Results for 'Algebra, NeutroAlgebra, AntiAlgebra'

360 found
Order:
  1. NeutroAlgebra is a Generalization of Partial Algebra.Florentin Smarandache - 2020 - International Journal of Neutrosophic Science 2 (1):8-17.
    In this paper we recall, improve, and extend several definitions, properties and applications of our previous 2019 research referred to NeutroAlgebras and AntiAlgebras (also called NeutroAlgebraic Structures and respectively AntiAlgebraic Structures). Let <A> be an item (concept, attribute, idea, proposition, theory, etc.). Through the process of neutrosphication, we split the nonempty space we work on into three regions {two opposite ones corresponding to <A> and <antiA>, and one corresponding to neutral (indeterminate) <neutA> (also denoted <neutroA>) between the opposites}, which may (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  2. Generalizations and Alternatives of Classical Algebraic Structures to NeutroAlgebraic Structures and AntiAlgebraic Structures.Florentin Smarandache - 2020 - Journal of Fuzzy Extension and Applications 1 (2):85-87.
    In this paper we present the development from paradoxism to neutrosophy, which gave birth to neutrosophic set and logic and especially to NeutroAlgebraic Structures (or NeutroAlgebras) and AntiAlgebraic Structures (or AntiAlgebras) that are generalizations and alternatives of the classical algebraic structures.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. (1 other version)Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited).Florentin Smarandache - 2019 - In Advances of standard and nonstandard neutrosophic theories. Brussels, Belgium: Pons. pp. 240-265.
    In all classical algebraic structures, the Laws of Compositions on a given set are well-defined. But this is a restrictive case, because there are many more situations in science and in any domain of knowledge when a law of composition defined on a set may be only partially-defined (or partially true) and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined (totally false) that we call AntiDefined.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. NeutroAlgebra of Neutrosophic Triplets using {Zn, x}.W. B. Kandasamy, I. Kandasamy & Florentin Smarandache - 2020 - Neutrosophic Sets and Systems 38 (1):509-523.
    Smarandache in 2019 has generalized the algebraic structures to NeutroAlgebraic structures and AntiAlgebraic structures. In this paper, authors, for the first time, define the NeutroAlgebra of neutrosophic triplets group under usual+ and x, built using {Zn, x}, n a composite number, 5 < n < oo, which are not partial algebras. As idempotents in Zn alone are neutrals that contribute to neutrosophic triplets groups, we analyze them and build NeutroAlgebra of idempotents under usual + and x, which are not partial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  77
    Proceedings of the International Conference “NeutroGeometry, NeutroAlgebra, and Their Applications,” Havana, Cuba, 12-14 August 2024.Florentin Smarandache, Mohamed Abdel-Basset, Maikel Yelandi Leyva Vázquez & Said Broumi (eds.) - 2024
    A special issue of the International Journal in Information Science and Engineering “Neutrosophic Sets and Systems” (vol. 71/2024) is dedicated to the Conference on NeutroGeometry, NeutroAlgebra, and Their Applications, organized by the Latin American Association of Neutrosophic Sciences. This event, which took place on August 12-14, 2024, in Havana, Cuba, was made possible by the valuable collaboration of the University of Havana, the University of Physical Culture and Sports Sciences "Manuel Fajardo," the José Antonio Echeverría University of Technology, University of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries (revisited).Florentin Smarandache - 2021 - Neutrosophic Sets and Systems 46 (1):456-477.
    In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric spaces, by founding the NeutroGeometry & AntiGeometry. While the Non-Euclidean Geometries resulted from the total negation of one specific axiom (Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom or even of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.) and from any type of geometry such as (Euclidean, Projective, Finite, Affine, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.) Geometry, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. La Neutro-Geometría y la Anti-Geometría como Alternativas y Generalizaciones de las Geometrías no Euclidianas.Florentin Smarandache - 2022 - Neutrosophic Computing and Machine Learning 20 (1):91-104.
    In this paper we extend Neutro-Algebra and Anti-Algebra to geometric spaces, founding Neutro/Geometry and AntiGeometry. While Non-Euclidean Geometries resulted from the total negation of a specific axiom (Euclid's Fifth Postulate), AntiGeometry results from the total negation of any axiom or even more axioms of any geometric axiomatic system (Euclidean, Hilbert, etc. ) and of any type of geometry such as Geometry (Euclidean, Projective, Finite, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.), and Neutro-Geometry results from the partial negation of one (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  85
    The Algebras of Lewis Counterfactuals.Giuliano Rosella & Sara Ugolini - manuscript
    The logico-algebraic study of Lewis's hierarchy of variably strict conditional logics has been essentially unexplored, hindering our understanding of their mathematical foundations, and the connections with other logical systems. This work aims to fill this gap by providing a comprehensive logico-algebraic analysis of Lewis's logics. We begin by introducing novel finite axiomatizations for varying strengths of Lewis's logics, distinguishing between global and local consequence relations on Lewisian sphere models. We then demonstrate that the global consequence relation is strongly algebraizable in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Improving Algebraic Thinking Skill, Beliefs And Attitude For Mathematics Throught Learning Cycle Based On Beliefs.Widodo Winarso & Toheri - 2017 - Munich University Library.
    In the recent years, problem-solving become a central topic that discussed by educators or researchers in mathematics education. it’s not only as the ability or as a method of teaching. but also, it is a little in reviewing about the components of the support to succeed in problem-solving, such as student's belief and attitude towards mathematics, algebraic thinking skills, resources and teaching materials. In this paper, examines the algebraic thinking skills as a foundation for problem-solving, and learning cycle as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10.  79
    An Algebraic Model for Quantum Unstable States.Sebastian Fortin, Manuel Gadella, Federico Holik, Juan Pablo Jorge & Marcelo Losada - 2022 - Mathematics 10 (23).
    In this review, we present a rigorous construction of an algebraic method for quantum unstable states, also called Gamow states. A traditional picture associates these states to vectors states called Gamow vectors. However, this has some difficulties. In particular, there is no consistent definition of mean values of observables on Gamow vectors. In this work, we present Gamow states as functionals on algebras in a consistent way. We show that Gamow states are not pure states, in spite of their representation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11.  35
    Algebraic Emergence.Attila Egri-Nagy - manuscript
    We define emergence algebraically in the context of discrete dynamical systems modeled as transformation semigroups. Emergence happens when a quotient structure (coarse-grained dynamics) is not a substructure of the original system. We survey small groups to show that algebraic emergence is neither ubiquitous nor rare. Then, we describe connections with hierarchical decompositions and explore some of the philosophical implications of the algebraic constraints.
    Download  
     
    Export citation  
     
    Bookmark  
  12. NeutroAlgebra Theory, volume I.Florentin Smarandache, Memet Şahin, Derya Bakbak, Vakkas Uluçay & Abdullah Kargın - 2021 - Grandview Heights, OH, USA: Educational Publisher.
    Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  59
    Fuzzy R Systems and Algebraic Routley-Meyer Semantics.Eunsuk Yang - 2022 - Korean Journal of Logic 25 (3):313-332.
    Here algebraic Routley-Meyer semantics is addressed for two fuzzy versions of the logic of relevant implication R. To this end, two versions R t and R T of R and their fuzzy extensions FRt and FRT , respectively, are first discussed together with their algebraic semantics. Next algebraic Routley-Meyer semantics for these two fuzzy extensions is introduced. Finally, it is verified that these logics are sound and complete over the semantics.
    Download  
     
    Export citation  
     
    Bookmark  
  14. Hyperboolean Algebras and Hyperboolean Modal Logic.Valentin Goranko & Dimiter Vakarelov - 1999 - Journal of Applied Non-Classical Logics 9 (2):345-368.
    Hyperboolean algebras are Boolean algebras with operators, constructed as algebras of complexes (or, power structures) of Boolean algebras. They provide an algebraic semantics for a modal logic (called here a {\em hyperboolean modal logic}) with a Kripke semantics accordingly based on frames in which the worlds are elements of Boolean algebras and the relations correspond to the Boolean operations. We introduce the hyperboolean modal logic, give a complete axiomatization of it, and show that it lacks the finite model property. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  15. Algebraic Structures in the Universe of Neutrosophic: Analysis with Innovative Algorithmic Approaches.Florentin Smarandache, Derya Bakbak, Vakkas Uluçay, Abdullah Kargın & Necmiye Merve Şahin (eds.) - 2024
    Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Pura Vida Neutrosophic Algebra.Ranulfo Paiva Barbosa & Florentin Smarandache - 2023 - Neutrosophic Systems with Applications 9.
    We introduce Pura Vida Neutrosophic Algebra, an algebraic structure consisting of neutrosophic numbers equipped with two binary operations namely addition and multiplication. The addition can be calculated sometimes with the function min and other times with the max function. The multiplication operation is the usual sum between numbers. Pura Vida Neutrosophic Algebra is an extension of both Tropical Algebra (also known as Min-Plus, or Min-Algebra) and Max-Plus Algebra (also known as Max-algebra). Tropical and Max-Plus algebras are algebraic structures included in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Agglomerative Algebras.Jeremy Goodman - 2018 - Journal of Philosophical Logic 48 (4):631-648.
    This paper investigates a generalization of Boolean algebras which I call agglomerative algebras. It also outlines two conceptions of propositions according to which they form an agglomerative algebra but not a Boolean algebra with respect to conjunction and negation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  18. On Algebra Relativisation.Chloé de Canson - forthcoming - Mind.
    Katie Steele and H. Orri Stefánsson argue that, to reflect an agent’s limited awareness, the algebra of propositions on which that agent’s credences are defined should be relativised to their awareness state. I argue that this produces insurmountable difficulties. But the project of relativising the agent’s algebra to reflect their partial perspective need not be abandoned: the algebra can be relativised, not to the agent’s awareness state, but to what we might call their subjective modality.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Paskian Algebra: A Discursive Approach to Conversational Multi-agent Systems.Thomas Manning - 2023 - Cybernetics and Human Knowing 30 (1-2):67-81.
    The purpose of this study is to compile a selection of the various formalisms found in conversation theory to introduce readers to Pask's discursive algebra. In this way, the text demonstrates how concept sharing and concept formation by means of the interaction of two participants may be formalized. The approach taken in this study is to examine the formal notation system used by Pask and demonstrate how such formalisms may be used to represent concept sharing and concept formation through conversation. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Álgebras booleanas, órdenes parciales y axioma de elección.Franklin Galindo - 2017 - Divulgaciones Matematicas 18 ( 1):34-54.
    El objetivo de este artículo es presentar una demostración de un teorema clásico sobre álgebras booleanas y ordenes parciales de relevancia actual en teoría de conjuntos, como por ejemplo, para aplicaciones del método de construcción de modelos llamado “forcing” (con álgebras booleanas completas o con órdenes parciales). El teorema que se prueba es el siguiente: “Todo orden parcial se puede extender a una única álgebra booleana completa (salvo isomorfismo)”. Donde extender significa “sumergir densamente”. Tal demostración se realiza utilizando cortaduras de (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Clifford Algebra: A Case for Geometric and Ontological Unification.William Michael Kallfelz - 2009 - VDM Verlagsservicegesellschaft MbH.
    Robert Batterman’s ontological insights (2002, 2004, 2005) are apt: Nature abhors singularities. “So should we,” responds the physicist. However, the epistemic assessments of Batterman concerning the matter prove to be less clear, for in the same vein he write that singularities play an essential role in certain classes of physical theories referring to certain types of critical phenomena. I devise a procedure (“methodological fundamentalism”) which exhibits how singularities, at least in principle, may be avoided within the same classes of formalisms (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Neutro-BCK-Algebra.Mohammad Hamidi & Florentin Smarandache - 2020 - International Journal of Neutrosophic Science 8 (2):110-117.
    This paper introduces the novel concept of Neutro-BCK-algebra. In Neutro-BCK-algebra, the outcome of any given two elements under an underlying operation (neutro-sophication procedure) has three cases, such as: appurtenance, non-appurtenance, or indeterminate.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Cognition, Algebra, and Culture in the Tongan Kinship Terminology.Giovanni Bennardo & Dwight Read - 2007 - Journal of Cognition and Culture 7 (1-2):49-88.
    We present an algebraic account of the Tongan kinship terminology (TKT) that provides an insightful journey into the fabric of Tongan culture. We begin with the ethnographic account of a social event. The account provides us with the activities of that day and the centrality of kin relations in the event, but it does not inform us of the conceptual system that the participants bring with them. Rather, it is a slice in time of an ongoing dynamic process that links (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  24. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume I.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2018 - Basel, Switzerland: MDPI. Edited by Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali.
    The topics approached in the 52 papers included in this book are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume II.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2019 - Basel, Switzerland: MDPI.
    The topics approached in this collection of papers are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued trapezoidal neutrosophic number; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. The algebra of negativity. Hegel, Heidegger and their legacy in the contemporary scenario.Francesca Brencio - 2021 - In Antonio Lucci & Jan Knobloch (eds.), Gegen das Leben, gegen die Welt, gegen mich selbst. Figuren der Negativität. pp. 117-132.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Neutrosophic quadruple algebraic hyperstructures.A. A. A. Agboola, B. Davvaz & Florentin Smarandache - 2017 - Annals of Fuzzy Mathematics and Informatics 14.
    The objective of this paper is to develop neutrosophic quadruple algebraic hyperstructures. Specifically, we develop neutrosophic quadruple semihypergroups, neutrosophic quadruple canonical hypergroups and neutrosophic quadruple hyperrings and we present elementary properties which characterize them.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Algebraic Structures using Super Interval Matrices.W. B. Vasantha Kandasamy & Florentin Smarandache - 2011 - Columbus, OH, USA: Educational Publisher.
    In this book authors for the first time introduce the notion of super interval matrices using special intervals. The advantage of using super interval matrices is that one can build only one vector space using m × n interval matrices, but in case of super interval matrices we can have several such spaces depending on the partition on the interval matrix.
    Download  
     
    Export citation  
     
    Bookmark  
  29. SOFT NEUTROSOPHIC ALGEBRAIC STRUCTURES AND THEIR GENERALIZATION, Vol. 1.Florentin Smarandache, Mumtaz Ali & Muhammad Shabir - 2014 - Columbus, OH, USA: Educational Publisher.
    In this book the authors introduced the notions of soft neutrosophic algebraic structures. These soft neutrosophic algebraic structures are basically defined over the neutrosophic algebraic structures which means a parameterized collection of subsets of the neutrosophic algebraic structure. For instance, the existence of a soft neutrosophic group over a neutrosophic group or a soft neutrosophic semigroup over a neutrosophic semigroup, or a soft neutrosophic field over a neutrosophic field, or a soft neutrosophic LA-semigroup over a neutrosophic LAsemigroup, or a soft (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. An Algebraic View of Super-Belnap Logics.Hugo Albuquerque, Adam Přenosil & Umberto Rivieccio - 2017 - Studia Logica 105 (6):1051-1086.
    The Belnap–Dunn logic is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt the point of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  31. The Algebraic Creativity in The Neutrosophic Square Matrices‏.Mohammad Abobala, Ahmed Hatip, A. A. Salama, Necati Olgun, Broumi Said & Huda E. Khaled - 2021 - Neutrosophic Sets and Systems 40:1-11.
    The objective of this paper is to study algebraic properties of neutrosophic matrices, where a necessary and sufficient condition for the invertibility of a square neutrosophic matrix is presented by defining the neutrosophic determinant. On the other hand, this work introduces the concept of neutrosophic Eigen values and vectors with an easy algorithm to compute them. Also, this article finds a necessary and sufficient condition for the diagonalization of a neutrosophic matrix.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Super Linear Algebra.W. B. Vasantha Kandasamy & Florentin Smarandache - 2008 - Ann Arbor, MI, USA: ProQuest Information & Learning.
    In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). Many theorems on super linear algebra and its properties are proved. Some theorems are left as exercises for the reader. These new class of super linear algebras which can be thought of as a set of linear algebras, following a stipulated condition, will find applications in several fields using computers. The authors feel that such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. GeoGebra Intervention: How have Students’ Performance and Confidence in Algebra Advanced?Lovely Joyce R. Azucena, Precious Joy L. Gacayan, Mary Angela S. Tabat, Katherine H. Cuanan & Jupeth Pentang - 2022 - Studies in Technology and Education 1 (1):51-61.
    The study’s goal was to provide an educational intervention in Algebra through GeoGebra that would boost students’ confidence, improve their learning, and correct their most minor mastered skills, allowing them to improve their Algebra performance. The research design was quasi-experimental, with 40 nonrandomly chosen participants comprising the GeoGebra and control groups. Mean and standard deviation was employed to describe the algebra performance and confidence of the respondents. At the same time, independent and dependent t-tests were used to determine the students’ (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  34. Revisiting Constructive Mingle: Algebraic and Operational Semantics.Yale Weiss - 2022 - In Katalin Bimbó (ed.), Relevance Logics and other Tools for Reasoning: Essays in Honor of J. Michael Dunn. London: College Publications. pp. 435-455.
    Among Dunn’s many important contributions to relevance logic was his work on the system RM (R-mingle). Although RM is an interesting system in its own right, it is widely considered to be too strong. In this chapter, I revisit a closely related system, RM0 (sometimes known as ‘constructive mingle’), which includes the mingle axiom while not degenerating in the way that RM itself does. My main interest will be in examining this logic from two related semantical perspectives. First, I give (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. SOFT NEUTROSOPHIC ALGEBRAIC STRUCTURES AND THEIR GENERALIZATION, Vol. 2.Florentin Smarandache, Mumtaz Ali & Muhammad Shabir - 2014 - Columbus, OH, USA: Educational Publisher.
    In this book we define some new notions of soft neutrosophic algebraic structures over neutrosophic algebraic structures. We define some different soft neutrosophic algebraic structures but the main motivation is two-fold. Firstly the classes of soft neutrosophic group ring and soft neutrosophic semigroup ring defined in this book is basically the generalization of two classes of rings: neutrosophic group rings and neutrosophic semigroup rings. These soft neutrosophic group rings and soft neutrosophic semigroup rings are defined over neutrosophic group rings and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Generalizing the algebra of physical quantities.Mark Sharlow - manuscript
    In this paper, I define and study an abstract algebraic structure, the dimensive algebra, which embodies the most general features of the algebra of dimensional physical quantities. I prove some elementary results about dimensive algebras and suggest some directions for future work.
    Download  
     
    Export citation  
     
    Bookmark  
  37. Algebraic aspects and coherence conditions for conjoined and disjoined conditionals.Angelo Gilio & Giuseppe Sanfilippo - 2020 - International Journal of Approximate Reasoning 126:98-123.
    We deepen the study of conjoined and disjoined conditional events in the setting of coherence. These objects, differently from other approaches, are defined in the framework of conditional random quantities. We show that some well known properties, valid in the case of unconditional events, still hold in our approach to logical operations among conditional events. In particular we prove a decomposition formula and a related additive property. Then, we introduce the set of conditional constituents generated by $n$ conditional events and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Non-deterministic algebraization of logics by swap structures1.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Logic Journal of the IGPL 28 (5):1021-1059.
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  39. McKinsey Algebras and Topological Models of S4.1.Thomas Mormann - manuscript
    The aim of this paper is to show that every topological space gives rise to a wealth of topological models of the modal logic S4.1. The construction of these models is based on the fact that every space defines a Boolean closure algebra (to be called a McKinsey algebra) that neatly reflects the structure of the modal system S4.1. It is shown that the class of topological models based on McKinsey algebras contains a canonical model that can be used to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. The Basic Algebra of Game Equivalences.Valentin Goranko - 2003 - Studia Logica 75 (2):221-238.
    We give a complete axiomatization of the identities of the basic game algebra valid with respect to the abstract game board semantics. We also show that the additional conditions of termination and determinacy of game boards do not introduce new valid identities.En route we introduce a simple translation of game terms into plain modal logic and thus translate, while preserving validity both ways, game identities into modal formulae.The completeness proof is based on reduction of game terms to a certain ‘minimal (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  41. ALGEBRA OF FUNDAMENTAL MEASUREMENTS AS A BASIS OF DYNAMICS OF ECONOMIC SYSTEMS.Sergiy Melnyk - 2012 - arXiv.
    We propose an axiomatic approach to constructing the dynamics of systems, in which one the main elements 9e8 is the consciousness of a subject. The main axiom is the statements that the state of consciousness is completely determined by the results of measurements performed on it. In case of economic systems we propose to consider an offer of transaction as a fundamental measurement. Transactions with delayed choice, discussed in this paper, represent a logical generalization of incomplete transactions and allow for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. A Survey of Geometric Algebra and Geometric Calculus.Alan Macdonald - 2017 - Advances in Applied Clifford Algebras 27:853-891.
    The paper is an introduction to geometric algebra and geometric calculus for those with a knowledge of undergraduate mathematics. No knowledge of physics is required. The section Further Study lists many papers available on the web.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Algebra of Theoretical Term Reductions in the Sciences.Dale Jacquette - 2014 - Symposion: Theoretical and Applied Inquiries in Philosophy and Social Sciences 1 (1): 51-67.
    An elementary algebra identifies conceptual and corresponding applicational limitations in John Kemeny and Paul Oppenheim’s (K-O) 1956 model of theoretical reduction in the sciences. The K-O model was once widely accepted, at least in spirit, but seems afterward to have been discredited, or in any event superceeded. Today, the K-O reduction model is seldom mentioned, except to clarify when a reduction in the Kemeny-Oppenheim sense is not intended. The present essay takes a fresh look at the basic mathematics of K-O (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Linguistic Semilinear Algebras and Linguistic Semivector Spaces.W. B. Vasantha Kandasamy, K. Ilanthenral & Florentin Smarandache - 2022 - Miami, FL, USA: Global Knowledge.
    Algebraic structures on linguistic sets associated with a linguistic variable are introduced. The linguistics with single closed binary operations are only semigroups and monoids. We describe the new notion of linguistic semirings, linguistic semifields, linguistic semivector spaces and linguistic semilinear algebras defined over linguistic semifields. We also define algebraic structures on linguistic subsets of a linguistic set associated with a linguistic variable. We define the notion of linguistic subset semigroups, linguistic subset monoids and their respective substructures. We also define as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. The Contact Algebra of the Euclidean Plane has Infinitely Many Elements.Thomas Mormann - manuscript
    Abstract. Let REL(O*E) be the relation algebra of binary relations defined on the Boolean algebra O*E of regular open regions of the Euclidean plane E. The aim of this paper is to prove that the canonical contact relation C of O*E generates a subalgebra REL(O*E, C) of REL(O*E) that has infinitely many elements. More precisely, REL(O*,C) contains an infinite family {SPPn, n ≥ 1} of relations generated by the relation SPP (Separable Proper Part). This relation can be used to define (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. A New Trend to Extensions of CI-algebras.Florentin Smarandache, Akbar Rezaei & Hee Sik Kim - 2020 - International Journal of Neutrosophic Science 5 (1):8-15.
    In this paper, as an extension of CI-algebras, we discuss the new notions of Neutro-CI-algebras and Anti-CI-algebras. First, some examples are given to show that these definitions are different. We prove that any proper CI-algebra is a Neutro-BE-algebra or Anti-BE-algebra. Also, we show that any NeutroSelf-distributive and Anti-Commutative CI-algebras are not BE-algebras.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Intuitionistic Modal Algebras.Sergio A. Celani & Umberto Rivieccio - 2024 - Studia Logica 112 (3):611-660.
    Recent research on algebraic models of _quasi-Nelson logic_ has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a _nucleus_. Among these various algebraic structures, for which we employ the umbrella term _intuitionistic modal algebras_, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive operations (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Extensions of bundles of C*-algebras.Jer Steeger & Benjamin Feintzeig - 2021 - Reviews in Mathematical Physics 33 (8):2150025.
    Bundles of C*-algebras can be used to represent limits of physical theories whose algebraic structure depends on the value of a parameter. The primary example is the ℏ→0 limit of the C*-algebras of physical quantities in quantum theories, represented in the framework of strict deformation quantization. In this paper, we understand such limiting procedures in terms of the extension of a bundle of C*-algebras to some limiting value of a parameter. We prove existence and uniqueness results for such extensions. Moreover, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Introducción a la Super-Hiper-Álgebra y la Super-HiperÁlgebra Neutrosófica.Florentin Smarandache - 2022 - Neutrosophic Computing and Machine Learning 20 (1):1-6.
    In this article, the concepts of Nth Power Set of a Set, Super-Hyper-Oper-Operation, Super-Hyper-Axiom, SuperHyper-Algebra, and their corresponding Neutrosophic Super-Hyper-Oper-Operation, Neutrosophic Super-Hyper-Axiom and Neutrosophic Super-Hyper-Algebra are reviewed. In general, in any field of knowledge, really what are found are Super-HyperStructures (or more specifically Super-Hyper-Structures (m, n)).
    Download  
     
    Export citation  
     
    Bookmark  
  50. Neutrosophic Algebraic Structures and Their Applications.Florentin Smarandache, Memet Şahin, Derya Bakbak, Vakkas Uluçay & Abdullah Kargın - 2022 - Gallup, NM, USA: NSIA Publishing House.
    Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 360