address these two issues directly. The ontology of radiation KE is examined which leads to some new ideas (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles is random and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Particle Creation as the Quantum Condition for Probabilistic Events to Occur.Nicholas Maxwell - 1994 - Physics Letters A 187 (2 May 1994):351-355.
    A new version of quantum theory is proposed, according to which probabilistic events occur whenever new statioinary or bound states are created as a result of inelastic collisions. The new theory recovers the experimental success of orthodox quantum theory, but differs form the orthodox theory for as yet unperformed experiments.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  15. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Meaning of the wave function.Shan Gao - 2010
    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a (...). The essential difference between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. Which kind of ergodic motion of particles then? It is argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. We show that this new interpretation of the wave function provides a natural realistic alternative to the orthodox interpretation, and its implications for other realistic interpretations of quantum mechanics are also briefly discussed. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  17. Reassessing Time, Energy and Nonlocality in Quantum Mechanics with Observations on Schrödinger’s Cat.Paul Klevgard - manuscript
    Radiation was a big challenge for the quantum pioneers since the photon was massless, probabilistic and appeared to be both wave and particle. Einstein’s special relativity equated mass with energy and space with time. But the equality of mass with energy, then and now, is regarded as quantitative and the equality of space with time is anything but equal; space hosts material entities; time hosts nothing. Exploring these equality issues raises some questions as to how measurable entities – (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  19. Electromagnetic Field Waves.John Linus O'Sullivan - forthcoming - AuthorsDen.
    Abstract: Standing half wave particles at light speed twice in expansion-contraction comprise a static universe where two transverse fields 90° out of phase are the square of distance from each other. The universe has a static concept of time since the infinite universe is a static universe without a beginning or end. The square of distance is a point of reversal in expansion-contraction between the fields as a means to conserve energy. Photons on expansion in the electric field create (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Gauge Symmetry and Invariant Features of Particles and Photons: Insights into Duality, Time’s Arrow and Nonlocality.Paul Klevgard - manuscript
    Particles and photons appear to be total opposites; the former has rest mass which requires space to exist; the latter has kinetic energy which requires time to occur (oscillate). But they do share certain properties (e.g., quantization) that remain invariant when one is transformed (swapped) for the other. This gauge invariance is developed in some detail. The symmetry between particle and photon turns out to be one of inversion. It is the equalities of special relativity that support this inversion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. ​​Our Fundamental Physical Space: An Essay on the Metaphysics of the Wave Function.Eddy Keming Chen - 2017 - Journal of Philosophy 114 (7):333-365.
    The mathematical structure of realist quantum theories has given rise to a debate about how our ordinary 3-dimensional space is related to the 3N-dimensional configuration space on which the wave function is defined. Which of the two spaces is our (more) fundamental physical space? I review the debate between 3N-Fundamentalists and 3D-Fundamentalists and evaluate it based on three criteria. I argue that when we consider which view leads to a deeper understanding of the physical world, especially given the deeper (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  22. Electromagnetic waves.Sydney Ernest Grimm - manuscript
    In the past the particle-wave duality of electromagnetic waves dominated the discussions about the nature of light. No consensus had been reached amongst physicists and philosophers of physics concerning which interpretation represents reality best. However, two different concepts for the same phenomenon doesn’t really convince about the reliability of the conceptual framework. So what is wrong?
    Download  
     
    Export citation  
     
    Bookmark  
  23. Derivation of the Meaning of the Wave Function.Shan Gao - 2011
    We show that the physical meaning of the wave function can be derived based on the established parts of quantum mechanics. It turns out that the wave function represents the state of random discontinuous motion of particles, and its modulus square determines the probability density of the particles appearing in certain positions in space.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. The de Broglie Wave as Evidence of a Deeper Wave Structure.Daniel Shanahan - manuscript
    It is argued that the de Broglie wave is not the independent wave usually supposed, but the relativistically induced modulation of an underlying carrier wave that moves with the velocity of the particle. In the rest frame of the particle this underlying structure has the form of a standing wave. De Broglie also assumed the existence of this standing wave, but it would appear that he failed to notice its survival as a carrier (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25.  40
    Triple definition or explanation of consciousness.Xinyan Zhang - manuscript
    The author argues in this paper that consciousness may never be defined or explained with entities and properties, neither with brains and neurons, nor with particles, waves, and fields. Instead, a system is proposed in this paper, with matter, energy and lives as its components, and with all its components defined as changes. The definitions or explanations of consciousness based on the systematic relationships among these components are: • Ontologically, consciousness is universal, since it may only be the systematic distinction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Does Consciousness-Collapse Quantum Mechanics Facilitate Dualistic Mental Causation?Alin C. Cucu - forthcoming - Journal of Cognitive Science.
    One of the most serious challenges (if not the most serious challenge) for interactive psycho-physical dualism (henceforth interactive dualism or ID) is the so-called ‘interaction problem’. It has two facets, one of which this article focuses on, namely the apparent tension between interactions of non-physical minds in the physical world and physical laws of nature. One family of approaches to alleviate or even dissolve this tension is based on a collapse solution (‘consciousness collapse/CC) of the measurement problem in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Reality and the Probability Wave.Daniel Shanahan - 2019 - International Journal of Quantum Foundations 5:51-68.
    Effects associated in quantum mechanics with a divisible probability wave are explained as physically real consequences of the equal but opposite reaction of the apparatus as a particle is measured. Taking as illustration a Mach-Zehnder interferometer operating by refraction, it is shown that this reaction must comprise a fluctuation in the reradiation field of complementary effect to the changes occurring in the photon as it is projected into one or other path. The evolution of this fluctuation through the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Persistence and Nonpersistence as Complementary Models of Identical Quantum Particles.Philip Goyal - 2019 - New Journal of Physics 21.
    According to our understanding of the everyday physical world, observable phenomena are underpinned by persistent objects that can be reidentified across time by observation of their distinctive properties. This understanding is reflected in classical mechanics, which posits that matter consists of persistent, reidentifiable particles. However, the mathematical symmetrization procedures used to describe identical particles within the quantum formalism have led to the widespread belief that identical quantum particles lack either persistence or reidentifiability. However, it has proved difficult to reconcile these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Protective Measurement and the Meaning of the Wave Function.Shan Gao - 2011
    This article analyzes the implications of protective measurement for the meaning of the wave function. According to protective measurement, a charged quantum system has mass and charge density proportional to the modulus square of its wave function. It is shown that the mass and charge density is not real but effective, formed by the ergodic motion of a localized particle with the total mass and charge of the system. Moreover, it is argued that the ergodic motion is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  30. The Quantum Measurement Problem - Collapse of the Wave Function explained.Rochelle Marianne Forrester - unknown
    Quantum physicists have made many attempts to solve the quantum measurement problem, but no solution seems to have received widespread acceptance. The time has come for a new approach. In Sense Perception and Reality: A Theory of Perceptual Relativity, Quantum Mechanics and the Observer Dependent Universe I suggest the quantum measurement problem is caused by a failure to understand that each species has its own sensory world and that when we say the wave function collapses and brings a (...) into existence we mean the particle is brought into existence in the human sensory world by the combined operation of the human sensory apparatus, particle detectors and the experimental set up. This is similar to the Copenhagen Interpretation suggested by Niels Bohr and others, but the understanding that the collapse of the wave function brings a particle into existence in the human sensory world removes the need for a dividing line between the quantum world and the macro world. The same rules can apply to both worlds and the ideas stated in this paper considerably strengthen the Copenhagen Interpretation of quantum mechanics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  31. The Cognitive Gap, Neural Darwinism & Linguistic Dualism —Russell, Husserl, Heidegger & Quine.Hermann G. W. Burchard - 2014 - Open Journal of Philosophy 4 (3):244-264.
    Guided by key insights of the four great philosophers mentioned in the title, here, in review of and expanding on our earlier work (Burchard, 2005, 2011), we present an exposition of the role played by language, & in the broader sense, λογοζ, the Logos, in how the CNS, the brain, is running the human being. Evolution by neural Darwinism has been forcing the linguistic nature of mind, enabling it to overcome & exploit the cognitive gap between an animal and its (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Does probabilism solve the great quantum mystery?Nicholas Maxwell - 2010 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 19 (3):321-336.
    I put forward a micro realistic, probabilistic version of quantum theory, which specifies the precise nature of quantum entities thus solving the quantum wave/particle dilemma, and which both reproduces the empirical success of orthodox quantum theory, and yields predictions that differ from orthodox quantum theory for as yet unperformed experiments.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  33. Is the quantum world composed of propensitons?Nicholas Maxwell - 2010 - In Mauricio Suárez (ed.), Probabilities, Causes and Propensities in Physics. New York: Springer. pp. 221-243.
    In this paper I outline my propensiton version of quantum theory (PQT). PQT is a fully micro-realistic version of quantum theory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantum theory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet tested). I argue that Einstein (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  34. A Unified Explanation of Quantum Phenomena? The Case for the Peer‐to‐Peer Simulation Hypothesis as an Interdisciplinary Research Program.Marcus Arvan - 2014 - Philosophical Forum 45 (4):433-446.
    In my 2013 article, “A New Theory of Free Will”, I argued that several serious hypotheses in philosophy and modern physics jointly entail that our reality is structurally identical to a peer-to-peer (P2P) networked computer simulation. The present paper outlines how quantum phenomena emerge naturally from the computational structure of a P2P simulation. §1 explains the P2P Hypothesis. §2 then sketches how the structure of any P2P simulation realizes quantum superposition and wave-function collapse (§2.1.), quantum indeterminacy (§2.2.), wave- (...) duality (§2.3.), and quantum entanglement (§2.4.). Finally, §3 argues that although this is by no means a philosophical proof that our reality is a P2P simulation, it provides ample reasons to investigate the hypothesis further using the methods of computer science, physics, philosophy, and mathematics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  35. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is only partly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Spontaneous emerging of material by applying the Darwin's evolutionary theory to in quantum realm and its impact on simplifying the dilemmas.Vahid Dabbagh - manuscript
    What is the boundary between the animate and inanimate world? It is obvious that the animate world is under rules of inanimate world. Is the converse true? This paper is aimed at imposing the well-known Darwin's theory of evolution to inanimate world of atomic realm where bizarre behavior of electron challenges our everyday perception of inanimate world. This paper, suggests a weird, peculiar and highly elegant speculation of existing, leads suspicious about validity of the law of conservation of mass, provides (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. The communicational properties of single photons explain their strange behavior in the double-slit experiment.Mehran Shaghaghi - manuscript
    Simultaneous observation of the wave-like and particle-like aspects of the photon in the double-slit experiment is unallowed. The underlying reason behind this limitation is not understood. In this paper, we explain this unique behavior by considering the communicational properties of the photons. Photons have three independently adjustable properties (energy, direction, and spin) that can be used to communicate messages. The double-slit experiment setup fixes two of these properties and confines the single photon’s capacity for conveying messages to no (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Origin of Matter and Time.John Linus O'Sullivan - forthcoming - AuthorsDen.
    Abstract: Standing half wave particles at light speed twice in expansion-contraction comprise a static universe where two transverse fields 90° out of phase are the square of distance from each other. The universe has a static concept of time since the infinite universe is a static universe without a beginning or end. The square of distance is a point of reversal in expansion-contraction between the fields as a means to conserve energy. Photons on expansion in the electric field create (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Foundational Constructive Geometry.Desmond A. Ford - manuscript
    An ideal constructor produces geometry from scratch, modelled through the bottom-up assembly of a graph-like lattice within a space that is defined, bootstrap-wise, by that lattice. Construction becomes the problem of assembling a homogeneous lattice in three-dimensional space; that becomes the problem of resolving geometrical frustration in quasicrystalline structure; achieved by reconceiving the lattice as a dynamical system. The resulting construction is presented as the introductory model sufficient to motivate the formal argument that it is a fundamental structure; based on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Unified Electromagnetic Fields.John Linus O'Sullivan - forthcoming - AuthorsDen.
    Abstract: Standing half wave particles at light speed twice in expansion-contraction comprise a static universe where two transverse fields 90° out of phase are the square of distance from each other. The universe has a static concept of time since the infinite universe is a static universe without a beginning or end. The square of distance is a point of reversal in expansion-contraction between the fields as a means to conserve energy. Photons on expansion in the electric field create (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. God and Science are Infinite.John Linus O'Sullivan - forthcoming - AuthorsDen.
    Abstract: Standing half wave particles at light speed twice in expansion-contraction comprise a static universe where two transverse fields 90° out of phase are the square of distance from each other. The universe has a static concept of time since the infinite universe is a static universe without a beginning or end. The square of distance is a point of reversal in expansion-contraction between the fields as a means to conserve energy. Photons on expansion in the electric field create (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Why the de Broglie-Bohm theory is probably wrong.Shan Gao - manuscript
    We investigate the validity of the field explanation of the wave function by analyzing the mass and charge density distributions of a quantum system. It is argued that a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. This is also a consequence of protective measurement. If the wave function is a physical field, then the mass and charge density will be distributed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. On Testing the Simulation Theory.Tom Campbell, Houman Owhadi, Joe Savageau & David Watkinson - manuscript
    Can the theory that reality is a simulation be tested? We investigate this question based on the assumption that if the system performing the simulation is nite (i.e. has limited resources), then to achieve low computational complexity, such a system would, as in a video game, render content (reality) only at the moment that information becomes available for observation by a player and not at the moment of detection by a machine (that would be part of the simulation and whose (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Complementarity as a model for east-west integrative philosophy.Robert E. Allinson - 1998 - Journal of Chinese Philosophy 25 (4):505-517.
    The discovery of a letter in the Niels Bohr archives written by Bohr to a Danish schoolteacher in which he reveals his early knowledge of the Daodejing led the present author on a search to unveil the influence of the philosophy of Yin-Yang on Bohr's famed complementarity principle in Western physics. This paper recounts interviews with his son, Hans, who recalls Bohr reading a translated copy of Laozi, as well as Hanna Rosental, close friend and associate who also confirms the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  45. Could Inelastic Interactions Induce Quantum Probabilistic Transitions?Nicholas Maxwell - 2017 - In Shan Gao (ed.), Collapse of the Wave Function. Cambridge: Cambridge University Press. pp. 257-273.
    What are quantum entities? Is the quantum domain deterministic or probabilistic? Orthodox quantum theory (OQT) fails to answer these two fundamental questions. As a result of failing to answer the first question, OQT is very seriously defective: it is imprecise, ambiguous, ad hoc, non-explanatory, inapplicable to the early universe, inapplicable to the cosmos as a whole, and such that it is inherently incapable of being unified with general relativity. It is argued that probabilism provides a very natural solution to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Relativity Theory may not have the last Word on the Nature of Time: Quantum Theory and Probabilism.Nicholas Maxwell - 2016 - In Giancarlo Ghirardi & Shyam Wuppuluri (eds.), Space, Time and the Limits of Human Understanding. Cham: Imprint: Springer. pp. 109-124.
    Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both space and time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. How Quantum is Quantum Counterfactual Communication?Jonte R. Hance, James Ladyman & John Rarity - 2021 - Foundations of Physics 51 (1):1-17.
    Quantum Counterfactual Communication is the recently-proposed idea of using quantum physics to send messages between two parties, without any matter/energy transfer associated with the bits sent. While this has excited massive interest, both for potential ‘unhackable’ communication, and insight into the foundations of quantum mechanics, it has been asked whether this process is essentially quantum, or could be performed classically. We examine counterfactual communication, both classical and quantum, and show that the protocols proposed so far for sending signals that don’t (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Heisenberg's Uncertainty Principle in Buddhist Philosophical Perspective.Pattamawadee Sankheangaew - forthcoming - SSRN Electronic Journal.
    The research has three objectives: 1) to study the concept of Heisenberg’s uncertainty principle, 2) to study the concept of reality and knowledge in Buddhist philosophy, and 3) to analyze the concept of Heisenberg’s uncertainty principle in Buddhist philosophical perspective. This is documentary research. In this research, it was found that Heisenberg's uncertainty principle refers to the experiment of thought while studying physical reality on smaller particles than atoms where at the present no theory of Physics can clearly explain such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Quantum Physics: an overview of a weird world: A primer on the conceptual foundations of quantum physics.Marco Masi - 2019 - Indy Edition.
    This is the first book in a two-volume series. The present volume introduces the basics of the conceptual foundations of quantum physics. It appeared first as a series of video lectures on the online learning platform Udemy.]There is probably no science that is as confusing as quantum theory. There's so much misleading information on the subject that for most people it is very difficult to separate science facts from pseudoscience. The goal of this book is to make you able to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Cyclic Mechanics: the Principle of Cyclicity.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (16):1-35.
    Cyclic mechanic is intended as a suitable generalization both of quantum mechanics and general relativity apt to unify them. It is founded on a few principles, which can be enumerated approximately as follows: 1. Actual infinity or the universe can be considered as a physical and experimentally verifiable entity. It allows of mechanical motion to exist. 2. A new law of conservation has to be involved to generalize and comprise the separate laws of conservation of classical and relativistic mechanics, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000