Results for 'Biological research'

966 found
Order:
  1. How Research on Microbiomes is Changing Biology: A Discussion on the Concept of the Organism.Adrian Stencel & Agnieszka M. Proszewska - 2018 - Foundations of Science 23 (4):603-620.
    Multicellular organisms contain numerous symbiotic microorganisms, collectively called microbiomes. Recently, microbiomic research has shown that these microorganisms are responsible for the proper functioning of many of the systems (digestive, immune, nervous, etc.) of multicellular organisms. This has inclined some scholars to argue that it is about time to reconceptualise the organism and to develop a concept that would place the greatest emphasis on the vital role of microorganisms in the life of plants and animals. We believe that, unfortunately, there (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  2. The Biologically Vulnerable Brain – Emerging Neuroimaging Research on the Roles of Early-Life Trauma, Genetics, and Epigenetics in Functional Neurological Disorder.Paula Muhr - 2024 - In Silvia Bonacchi (ed.), Vulnerability: Real, Imagined, and Displayed Fragility in Language and Society. Göttingen: Vandenhoeck & Ruprecht unipress. pp. 111–128.
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Practical Value of Biological Information for Research.Beckett Sterner - 2014 - Philosophy of Science 81 (2):175-194,.
    Many philosophers are skeptical about the scientific value of the concept of biological information. However, several have recently proposed a more positive view of ascribing information as an exercise in scientific modeling. I argue for an alternative role: guiding empirical data collection for the sake of theorizing about the evolution of semantics. I clarify and expand on Bergstrom and Rosvall’s suggestion of taking a “diagnostic” approach that defines biological information operationally as a procedure for collecting empirical cases. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Mechanism, autonomy and biological explanation.Leonardo Bich & William Bechtel - 2021 - Biology and Philosophy 36 (6):1-27.
    The new mechanists and the autonomy approach both aim to account for how biological phenomena are explained. One identifies appeals to how components of a mechanism are organized so that their activities produce a phenomenon. The other directs attention towards the whole organism and focuses on how it achieves self-maintenance. This paper discusses challenges each confronts and how each could benefit from collaboration with the other: the new mechanistic framework can gain by taking into account what happens outside individual (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. On the concept of biological race and its applicability to humans.Massimo Pigliucci & Jonathan Kaplan - 2003 - Philosophy of Science 70 (5):1161-1172.
    Biological research on race has often been seen as motivated by or lending credence to underlying racist attitudes; in part for this reason, recently philosophers and biologists have gone through great pains to essentially deny the existence of biological human races. We argue that human races, in the biological sense of local populations adapted to particular environments, do in fact exist; such races are best understood through the common ecological concept of ecotypes. However, human ecotypic races (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  6. Active biological mechanisms: transforming energy into motion in molecular motors.William Bechtel & Andrew Bollhagen - 2021 - Synthese 199 (5-6):12705-12729.
    Unless one embraces activities as foundational, understanding activities in mechanisms requires an account of the means by which entities in biological mechanisms engage in their activities—an account that does not merely explain activities in terms of more basic entities and activities. Recent biological research on molecular motors exemplifies such an account, one that explains activities in terms of free energy and constraints. After describing the characteristic “stepping” activities of these molecules and mapping the stages of those steps (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  7. Understanding Biology in the Age of Artificial Intelligence.Adham El Shazly, Elsa Lawerence, Srijit Seal, Chaitanya Joshi, Matthew Greening, Pietro Lio, Shantung Singh, Andreas Bender & Pietro Sormanni - manuscript
    Modern life sciences research is increasingly relying on artificial intelligence (AI) approaches to model biological systems, primarily centered around the use of machine learning (ML) models. Although ML is undeniably useful for identifying patterns in large, complex data sets, its widespread application in biological sciences represents a significant deviation from traditional methods of scientific inquiry. As such, the interplay between these models and scientific understanding in biology is a topic with important implications for the future of scientific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Synthetic Biology and Biofuels.Catherine Kendig - 2012 - In Paul B. Thompson & David M. Kaplan (eds.), Encyclopedia of Food and Agricultural Ethics. New York: Springer Verlag.
    Synthetic biology is a field of research that concentrates on the design, construction, and modification of new biomolecular parts and metabolic pathways using engineering techniques and computational models. By employing knowledge of operational pathways from engineering and mathematics such as circuits, oscillators, and digital logic gates, it uses these to understand, model, rewire, and reprogram biological networks and modules. Standard biological parts with known functions are catalogued in a number of registries (e.g. Massachusetts Institute of Technology Registry (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. How Biological Technology Should Inform the Causal Selection Debate.Janella Baxter - 2019 - Philosophy, Theory, and Practice in Biology 11.
    Waters’s (2007) actual difference making and Weber’s (2013, 2017) biological normality approaches to causal selection have received many criticisms, some of which miss their target. Disagreement about whether Waters’s and Weber’s views succeed in providing criteria that uniquely singles out the gene as explanatorily significant in biology has led philosophers to overlook a prior problem. Before one can address whether Waters’s and Weber’s views successfully account for the explanatory significance of genes, one must ask whether either view satisfactorily meets (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  10. Mechanist idealisation in systems biology.Dingmar van Eck & Cory Wright - 2020 - Synthese 199 (1-2):1555-1575.
    This paper adds to the philosophical literature on mechanistic explanation by elaborating two related explanatory functions of idealisation in mechanistic models. The first function involves explaining the presence of structural/organizational features of mechanisms by reference to their role as difference-makers for performance requirements. The second involves tracking counterfactual dependency relations between features of mechanisms and features of mechanistic explanandum phenomena. To make these functions salient, we relate our discussion to an exemplar from systems biological research on the mechanism (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Dreaming of a Universal Biology: Synthetic Biology and the Origins of Life.Massimiliano Simons - 2021 - Hyle: International Journal for Philosophy of Chemistry 27:91-116.
    Synthetic biology aims to synthesize novel biological systems or redesign existing ones. The field has raised numerous philosophical questions, but most especially what is novel to this field. In this article I argue for a novel take, since the dominant ways to understand synthetic biology’s specificity each face problems. Inspired by the examination of the work of a number of chemists, I argue that synthetic biology differentiates itself by a new regime of articulation, i.e. a new way of articulating (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. Culture or Biology? If this sounds interesting, you might be confused.Sebastian Watzl - 2019 - In Jaan Valsinger (ed.), Social Philosophy of Science for the Social Sciences. Springer. pp. 45-71.
    Culture or Biology? The question can seem deep and important. Yet, I argue in this chapter, if you are enthralled by questions about our biological differences, then you are probably confused. My goal is to diagnose the confusion. In debates about the role of biology in the social world it is easy to ask the wrong questions, and it is easy to misinterpret the scientific research. We are intuitively attracted to what is called psychological essentialism, and therefore interpret (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Causal graphs and biological mechanisms.Alexander Gebharter & Marie I. Kaiser - 2014 - In Marie I. Kaiser, Oliver R. Scholz, Daniel Plenge & Andreas Hüttemann (eds.), Explanation in the special science: The case of biology and history. Dordrecht: Springer. pp. 55-86.
    Modeling mechanisms is central to the biological sciences – for purposes of explanation, prediction, extrapolation, and manipulation. A closer look at the philosophical literature reveals that mechanisms are predominantly modeled in a purely qualitative way. That is, mechanistic models are conceived of as representing how certain entities and activities are spatially and temporally organized so that they bring about the behavior of the mechanism in question. Although this adequately characterizes how mechanisms are represented in biology textbooks, contemporary biological (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  14. Broadening the problem agenda of biological individuality: individual differences, uniqueness and temporality.Rose Trappes & Marie I. Kaiser - 2021 - Biology and Philosophy 36 (2):1-28.
    Biological individuality is a notoriously thorny topic for biologists and philosophers of biology. In this paper we argue that biological individuality presents multiple, interconnected questions for biologists and philosophers that together form a problem agenda. Using a case study of an interdisciplinary research group in ecology, behavioral and evolutionary biology, we claim that a debate on biological individuality that seeks to account for diverse practices in the biological sciences should be broadened to include and give (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  15. Measurement in biology is methodized by theory.Maël Montévil - 2019 - Biology and Philosophy 34 (3):35.
    We characterize access to empirical objects in biology from a theoretical perspective. Unlike objects in current physical theories, biological objects are the result of a history and their variations continue to generate a history. This property is the starting point of our concept of measurement. We argue that biological measurement is relative to a natural history which is shared by the different objects subjected to the measurement and is more or less constrained by biologists. We call symmetrization the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  16. Research Problems.Steve Elliott - 2021 - British Journal for the Philosophy of Science 72 (4):1013-1037.
    To identify and conceptualize research problems in science, philosophers and often scientists rely on classical accounts of problems that focus on intellectual problems defined in relation to theories. Recently, philosophers have begun to study the structures and functions of research problems not defined in relation to theories. Furthermore, scientists have long pursued research problems often labeled as practical or applied. As yet, no account of problems specifies the description of both so-called intellectual problems and so-called applied problems. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Biology's last paradigm shift. The transition from natural theology to Darwinism.Massimo Pigliucci - 2012 - Paradigmi 2012 (3):45-58.
    The theory of evolution, which provides the conceptual framework for all modern research in organismal biology and informs research in molecular bi- ology, has gone through several stages of expansion and refinement. Darwin and Wallace (1858) of course proposed the original idea, centering on the twin concepts of natural selection and common descent. Shortly thereafter, Wallace and August Weismann worked toward the complete elimination of any Lamarckian vestiges from the theory, leaning in particular on Weismann’s (1893) concept of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  18. Scientific Research on Homosexuality and its Philosophical Implications; Plus the Roles of Parenting and “Okonkwo Complex” in Sexual Identity Development.Diana-Abasi Ibanga - 2017 - IOSR Journal of HumanitieS and Social Science 22 (6):61-69.
    In this study, I aimed to subject to philosophical analysis the scientific data from biological science researches that are conducted into the phenomenon of homosexuality in order to give philosophical interpretation to it thereby establishing the normative values of the scientific findings. From the study, I observed that much of the scientific data on homosexuality established the phenomenon as ingrained in the human biological construct. I argued that although homoeroticism is biological construct of the homosexual, parenting plays (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Biological Control Variously Materialized: Modeling, Experimentation and Exploration in Multiple Media.Tarja Knuuttila & Andrea Loettgers - 2021 - Perspectives on Science 29 (4):468-492.
    This paper examines two parallel discussions of scientific modeling which have invoked experimentation in addressing the role of models in scientific inquiry. One side discusses the experimental character of models, whereas the other focuses on their exploratory uses. Although both relate modeling to experimentation, they do so differently. The former has considered the similarities and differences between models and experiments, addressing, in particular, the epistemic value of materiality. By contrast, the focus on exploratory modeling has highlighted the various kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Neither Logical Empiricism nor Vitalism, but Organicism: What the Philosophy of Biology Was.Daniel J. Nicholson & Richard Gawne - 2015 - History and Philosophy of the Life Sciences 37 (4):345-381.
    Philosophy of biology is often said to have emerged in the last third of the twentieth century. Prior to this time, it has been alleged that the only authors who engaged philosophically with the life sciences were either logical empiricists who sought to impose the explanatory ideals of the physical sciences onto biology, or vitalists who invoked mystical agencies in an attempt to ward off the threat of physicochemical reduction. These schools paid little attention to actual biological science, and (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  21.  79
    Philosophy of Behavioral Biology (Boston Studies in the Philosophy of Science).Kathryn S. Plaisance & Thomas A. C. Reydon (eds.) - 2012 - Springer.
    This volume provides a broad overview of issues in the philosophy of behavioral biology, covering four main themes: genetic, developmental, evolutionary, and neurobiological explanations of behavior. It is both interdisciplinary and empirically informed in its approach, addressing philosophical issues that arise from recent scientific findings in biological research on human and non-human animal behavior. Accordingly, it includes papers by professional philosophers and philosophers of science, as well as practicing scientists. Much of the work in this volume builds on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Are ecology and evolutionary biology “soft” sciences?Massimo Pigliucci - 2002 - Annales Zoologici Finnici 39:87-98.
    Research in ecology and evolutionary biology (evo-eco) often tries to emulate the “hard” sciences such as physics and chemistry, but to many of its practitioners feels more like the “soft” sciences of psychology and sociology. I argue that this schizophrenic attitude is the result of lack of appreciation of the full consequences of the peculiarity of the evo-eco sciences as lying in between a-historical disciplines such as physics and completely historical ones as like paleontology. Furthermore, evo-eco researchers have gotten (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23. The Ontology of Biological and Clinical Statistics (OBCS) for standardized and reproducible statistical analysis.Jie Zheng, Marcelline R. Harris, Anna Maria Masci, Lin Yu, Alfred Hero, Barry Smith & Yongqun He - 2016 - Journal of Biomedical Semantics 7 (53).
    Statistics play a critical role in biological and clinical research. However, most reports of scientific results in the published literature make it difficult for the reader to reproduce the statistical analyses performed in achieving those results because they provide inadequate documentation of the statistical tests and algorithms applied. The Ontology of Biological and Clinical Statistics (OBCS) is put forward here as a step towards solving this problem. Terms in OBCS, including ‘data collection’, ‘data transformation in statistics’, ‘data (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. The Biosemiotic Approach in Biology : Theoretical Bases and Applied Models.Joao Queiroz, Claus Emmeche, Kalevi Kull & Charbel El-Hani - 2011 - In George Terzis & Robert Arp (eds.), Information and Living Systems: Philosophical and Scientific Perspectives. Bradford. pp. 91-130.
    Biosemiotics is a growing fi eld that investigates semiotic processes in the living realm in an attempt to combine the fi ndings of the biological sciences and semiotics. Semiotic processes are more or less what biologists have typically referred to as “ signals, ” “ codes, ”and “ information processing ”in biosystems, but these processes are here understood under the more general notion of semiosis, that is, the production, action, and interpretation of signs. Thus, biosemiotics can be seen as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  25. Biological roots of musical epistemology: Functional cycles, Umwelt, and enactive listening.Mark Reybrouck - 2001 - Semiotica 2001 (134):599-633.
    This article argues for an epistemology of music, stating that dealing with music can be considered as a process of knowledge acquisition. What really matters is not the representation of an ontological musical reality, but the generation of music knowledge as a tool for adaptation to the sonic world. Three major positions are brought together: the epistemological claims of Jean Piaget, the biological methodology of Jakob von Uexküll, and the constructivistic conceptions of Ernst von Glasersfeld, each ingstress the role (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  26. From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 2).Jun Tani & Jeff White - 2016 - APA Newsletter on Philosophy and Computers 2 (16):29-41.
    We have been left with a big challenge, to articulate consciousness and also to prove it in an artificial agent against a biological standard. After introducing Boltuc’s h-consciousness in the last paper, we briefly reviewed some salient neurology in order to sketch less of a standard than a series of targets for artificial consciousness, “most-consciousness” and “myth-consciousness.” With these targets on the horizon, we began reviewing the research program pursued by Jun Tani and colleagues in the isolation of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. The evolution of the biological sciences.Nathalie Gontier - 2024 - In Nathalie Gontier, Andy Lock & Chris Sinha (eds.), The Oxford Handbook of Human Symbolic Evolution. OUP. pp. 3-25.
    This chapter introduces the main research schools and paradigms along which the field of evolutionary biology has been developing. Evolutionary thinking was originally founded upon the Neo-Darwinian paradigm that combines the teachings of traditional Darwinism with those of the Modern Synthesis. The Neo-Darwinian paradigm has since further diversified into the Micro-, Meso-, and Macroevolutionary schools, and it has also started to integrate the school of Ecology. Together, these schools establish the paradigm called Ecological Evolutionary Developmental Biology (Eco-Evo-Devo). A final (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Biological and linguistic diversity. Transdisciplinary explorations for a socioecology of languages.Albert Bastardas-Boada - 2002 - Diverscité Langues 7.
    As a sort of intellectual provocation and as a lateral thinking strategy for creativity, this chapter seeks to determine what the study of the dynamics of biodiversity can offer linguists. In recent years, the analogical equation "language = biological species" has become more widespread as a metaphorical source for conceptual renovation, and, at the same time, as a justification for the defense of language diversity. Language diversity would be protected in a way similar to the mobilization that has taken (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Why Biology is Beyond Physical Sciences?Bhakti Niskama Shanta & Bhakti Vijnana Muni - 2016 - Advances in Life Sciences 6 (1):13-30.
    In the framework of materialism, the major attention is to find general organizational laws stimulated by physical sciences, ignoring the uniqueness of Life. The main goal of materialism is to reduce consciousness to natural processes, which in turn can be translated into the language of math, physics and chemistry. Following this approach, scientists have made several attempts to deny the living organism of its veracity as an immortal soul, in favor of genes, molecules, atoms and so on. However, advancement in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. When Should Genome Researchers Disclose Misattributed Pahentage?Amulya Mandava, Joseph Millum & Benjamin E. Berkman - 2015 - Hastings Center Report 45 (4):28-36.
    Research studies increasingly use genomic sequencing to draw inferences based on comparisons between the genetic data of a set of purportedly related individuals. As use of this method progresses, it will become much more common to discover that the assumed biological relationships between the individuals are mistaken. Consequently, researchers will have to grapple with decisions about whether to return incidental findings of misattributed parentage on a much larger scale than ever before. In this paper we provide an extended (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31.  87
    On the Epistemic Roles of the Individualized Niche Concept in Ecology, Behavioral and Evolutionary Biology.Marie I. Kaiser & Katie H. Morrow - forthcoming - Philosophy of Science.
    We characterize four fruitful and underappreciated epistemic roles played by the concept of an individualized niche in contemporary biology, utilizing results of a qualitative empirical study conducted within an interdisciplinary biological research center. We argue that the individualized niche concept (1) shapes the research agenda of the center, (2) facilitates explaining core phenomena related to inter-individual differences, (3) helps with managing individual-level causal complexity, and (4) promotes integrating local knowledge from ecology, evolutionary biology, behavioral biology and other (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32.  68
    The Logic of Biological Classification and the Foundations of Biomedical Ontology.Barry Smith - 2009 - In C. Glymour, D. Westerstahl & W. Wang (eds.), Logic, Methodology and Philosophy of Science. Proceedings of the 13th International Congress. King’s College. pp. 505-520.
    Biomedical research is increasingly a matter of the navigation through large computerized information resources deriving from functional genomics or from the biochemistry of disease pathways. To make such navigation possible, controlled vocabularies are needed in terms of which data from different sources can be unified. One of the most influential developments in this regard is the so-called Gene Ontology, which consists of controlled vocabularies of terms used by biologists to describe cellular constituents, biological processes and molecular functions, organized (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  33. From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3).Jeffrey White & Jun Tani - 2017 - APA Newsletter on Philosophy and Computers 17 (1):11-22.
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness, Part 1.Jeffrey White & Jun Tani - 2016 - APA Newsletter on Philosophy and Computers 1 (16):13-23.
    Direct neurological and especially imaging-driven investigations into the structures essential to naturally occurring cognitive systems in their development and operation have motivated broadening interest in the potential for artificial consciousness modeled on these systems. This first paper in a series of three begins with a brief review of Boltuc’s (2009) “brain-based” thesis on the prospect of artificial consciousness, focusing on his formulation of h-consciousness. We then explore some of the implications of brain research on the structure of consciousness, finding (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Complex Systems Biology.Roberto Serra - 2012 - In Vincenzo Fano, Enrico Giannetto, Giulia Giannini & Pierluigi Graziani (eds.), Complessità e Riduzionismo. ISONOMIA - Epistemologica Series Editor. pp. 100-107.
    The term “Complex Systems Biology” was introduced a few years ago [Kaneko, 2006] and, although not yet of widespread use, it seems particularly well suited to indicate an approach to biology which is well rooted in complex systems science. Although broad generalizations are always dangerous, it is safe to state that mainstream biology has been largely dominated by a gene-centric view in the last decades, due to the success of molecular biology. So the one gene - one trait approch, which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Time: The Biggest Pattern in Natural History Research. Evolutionary Biology.Nathalie Gontier - 2016 - Evolutionary Biology 4 (43):604-637.
    Download  
     
    Export citation  
     
    Bookmark  
  37. Comparing biological motion in two distinct human societies.Pierre Pica, Stuart Jackson, Randolph Blake & Nikolaus Troje - 2011 - PLoS ONE 6 (12):e28391.
    Cross cultural studies have played a pivotal role in elucidating the extent to which behavioral and mental characteristics depend on specific environmental influences. Surprisingly, little field research has been carried out on a fundamentally important perceptual ability, namely the perception of biological motion. In this report, we present details of studies carried out with the help of volunteers from the Mundurucu indigene, a group of people native to Amazonian territories in Brazil. We employed standard biological motion perception (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. The Environment Ontology: Contextualising biological and biomedical entities.Pier Luigi Buttigieg, Norman Morrison, Barry Smith, Christopher J. Mungall & Suzanna E. Lewis - 2013 - Journal of Biomedical Semantics 4 (43):1-9.
    As biological and biomedical research increasingly reference the environmental context of the biological entities under study, the need for formalisation and standardisation of environment descriptors is growing. The Environment Ontology (ENVO) is a community-led, open project which seeks to provide an ontology for specifying a wide range of environments relevant to multiple life science disciplines and, through an open participation model, to accommodate the terminological requirements of all those needing to annotate data using ontology classes. This paper (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  39. Race Research and the Ethics of Belief.Jonny Anomaly - 2017 - Journal of Bioethical Inquiry 14 (2):287-297.
    On most accounts, beliefs are supposed to fit the world rather than change it. But believing can have social consequences, since the beliefs we form underwrite our actions and impact our character. Because our beliefs affect how we live our lives and how we treat other people, it is surprising how little attention is usually given to the moral status of believing apart from its epistemic justification. In what follows, I develop a version of the harm principle that applies to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  40. What Constitutes an Explanation in Biology?Angela Potochnik - 2019 - In Kostas Kampourakis & Tobias Uller (eds.), Philosophy of Science for Biologists. New York, NY: Cambridge University Press.
    One of biology's fundamental aims is to generate understanding of the living world around—and within—us. In this chapter, I aim to provide a relatively nonpartisan discussion of the nature of explanation in biology, grounded in widely shared philosophical views about scientific explanation. But this discussion also reflects what I think is important for philosophers and biologists alike to appreciate about successful scientific explanations, so some points will be controversial, at least among philosophers. I make three main points: (1) causal relationships (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  41. Biocomplexity: A pluralist research strategy is necessary for a mechanistic explanation of the "live" state.F. J. Bruggeman, H. V. Westerhoff & F. C. Boogerd - 2002 - Philosophical Psychology 15 (4):411 – 440.
    The biological sciences study (bio)complex living systems. Research directed at the mechanistic explanation of the "live" state truly requires a pluralist research program, i.e. BioComplexity research. The program should apply multiple intra-level and inter-level theories and methodologies. We substantiate this thesis with analysis of BioComplexity: metabolic and modular control analysis of metabolic pathways, emergence of oscillations, and the analysis of the functioning of glycolysis.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  42. (1 other version)Is defining life pointless? Operational definitions at the frontiers of Biology.Leonardo Bich & Sara Green - 2017 - Synthese:1-28.
    Despite numerous and increasing attempts to define what life is, there is no consensus on necessary and sufficient conditions for life. Accordingly, some scholars have questioned the value of definitions of life and encouraged scientists and philosophers alike to discard the project. As an alternative to this pessimistic conclusion, we argue that critically rethinking the nature and uses of definitions can provide new insights into the epistemic roles of definitions of life for different research practices. This paper examines the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  43. The Biological Framework for a Mathematical Universe.Ronald Williams - unknown - Dissertation, Temple University
    The mathematical universe hypothesis is a theory that the physical universe is not merely described by mathematics, but is mathematics, specifically a mathematical structure. Our research provides evidence that the mathematical structure of the universe is biological in nature and all systems, processes, and objects within the universe function in harmony with biological patterns. Living organisms are the result of the universe’s biological pattern and are embedded within their physiology the patterns of this biological universe. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors.Maarten Boudry & Massimo Pigliucci - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):660-668.
    The scientific study of living organisms is permeated by machine and design metaphors. Genes are thought of as the ‘‘blueprint’’ of an organism, organisms are ‘‘reverse engineered’’ to discover their functionality, and living cells are compared to biochemical factories, complete with assembly lines, transport systems, messenger circuits, etc. Although the notion of design is indispensable to think about adaptations, and engineering analogies have considerable heuristic value (e.g., optimality assumptions), we argue they are limited in several important respects. In particular, the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  45. Principled Mechanistic Explanations in Biology: A Case Study of Alzheimer's Disease.Sepehr Ehsani - manuscript
    Following an analysis of the state of investigations and clinical outcomes in the Alzheimer's research field, I argue that the widely-accepted 'amyloid cascade' mechanistic explanation of Alzheimer's disease appears to be fundamentally incomplete. In this context, I propose that a framework termed 'principled mechanism' (PM) can help with remedying this problem. First, using a series of five 'tests', PM systematically compares different components of a given mechanistic explanation against a paradigmatic set of criteria, and hints at various ways of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Is external memory memory? Biological memory and extended mind.Kourken Michaelian - 2012 - Consciousness and Cognition 21 (3):1154-1165.
    Clark and Chalmers claim that an external resource satisfying the following criteria counts as a memory: the agent has constant access to the resource; the information in the resource is directly available; retrieved information is automatically endorsed; information is stored as a consequence of past endorsement. Research on forgetting and metamemory shows that most of these criteria are not satisfied by biological memory, so they are inadequate. More psychologically realistic criteria generate a similar classification of standard putative external (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  47.  98
    Return of the organism? The concept in plant biology, now and then.Özlem Yilmaz - 2024 - Theoretical and Experimental Plant Physiology 36 (Special Issue: Advances in Philo):355-368.
    This essay argues for the importance of an organismic perspective in plant biology and considers some of its implications. These include an increased attention to plant-environment interaction and an emphasis on integrated approaches. Furthermore, this essay contextualizes the increased emphasis on the concept of organism in recent years and places the concept in a longer history. Recent developments in biology and worsening environmental crises have led researchers to study plant responses to changing environments with whole plant approaches that situate plants (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Overcoming the Newtonian Paradigm: The Unfinished Project of Theoretical Biology from a Schellingian Perspective.Arran Gare - 2013 - Progress in Biophysics and Molecular Biology 113:5-24.
    Defending Robert Rosen’s claim that in every confrontation between physics and biology it is physics that has always had to give ground, it is shown that many of the most important advances in mathematics and physics over the last two centuries have followed from Schelling’s demand for a new physics that could make the emergence of life intelligible. Consequently, while reductionism prevails in biology, many biophysicists are resolutely anti-reductionist. This history is used to identify and defend a fragmented but progressive (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  49. Concern Across Scales: a biologically inspired embodied artificial intelligence.Matthew Sims - 2022 - Frontiers in Neurorobotics 1 (Bio A.I. - From Embodied Cogniti).
    Intelligence in current AI research is measured according to designer-assigned tasks that lack any relevance for an agent itself. As such, tasks and their evaluation reveal a lot more about our intelligence than the possible intelligence of agents that we design and evaluate. As a possible first step in remedying this, this article introduces the notion of “self-concern,” a property of a complex system that describes its tendency to bring about states that are compatible with its continued self-maintenance. Self-concern, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  34
    The Debate over Proximate and Ultimate Causation in Biology.Yafeng Shan - forthcoming - Synthese.
    It has been over 60 years since Ernst Mayr famously argued for the distinction between proximate and ultimate causes in biology. In the following decades, Mayr’s proximate-ultimate distinction was well received within evolutionary biology and widely regarded as a major contribution to the philosophy of biology. Despite its enormous influence, there has been a persistent controversy on the distinction. It has been argued that the distinction is untenable. In addition, there have been complaints about the pragmatic value of the distinction (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 966