Results for 'Generative AI in Healthcare'

977 found
Order:
  1.  98
    Transforming Industries: The Role of Generative AI in Revolutionizing Banking and Healthcare.M. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):580-600.
    The research evaluates generative AI’s capabilities through a multi-phase framework, addressing how data synthesis, language models, and predictive algorithms contribute to sector-specific applications. In banking, the model assesses the impact of AI-driven chatbot interactions, credit risk assessment, and personalized financial services on customer experience and bank performance. Healthcare applications are explored through image synthesis for diagnostics, predictive modeling in patient care, and drug discovery simulations. The experimental setup is rigorously tested across metrics such as response accuracy, cost-effectiveness, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  71
    An Experimental Analysis of Revolutionizing Banking and Healthcare with Generative AI.Sankara Reddy Thamma - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):580-590.
    Generative AI is reshaping sectors like banking and healthcare by enabling innovative applications such as personalized service offerings, predictive analytics, and automated content generation. In banking, generative AI drives customer engagement through tailored financial advice, fraud detection, and streamlined customer service. Meanwhile, in healthcare, it enhances medical imaging analysis, drug discovery, and patient diagnostics, significantly impacting patient care and operational efficiency. This paper presents an experimental study examining the implementation and effectiveness of generative AI in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  76
    Innovating Financial and Medical Services: Generative AI’s Impact on Banking and Healthcare.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):610-618.
    Results indicate substantial improvements in efficiency, accuracy, and personalized care, but also highlight the challenges of data privacy, ethical considerations, and system scalability. By providing a structured analysis, this research contributes insights into optimizing generative AI deployments for both banking and healthcare, ensuring a balance between innovation and risk management. The study concludes with recommendations for future research directions, including advanced model training, ethical guidelines, and enhanced privacy measures. These insights aim to inform practitioners on the benefits of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Generative AI in EU Law: Liability, Privacy, Intellectual Property, and Cybersecurity.Claudio Novelli, Federico Casolari, Philipp Hacker, Giorgio Spedicato & Luciano Floridi - 2024 - Computer Law and Security Review 55.
    The complexity and emergent autonomy of Generative AI systems introduce challenges in predictability and legal compliance. This paper analyses some of the legal and regulatory implications of such challenges in the European Union context, focusing on four areas: liability, privacy, intellectual property, and cybersecurity. It examines the adequacy of the existing and proposed EU legislation, including the Artificial Intelligence Act (AIA), in addressing the challenges posed by Generative AI in general and LLMs in particular. The paper identifies potential (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  57
    Generative AI in the Creative Industries: Revolutionizing Art, Music, and Media.Mohammed F. El-Habibi, Mohammed A. Hamed, Raed Z. Sababa, Mones M. Al-Hanjori, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research(Ijaer) 8 (10):71-74.
    Abstract: Generative AI is transforming the creative industries by redefining how art, music, and media are produced and experienced. This paper explores the profound impact of generative AI technologies, such as deep learning models and neural networks, on creative processes. By enabling artists, musicians, and content creators to collaborate with AI, these systems enhance creativity, speed up production, and generate novel forms of expression. The paper also addresses ethical considerations, including intellectual property rights, the role of human creativity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  76
    Generative AI and the Future of Democratic Citizenship.Paul Formosa, Bhanuraj Kashyap & Siavosh Sahebi - 2024 - Digital Government: Research and Practice 2691 (2024/05-ART).
    Generative AI technologies have the potential to be socially and politically transformative. In this paper, we focus on exploring the potential impacts that Generative AI could have on the functioning of our democracies and the nature of citizenship. We do so by drawing on accounts of deliberative democracy and the deliberative virtues associated with it, as well as the reciprocal impacts that social media and Generative AI will have on each other and the broader information landscape. Drawing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Generative AI and the value changes and conflicts in its integration in Japanese educational system.Ngoc-Thang B. Le, Phuong-Thao Luu & Manh-Tung Ho - manuscript
    This paper critically examines Japan's approach toward the adoption of Generative AI such as ChatGPT in education via studying media discourse and guidelines at both the national as well as local levels. It highlights the lack of consideration for socio-cultural characteristics inherent in the Japanese educational systems, such as the notion of self, teachers’ work ethics, community-centric activities for the successful adoption of the technology. We reveal ChatGPT’s infusion is likely to further accelerate the shift away from traditional notion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Embracing ChatGPT and other generative AI tools in higher education: The importance of fostering trust and responsible use in teaching and learning.Jonathan Y. H. Sim - 2023 - Higher Education in Southeast Asia and Beyond.
    Trust is the foundation for learning, and we must not allow ignorance of this new technologies, like Generative AI, to disrupt the relationship between students and educators. As a first step, we need to actively engage with AI tools to better understand how they can help us in our work.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Generative AI and photographic transparency.P. D. Magnus - forthcoming - AI and Society:1-6.
    There is a history of thinking that photographs provide a special kind of access to the objects depicted in them, beyond the access that would be provided by a painting or drawing. What is included in the photograph does not depend on the photographer’s beliefs about what is in front of the camera. This feature leads Kendall Walton to argue that photographs literally allow us to see the objects which appear in them. Current generative algorithms produce images in response (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Diffusing the Creator: Attributing Credit for Generative AI Outputs.Donal Khosrowi, Finola Finn & Elinor Clark - 2023 - Aies '23: Proceedings of the 2023 Aaai/Acm Conference on Ai, Ethics, and Society.
    The recent wave of generative AI (GAI) systems like Stable Diffusion that can produce images from human prompts raises controversial issues about creatorship, originality, creativity and copyright. This paper focuses on creatorship: who creates and should be credited with the outputs made with the help of GAI? Existing views on creatorship are mixed: some insist that GAI systems are mere tools, and human prompters are creators proper; others are more open to acknowledging more significant roles for GAI, but most (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11.  42
    Trust and generative AI: embodiment considered.Kefu Zhu - 2024 - AI and Ethics.
    Questions surrounding engagement with generative AI are often framed in terms of trust, yet mere theorizing about trust may not yield actionable insights, given the multifaceted nature of trust. Literature on trust typically overlooks how individuals make meaning in their interactions with other entities, including AI. This paper reexamines trust with insights from Merleau-Ponty’s views on embodiment, positing trust as a style of world engagement characterized by openness—an attitude wherein individuals enact and give themselves to their lived world, prepared (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Growing the image: Generative AI and the medium of gardening.Nick Young & Enrico Terrone - forthcoming - Philosophical Quarterly.
    In this paper, we argue that Midjourney—a generative AI program that transforms text prompts into images—should be understood not as an agent or a tool, but as a new type of artistic medium. We first examine the view of Midjourney as an agent, considering whether it could be seen as an artist or co-author. This perspective proves unsatisfactory, as Midjourney lacks intentionality and mental states. We then explore the notion of Midjourney as a tool, highlighting its unpredictability and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Legal Definitions of Intimate Images in the Age of Sexual Deepfakes and Generative AI.Suzie Dunn - 2024 - McGill Law Journal 69:1-15.
    In January 2024, non-consensual deepfakes came to public attention with the spread of AI generated sexually abusive images of Taylor Swift. Although this brought new found energy to the debate on what some call non-consensual synthetic intimate images (i.e. images that use technology such as AI or photoshop to make sexual images of a person without their consent), female celebrities like Swift have had deepfakes like these made of them for years. In 2017, a Reddit user named “deepfakes” posted several (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Every dog has its day: An in-depth analysis of the creative ability of visual generative AI.Maria Hedblom - 2024 - Cosmos+Taxis 12 (5-6):88-103.
    The recent remarkable success of generative AI models to create text and images has already started altering our perspective of intelligence and the “uniqueness” of humanity in this world. Simultaneously, arguments on why AI will never exceed human intelligence are ever-present as seen in Landgrebe and Smith (2022). To address whether machines may rule the world after all, this paper zooms in on one of the aspects of intelligence Landgrebe and Smith (2022) neglected to consider: creativity. Using Rhodes four (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Can ChatGPT be an author? Generative AI creative writing assistance and perceptions of authorship, creatorship, responsibility, and disclosure.Paul Formosa, Sarah Bankins, Rita Matulionyte & Omid Ghasemi - forthcoming - AI and Society.
    The increasing use of Generative AI raises many ethical, philosophical, and legal issues. A key issue here is uncertainties about how different degrees of Generative AI assistance in the production of text impacts assessments of the human authorship of that text. To explore this issue, we developed an experimental mixed methods survey study (N = 602) asking participants to reflect on a scenario of a human author receiving assistance to write a short novel as part of a 3 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Escape climate apathy by harnessing the power of generative AI.Quan-Hoang Vuong & Manh-Tung Ho - 2024 - AI and Society 39 (6):1-2.
    “Throw away anything that sounds too complicated. Only keep what is simple to grasp...If the information appears fuzzy and causes the brain to implode after two sentences, toss it away and stop listening. Doing so will make the news as orderly and simple to understand as the truth.” - In “GHG emissions,” The Kingfisher Story Collection, (Vuong 2022a).
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  17. Artificial Intelligence in Healthcare: Transforming Patient Care and Medical Practices.Jawad Y. I. Alzamily, Hani Bakeer, Husam Almadhoun, Basem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (8):1-9.
    Abstract: Artificial Intelligence (AI) is rapidly becoming a cornerstone of modern healthcare, offering unprecedented capabilities in diagnostics, treatment planning, patient care, and healthcare management. This paper explores the transformative impact of AI on the healthcare sector, examining how it enhances patient outcomes, improves the efficiency of medical practices, and introduces new ethical and operational challenges. By analyzing current applications such as AI-driven diagnostic tools, personalized medicine, and hospital management systems, this paper highlights the significant advancements AI has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. NHS AI Lab: why we need to be ethically mindful about AI for healthcare.Jessica Morley & Luciano Floridi - unknown
    On 8th August 2019, Secretary of State for Health and Social Care, Matt Hancock, announced the creation of a £250 million NHS AI Lab. This significant investment is justified on the belief that transforming the UK’s National Health Service (NHS) into a more informationally mature and heterogeneous organisation, reliant on data-based and algorithmically-driven interactions, will offer significant benefit to patients, clinicians, and the overall system. These opportunities are realistic and should not be wasted. However, they may be missed (one may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Big Data Analytics in Healthcare: Exploring the Role of Machine Learning in Predicting Patient Outcomes and Improving Healthcare Delivery.Federico Del Giorgio Solfa & Fernando Rogelio Simonato - 2023 - International Journal of Computations Information and Manufacturing (Ijcim) 3 (1):1-9.
    Healthcare professionals decide wisely about personalized medicine, treatment plans, and resource allocation by utilizing big data analytics and machine learning. To guarantee that algorithmic recommendations are impartial and fair, however, ethical issues relating to prejudice and data privacy must be taken into account. Big data analytics and machine learning have a great potential to disrupt healthcare, and as these technologies continue to evolve, new opportunities to reform healthcare and enhance patient outcomes may arise. In order to investigate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. The debate on the ethics of AI in health care: a reconstruction and critical review.Jessica Morley, Caio C. V. Machado, Christopher Burr, Josh Cowls, Indra Joshi, Mariarosaria Taddeo & Luciano Floridi - manuscript
    Healthcare systems across the globe are struggling with increasing costs and worsening outcomes. This presents those responsible for overseeing healthcare with a challenge. Increasingly, policymakers, politicians, clinical entrepreneurs and computer and data scientists argue that a key part of the solution will be ‘Artificial Intelligence’ (AI) – particularly Machine Learning (ML). This argument stems not from the belief that all healthcare needs will soon be taken care of by “robot doctors.” Instead, it is an argument that rests (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. The promise and perils of AI in medicine.Robert Sparrow & Joshua James Hatherley - 2019 - International Journal of Chinese and Comparative Philosophy of Medicine 17 (2):79-109.
    What does Artificial Intelligence (AI) have to contribute to health care? And what should we be looking out for if we are worried about its risks? In this paper we offer a survey, and initial evaluation, of hopes and fears about the applications of artificial intelligence in medicine. AI clearly has enormous potential as a research tool, in genomics and public health especially, as well as a diagnostic aid. It’s also highly likely to impact on the organisational and business practices (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  22. The Prospects of Using AI in Euthanasia and Physician-Assisted Suicide: A Legal Exploration.Hannah van Kolfschooten - 2024 - AI and Ethics 1.
    The Netherlands was the first country to legalize euthanasia and physician-assisted suicide. This paper offers a first legal perspective on the prospects of using AI in the Dutch practice of euthanasia and physician-assisted suicide. It responds to the Regional Euthanasia Review Committees’ interest in exploring technological solutions to improve current procedures. The specific characteristics of AI – the capability to process enormous amounts of data in a short amount of time and generate new insights in individual cases – may for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. AI Art is Theft: Labour, Extraction, and Exploitation, Or, On the Dangers of Stochastic Pollocks.Trystan S. Goetze - 2024 - Proceedings of the 2024 Acm Conference on Fairness, Accountability, and Transparency:186-196.
    Since the launch of applications such as DALL-E, Midjourney, and Stable Diffusion, generative artificial intelligence has been controversial as a tool for creating artwork. While some have presented longtermist worries about these technologies as harbingers of fully automated futures to come, more pressing is the impact of generative AI on creative labour in the present. Already, business leaders have begun replacing human artistic labour with AI-generated images. In response, the artistic community has launched a protest movement, which argues (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. AI training data, model success likelihood, and informational entropy-based value.Quan-Hoang Vuong, Viet-Phuong La & Minh-Hoang Nguyen - manuscript
    Since the release of OpenAI's ChatGPT, the world has entered a race to develop more capable and powerful AI, including artificial general intelligence (AGI). The development is constrained by the dependency of AI on the model, quality, and quantity of training data, making the AI training process highly costly in terms of resources and environmental consequences. Thus, improving the effectiveness and efficiency of the AI training process is essential, especially when the Earth is approaching the climate tipping points and planetary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Medical AI and human dignity: Contrasting perceptions of human and artificially intelligent (AI) decision making in diagnostic and medical resource allocation contexts.Paul Formosa, Wendy Rogers, Yannick Griep, Sarah Bankins & Deborah Richards - 2022 - Computers in Human Behaviour 133.
    Forms of Artificial Intelligence (AI) are already being deployed into clinical settings and research into its future healthcare uses is accelerating. Despite this trajectory, more research is needed regarding the impacts on patients of increasing AI decision making. In particular, the impersonal nature of AI means that its deployment in highly sensitive contexts-of-use, such as in healthcare, raises issues associated with patients’ perceptions of (un) dignified treatment. We explore this issue through an experimental vignette study comparing individuals’ perceptions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Strategies for Healthcare Disaster Management in the Context of Technology Innovation: the Case of Bulgaria.Radostin Vazov, R. Kanazireva, T. Grynko & Oleksandr P. Krupskyi - 2024 - Medicni Perspektivi 29 (2):215-228.
    In Bulgaria, integrating technology and innovation is crucial for advancing sustainable healthcare disaster management, enhancing disaster response and recovery, and minimizing long-term environmental and social impacts. The purpose of the study is to assess the impact of modern technological innovations on the effectiveness of disaster management in health care in Bulgaria with a focus on Health Information Systems (HIS), Telemedicine, Telehealth, e-Health, Electronic Health Records, Artificial Intelligence (AI), Public Communication Platforms, and Data Security and Privacy. These innovations, when integrated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. AI-Testimony, Conversational AIs and Our Anthropocentric Theory of Testimony.Ori Freiman - 2024 - Social Epistemology 38 (4):476-490.
    The ability to interact in a natural language profoundly changes devices’ interfaces and potential applications of speaking technologies. Concurrently, this phenomenon challenges our mainstream theories of knowledge, such as how to analyze linguistic outputs of devices under existing anthropocentric theoretical assumptions. In section 1, I present the topic of machines that speak, connecting between Descartes and Generative AI. In section 2, I argue that accepted testimonial theories of knowledge and justification commonly reject the possibility that a speaking technological artifact (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Advancements in AI for Medical Imaging: Transforming Diagnosis and Treatment.Zakaria K. D. Alkayyali, Ashraf M. H. Taha, Qasem M. M. Zarandah, Bassem S. Abunasser, Alaa M. Barhoom & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research(Ijaer) 8 (8):8-15.
    Abstract: The integration of Artificial Intelligence (AI) into medical imaging represents a transformative shift in healthcare, offering significant improvements in diagnostic accuracy, efficiency, and patient outcomes. This paper explores the application of AI technologies in the analysis of medical images, focusing on techniques such as convolutional neural networks (CNNs) and deep learning models. We discuss how these technologies are applied to various imaging modalities, including X-rays, MRIs, and CT scans, to enhance disease detection, image segmentation, and diagnostic support. Additionally, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. AI as Legal Persons: Past, Patterns, and Prospects.Claudio Novelli, Luciano Floridi & Giovanni Sartor - manuscript
    This chapter examines the evolving debate on AI legal personhood, emphasizing the role of path dependencies in shaping current trajectories and prospects. Two primary path dependencies emerge: prevailing legal theories on personhood (singularist vs. clustered) and the impact of technological advancements. We argue that these factors dynamically interact, with technological optimism fostering broader rights-based debates and periods of skepticism narrowing discussions to limited rights. Additional influences include regulatory cross-linkages (e.g., data privacy, liability, cybersecurity) and historical legal precedents. Current regulatory frameworks, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  98
    Multimodal Artificial Intelligence in Medicine.Joshua August Skorburg - forthcoming - Kidney360.
    Traditional medical Artificial Intelligence models, approved for clinical use, restrict themselves to single-modal data e.g. images only, limiting their applicability in the complex, multimodal environment of medical diagnosis and treatment. Multimodal Transformer Models in healthcare can effectively process and interpret diverse data forms such as text, images, and structured data. They have demonstrated impressive performance on standard benchmarks like USLME question banks and continue to improve with scale. However, the adoption of these advanced AI models is not without challenges. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. AI Enters Public Discourse: a Habermasian Assessment of the Moral Status of Large Language Models.Paolo Monti - 2024 - Ethics and Politics 61 (1):61-80.
    Large Language Models (LLMs) are generative AI systems capable of producing original texts based on inputs about topic and style provided in the form of prompts or questions. The introduction of the outputs of these systems into human discursive practices poses unprecedented moral and political questions. The article articulates an analysis of the moral status of these systems and their interactions with human interlocutors based on the Habermasian theory of communicative action. The analysis explores, among other things, Habermas's inquiries (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Responsible nudging for social good: new healthcare skills for AI-driven digital personal assistants.Marianna Capasso & Steven Umbrello - 2022 - Medicine, Health Care and Philosophy 25 (1):11-22.
    Traditional medical practices and relationships are changing given the widespread adoption of AI-driven technologies across the various domains of health and healthcare. In many cases, these new technologies are not specific to the field of healthcare. Still, they are existent, ubiquitous, and commercially available systems upskilled to integrate these novel care practices. Given the widespread adoption, coupled with the dramatic changes in practices, new ethical and social issues emerge due to how these systems nudge users into making decisions (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  33.  62
    Towards a Taxonomy of AI Risks in the Health Domain.Delaram Golpayegani, Joshua Hovsha, Leon Rossmaier, Rana Saniei & Jana Misic - 2022 - 2022 Fourth International Conference on Transdisciplinary Ai (Transai).
    The adoption of AI in the health sector has its share of benefits and harms to various stakeholder groups and entities. There are critical risks involved in using AI systems in the health domain; risks that can have severe, irreversible, and life-changing impacts on people’s lives. With the development of innovative AI-based applications in the medical and healthcare sectors, new types of risks emerge. To benefit from novel AI applications in this domain, the risks need to be managed in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. What Are Lacking in Sora and V-JEPA’s World Models? -A Philosophical Analysis of Video AIs Through the Theory of Productive Imagination.Jianqiu Zhang - unknown
    Sora from Open AI has shown exceptional performance, yet it faces scrutiny over whether its technological prowess equates to an authentic comprehension of reality. Critics contend that it lacks a foundational grasp of the world, a deficiency V-JEPA from Meta aims to amend with its joint embedding approach. This debate is vital for steering the future direction of Artificial General Intelligence(AGI). We enrich this debate by developing a theory of productive imagination that generates a coherent world model based on Kantian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35.  15
    AI-Based Solutions for Environmental Monitoring in Urban Spaces.Hilda Andrea - manuscript
    The rapid advancement of urbanization has necessitated the creation of "smart cities," where information and communication technologies (ICT) are used to improve the quality of urban life. Central to the smart city paradigm is data integration—connecting disparate data sources from various urban systems, such as transportation, healthcare, utilities, and public safety. This paper explores the role of Artificial Intelligence (AI) in facilitating data integration within smart cities, focusing on how AI technologies can enable effective urban governance. By examining the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. “Just” accuracy? Procedural fairness demands explainability in AI‑based medical resource allocation.Jon Rueda, Janet Delgado Rodríguez, Iris Parra Jounou, Joaquín Hortal-Carmona, Txetxu Ausín & David Rodríguez-Arias - 2022 - AI and Society:1-12.
    The increasing application of artificial intelligence (AI) to healthcare raises both hope and ethical concerns. Some advanced machine learning methods provide accurate clinical predictions at the expense of a significant lack of explainability. Alex John London has defended that accuracy is a more important value than explainability in AI medicine. In this article, we locate the trade-off between accurate performance and explainable algorithms in the context of distributive justice. We acknowledge that accuracy is cardinal from outcome-oriented justice because it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  37. Why interdisciplinary research in AI is so important, according to Jurassic Park.Marie Oldfield - 2020 - The Tech Magazine 1 (1):1.
    Why interdisciplinary research in AI is so important, according to Jurassic Park. -/- “Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should.” -/- I think this quote resonates with us now more than ever, especially in the world of technological development. The writers of Jurassic Park were years ahead of their time with this powerful quote. -/- As we build new technology, and we push on to see what can actually (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. High hopes for “Deep Medicine”? AI, economics, and the future of care.Robert Sparrow & Joshua Hatherley - 2020 - Hastings Center Report 50 (1):14-17.
    In Deep Medicine, Eric Topol argues that the development of artificial intelligence (AI) for healthcare will lead to a dramatic shift in the culture and practice of medicine. Topol claims that, rather than replacing physicians, AI could function alongside of them in order to allow them to devote more of their time to face-to-face patient care. Unfortunately, these high hopes for AI-enhanced medicine fail to appreciate a number of factors that, we believe, suggest a radically different picture for the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  39. Defining Generative Artificial Intelligence: An Attempt to Resolve the Confusion about Diffusion.Raphael Ronge, Markus Maier & Benjamin Rathgeber - manuscript
    The concept of Generative Artificial Intelligence (GenAI) is ubiquitous in the public and semi-technical domain, yet rarely defined precisely. We clarify main concepts that are usually discussed in connection to GenAI and argue that one ought to distinguish between the technical and the public discourse. In order to show its complex development and associated conceptual ambiguities, we offer a historical-systematic reconstruction of GenAI and explicitly discuss two exemplary cases: the generative status of the Large Language Model BERT and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Mapping the potential AI-driven virtual hyper-personalised ikigai universe.Soenke Ziesche & Roman Yampolskiy - manuscript
    Ikigai is a Japanese concept, which, in brief, refers to the “reason or purpose to live”. I-risks have been identified as a category of risks complementing x- risks, i.e., existential risks, and s-risks, i.e., suffering risks, which describes undesirable future scenarios in which humans are deprived of the pursuit of their individual ikigai. While some developments in AI increase i-risks, there are also AI-driven virtual opportunities, which reduce i-risks by increasing the space of potential ikigais, largely due to developments in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41.  40
    Evaluating the Impact of Telemedicine on Doctors' Work-Life Harmony in Diverse Healthcare Settings.Prabaharan Manoj - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):520-530.
    Furthermore, the paper delves into the role of hospital management and policy in easing the digital transition and fostering a more harmonious work-life balance. By analyzing technological tools and frameworks in telemedicine, the research identifies areas where improvements can be made, offering recommendations for enhancing doctors' digital efficiency while promoting better work-life harmony. This study contributes to understanding how technology can be harnessed to benefit healthcare professionals, particularly in managing the dual demands of professional duties and personal well-being.
    Download  
     
    Export citation  
     
    Bookmark  
  42. Content Reliability in the Age of AI: A Comparative Study of Human vs. GPT-Generated Scholarly Articles.Rajesh Kumar Maurya & Swati R. Maurya - 2024 - Library Progress International 44 (3):1932-1943.
    The rapid advancement of Artificial Intelligence (AI) and the developments of Large Language Models (LLMs) like Generative Pretrained Transformers (GPTs) have significantly influenced content creation in scholarly communication and across various fields. This paper presents a comparative analysis of the content reliability between human-generated and GPT-generated scholarly articles. Recent developments in AI suggest that GPTs have become capable in generating content that can mimic human language to a greater extent. This highlights and raises questions about the quality, accuracy, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Queering healthcare with technology?—Potentials of queer-feminist perspectives on self-tracking-technologies for diversity-sensitive healthcare.Niklas Ellerich-Groppe, Tabea Ott, Anna Puzio, Stefanie Weigold & Regina Müller - 2024 - Zeitschrift Für Ethik Und Moralphilosophie.
    Self-tracking-technologies can serve as a prominent example of how digital technologies put to test established practices, institutions, and structures of medicine and healthcare. While proponents emphasize the potentials, e.g., for individualized healthcare and new research data, opponents stress the risk that these technologies will reinforce gender-related inequalities. -/- While this has been made clear from—often intersectional—feminist perspectives since the introduction of such technologies, we aim to provide a queer-feminist perspective on self-tracking applications in healthcare by analyzing three (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44.  24
    Virtual Anthropology: When and What Could We Learn From Multimodal Agentic Behavior in Generative Worlds?Fabian Kerj - manuscript
    This paper examines the convergence of large language models, multimodal AI, and generative spatial technologies to enable sophisticated simulated worlds for studying agentic behavior. Recent developments in generative architectures, particularly GenEx and topology-aware mesh generation, facilitate the creation of coherent, explorable environments with artificial agents capable of complex interactions. The proposed framework for "virtual anthropology" presents novel opportunities for studying emergent behaviors and cognitive processes in controlled, generative environments, with implications for both theoretical research and practical applications (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  49
    Privacy Implications of AI-Enabled Predictive Analytics in Clinical Diagnostics, and How to Mitigate Them.Dessislava Fessenko - forthcoming - Bioethica Forum.
    AI-enabled predictive analytics is widely deployed in clinical care settings for healthcare monitoring, diagnostics and risk management. The technology may offer valuable insights into individual and population health patterns, trends and outcomes. Predictive analytics may, however, also tangibly affect individual patient privacy and the right thereto. On the one hand, predictive analytics may undermine a patient’s state of privacy by constructing or modifying their health identity independent of the patient themselves. On the other hand, the use of predictive analytics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Value Sensitive Design to Achieve the UN SDGs with AI: A Case of Elderly Care Robots.Steven Umbrello, Marianna Capasso, Maurizio Balistreri, Alberto Pirni & Federica Merenda - 2021 - Minds and Machines 31 (3):395-419.
    Healthcare is becoming increasingly automated with the development and deployment of care robots. There are many benefits to care robots but they also pose many challenging ethical issues. This paper takes care robots for the elderly as the subject of analysis, building on previous literature in the domain of the ethics and design of care robots. Using the value sensitive design approach to technology design, this paper extends its application to care robots by integrating the values of care, values (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  47. The Artificial Sublime.Regina Rini - manuscript
    Generative AI systems like ChatGPT and Midjourney can produce prose or images. But can they produce art? I argue that this question, though natural and intriguing, is the wrong one to ask. A better question is this: can generative AI yield distinct or novel forms of aesthetic value? And I argue that the answer is yes. Generative AI can be used to put us in contact with the artificial sublime – a type of aesthetic value that Kant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Acceleration AI Ethics, the Debate between Innovation and Safety, and Stability AI’s Diffusion versus OpenAI’s Dall-E.James Brusseau - manuscript
    One objection to conventional AI ethics is that it slows innovation. This presentation responds by reconfiguring ethics as an innovation accelerator. The critical elements develop from a contrast between Stability AI’s Diffusion and OpenAI’s Dall-E. By analyzing the divergent values underlying their opposed strategies for development and deployment, five conceptions are identified as common to acceleration ethics. Uncertainty is understood as positive and encouraging, rather than discouraging. Innovation is conceived as intrinsically valuable, instead of worthwhile only as mediated by social (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. The Hazards of Putting Ethics on Autopilot.Julian Friedland, B. Balkin, David & Kristian Myrseth - 2024 - MIT Sloan Management Review 65 (4).
    The generative AI boom is unleashing its minions. Enterprise software vendors have rolled out legions of automated assistants that use large language model (LLM) technology, such as ChatGPT, to offer users helpful suggestions or to execute simple tasks. These so-called copilots and chatbots can increase productivity and automate tedious manual work. In this article, we explain how that leads to the risk that users' ethical competence may degrade over time — and what to do about it.
    Download  
     
    Export citation  
     
    Bookmark  
  50. How AI Systems Can Be Blameworthy.Hannah Altehenger, Leonhard Menges & Peter Schulte - 2024 - Philosophia (4):1-24.
    AI systems, like self-driving cars, healthcare robots, or Autonomous Weapon Systems, already play an increasingly important role in our lives and will do so to an even greater extent in the near future. This raises a fundamental philosophical question: who is morally responsible when such systems cause unjustified harm? In the paper, we argue for the admittedly surprising claim that some of these systems can themselves be morally responsible for their conduct in an important and everyday sense of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 977