In this article we have tried basically to lay out an outline of possible overlap between the metaphysical standpoints of the Madhyamik Buddhism with the so called Copenhagen interpretation of quantummechanics. We argued here that , both Madhyamik Buddhism as well as Copenhagen develop some common grounds of skepticism or cautionary notes against the classical intuitive Realist ideology committed to ontological priority of individual . So , though the presiding contexts of Madhyamik Buddhism and (...)quantummechanics are admittedly very different , we can still judge the ontological merit/ implications of ‘the cautions’ on comparative grounds .. And we have argued on this basis here about the possibility to sculpt out some norms of justification for starting a meaningful Dialog between Buddhism and modern Physical science. (shrink)
In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...) to Wave Function Realism, the thesis that the quantum universe is described by a wave function that represents something objective. Second, I suggest that the Past Hypothesis is sufficient to determine a unique and simple density matrix. This is achieved by what I call the Initial Projection Hypothesis: the initial density matrix of the universe is the normalized projection onto the special low-dimensional Hilbert space. Third, because the initial quantum state is unique and simple, we have a strong case for the \emph{Nomological Thesis}: the initial quantum state of the universe is on a par with laws of nature. This new package of ideas has several interesting implications, including on the harmony between statistical mechanics and quantummechanics, the dynamic unity of the universe and the subsystems, and the alleged conflict between Humean supervenience and quantum entanglement. (shrink)
I maintain that quantummechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantummechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...) according to the variation of ψ. They are considered as fundamental regions of space with some kind of nonlocality. Special consideration is given to the Heisenberg relations, the Einstein-Podolsky- Rosen correlations, the reduction process, the problem of measurement, and the quantum-statistical distributions. (shrink)
It has been argued that the transition from classical to quantummechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue (...) that, in addition to radical quantum paradigms, there are also legitimate ways of understanding the quantum world that do not require any substantial change to the classical paradigm. (shrink)
THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantummechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...) relativity and nonlocal effects predicted by quantummechanics. Our discussion applies in particular to Bohmian mechanics. (shrink)
This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantummechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...) calculus. The previous attempts all required the brackets to take values in ℤ₂. But the usual QM brackets <ψ|ϕ> give the "overlap" between states ψ and ϕ, so for subsets S,T⊆U, the natural definition is <S|T>=|S∩T| (taking values in the natural numbers). This allows QM/sets to be developed with a full probability calculus that turns out to be a non-commutative extension of classical Laplace-Boole finite probability theory. The pedagogical model is illustrated by giving simple treatments of the indeterminacy principle, the double-slit experiment, Bell's Theorem, and identical particles in QM/Sets. A more technical appendix explains the mathematics behind carrying some vector space structures between QM over ℂ and QM/Sets over ℤ₂. (shrink)
In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...) Without Numbers (1980), responds to David Malament’s long-standing impossibility conjecture (1982), and establishes an important first step towards a genuinely intrinsic and nominalistic account of quantummechanics. I will also compare the present account to Mark Balaguer’s (1996) nominalization of quantummechanics and discuss how it might bear on the debate about “wave function realism.” In closing, I will suggest some possible ways to extend this account to accommodate spinorial degrees of freedom and a variable number of particles (e.g. for particle creation and annihilation). -/- Along the way, I axiomatize the quantum phase structure as what I shall call a “periodic difference structure” and prove a representation theorem as well as a uniqueness theorem. These formal results could prove fruitful for further investigation into the metaphysics of phase and theoretical structure. (shrink)
In this paper, I explore the feasibility of a realistic interpretation of the quantum mechanical path integral - that is, an interpretation according to which the particle actually follows the paths that contribute to the integral. I argue that an interpretation of this sort requires spacetime to have a branching structure similar to the structures of the branching spacetimes proposed by previous authors. I point out one possible way to construct branching spacetimes of the required sort, and I ask (...) whether the resulting interpretation of quantummechanics is empirically testable. (shrink)
Maxwell’s Demon is a thought experiment devised by J. C. Maxwell in 1867 in order to show that the Second Law of thermodynamics is not universal, since it has a counter-example. Since the Second Law is taken by many to provide an arrow of time, the threat to its universality threatens the account of temporal directionality as well. Various attempts to “exorcise” the Demon, by proving that it is impossible for one reason or another, have been made throughout the years, (...) but none of them were successful. We have shown (in a number of publications) by a general state-space argument that Maxwell’s Demon is compatible with classical mechanics, and that the most recent solutions, based on Landauer’s thesis, are not general. In this paper we demonstrate that Maxwell’s Demon is also compatible with quantummechanics. We do so by analyzing a particular (but highly idealized) experimental setup and proving that it violates the Second Law. Our discussion is in the framework of standard quantummechanics; we give two separate arguments in the framework of quantummechanics with and without the projection postulate. We address in our analysis the connection between measurement and erasure interactions and we show how these notions are applicable in the microscopic quantum mechanical structure. We discuss what might be the quantum mechanical counterpart of the classical notion of “macrostates”, thus explaining why our Quantum Demon setup works not only at the micro level but also at the macro level, properly understood. One implication of our analysis is that the Second Law cannot provide a universal lawlike basis for an account of the arrow of time; this account has to be sought elsewhere. (shrink)
A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantummechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, (...) but we argue that the temptation should be resisted. Applying lessons from this analysis, we demonstrate (using methods similar to those of Zurek's envariance-based derivation) that the Born rule is the uniquely rational way of apportioning credence in Everettian quantummechanics. In doing so, we rely on a single key principle: changes purely to the environment do not affect the probabilities one ought to assign to measurement outcomes in a local subsystem. We arrive at a method for assigning probabilities in cases that involve both classical and quantum self-locating uncertainty. This method provides unique answers to quantum Sleeping Beauty problems, as well as a well-defined procedure for calculating probabilities in quantum cosmological multiverses with multiple similar observers. (shrink)
Metaphysical underdetermination arises when we are not able to decide, through purely theoretical criteria, between competing interpretations of scientific theories with different metaphysical commitments. This is the case in which non-relativistic quantummechanics (QM) finds itself in. Among several available interpretations, there is the one that states that the interaction with the conscious mind of a human observer causes a change in the dynamics of quantum objects undergoing from indefinite to definite states. In this paper, we argue (...) that there seems to be also a metaphysical underdetermination concerning London and Bauer’s theory of measurement between two methods of phenomenological reduction: the eidetic and the transcendental approaches. Recently, Steven French argued that both methods can be combined in order to interpret London and Bauer’s formalism. However, in this paper we argue that the eidetic one is the only viable phenomenological way to interpret this particular theory of measurement in QM based on the formalism presented by London and Bauer, hence breaking this phenomenological underdetermination. (shrink)
A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics (...) and of Everett’s many-worlds interpretation; it has a clear ontology and a set of precisely defined postulates from where the predictions of standard quantummechanics can be derived. Probability as given by the Born rule emerges as a consequence of insufficient knowledge of observers about which world it is that they live in. The theory describes a continuum of worlds rather than a single world or a discrete set of worlds, so it is similar in spirit to many-worlds interpretations based on Everett’s approach, without being actually reducible to these. In particular, there is no splitting of worlds, which is a typical feature of Everett-type theories. Altogether, the theory explains (1) the subjective occurrence of probabilities, (2) their quantitative value as given by the Born rule, and (3) the apparently random “collapse of the wavefunction” caused by the measurement, while still being an objectively deterministic theory. (shrink)
Although quantummechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed (...) to quantitatively explain the quantum mechanical results. In this paper, we take the clue from quantum biology to get the explanation of quantum mechanical distribution. Recently it was reported that mutations (which are quantum processes) in DNA of E. coli bacteria instead of being random were biased in a direction such that the chance of survival of the bacteria is increased. Extrapolating it, we assume that all the particles including inanimate fundamental particles have a will and that is biased to satisfy the collective goals of the ensemble. Using this postulate, we mathematically derive the correct spin probability distribution without using quantum mechanical formalism (operators and Born’s rule) and exactly reproduce the quantum mechanical spin correlation in entangled pairs. Using our concept, we also mathematically derive the form of quantum mechanical wave function of free particle which is conventionally a postulate of quantummechanics. Thus, we prove that the origin of quantum mechanical results lies in the will (or consciousness) of the objects biased by the collective goal of ensemble or universe. This biasing by the group on individuals can be called as “coherence” which directly represents the extent of life present in the ensemble. So, we can say that life originates out of establishment of coherence in a group of inanimate particles. (shrink)
Time has multiple aspects and is difficult to define as one unique entity, which therefore led to multiple interpretations in physics and philosophy. However, if the perception of time is considered as a composite time concept, it can be decomposed into basic invariable components for the perception of progressive and support-fixed time and into secondary components with possible association to unit-defined time or tense. Progressive time corresponds to Bergson’s definition of duration without boundaries, which cannot be divided for measurements. Time (...) periods are already lying in the past and fixed on different kinds of support. The human memory is the first automatic support, but any other support suitable for time registration can also be considered. The true reproduction of original time from any support requires conditions identical to the initial conditions, if not time reproduction becomes artificially modified as can be seen with a film. Time reproduction can be artificially accelerated, slowed down, extended or diminished, and also inverted from the present to the past, which only depends on the manipulation of the support, to which time is firmly linked. Tense associated to progressive and support fixed time is a psychological property directly dependent on an observer, who judges his present as immediate, his past as finished and his future as uncertain. Events can be secondarily associated to the tenses of an observer. Unit-defined time is essential for physics and normal live and is obtained by comparison of support-fixed time to systems with regular motions, like clocks. The association of time perception to time units can also be broken. Einstein’s time units became relative, in quantummechanics, some physicist eliminated time units, others maintained them. Nevertheless, even the complete elimination of time units is not identical to timelessness, since the psychological perception of progressive and support-fixed time still remains and cannot be ignored. It is not seizable by physical methods, but experienced by everybody in everyday life. Contemporary physics can only abandon the association of time units or tenses to the basic components in perceived time. (shrink)
We present an axiomatization of non-relativistic QuantumMechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
This paper offers a critical assessment of the current state of the debate about the identity and individuality of material objects. Its main aim, in particular, is to show that, in a sense to be carefully specified, the opposition between the Leibnizian ‘reductionist’ tradition, based on discernibility, and the sort of ‘primitivism’ that denies that facts of identity and individuality must be analysable has become outdated. In particular, it is argued that—contrary to a widespread consensus—‘naturalised’ metaphysics supports both the acceptability (...) of non-qualitatively grounded (both ‘contextual’ and intrinsic) identity and a pluralistic approach to individuality and individuation. A case study is offered that focuses on non-relativistic quantummechanics, in the context of which primitivism about identity and individuality, rather than being regarded as unscientific, is on the contrary suggested to be preferable to the complicated forms of reductionism that have recently been proposed. More generally, by assuming a plausible form of anti-reductionism about scientific theories and domains, it is claimed that science can be regarded as compatible with, or even as suggesting, the existence of a series of equally plausible grades of individuality. The kind of individuality that prevails in a certain context and at a given level can be ascertained only on the basis of the specific scientific theory at hand. (shrink)
*A shortened version of this paper will appear in Current Controversies in Philosophy of Science, Dasgupta and Weslake, eds. Routledge.* This paper describes the case that can be made for a high-dimensional ontology in quantummechanics based on the virtues of avoiding both nonseparability and non locality.
According to orthodox quantummechanics, state vectors change in two incompatible ways: "deterministically" in accordance with Schroedinger's time-dependent equation, and probabilistically if and only if a measurement is made. It is argued here that the problem of measurement arises because the precise mutually exclusive conditions for these two types of transitions to occur are not specified within orthodox quantummechanics. Fundamentally, this is due to an inevitable ambiguity in the notion of "meawurement" itself. Hence, if the (...) problem of measurement is to be resolved, a new, fully objective version of quantjm mechanics needs to be developed which does not incorporate the notion of measurement in its basic postuolates at all. (shrink)
This paper develops a Fragmentalist theory of Presentism and shows how it can help to develop a interpretation of quantummechanics. There are several fragmental interpretations of physics. In the interpretation of this paper, each quantum system forms a fragment, and fragment f1 makes a measurement on fragment f2 if and only if f2 makes a corresponding measurement on f1. The main idea is then that each fragment has its own present (or ‘now’) until a mutual (...) class='Hi'>quantum measurement—at which time they come (‘become’) to share the same ‘now’. The theory of time developed here will make use of both McTaggart’s A-series (in the form of future-present-past) and B-series (earlier-times to later-times). An example of an application is that a Bell pair of electrons does not take on definite spin values until measurement because the measuring system and the Bell pair do not share the same present (‘now’) until mutual quantum measurement, i.e. until they ‘become’ to share the same A-series. Before that point the ‘now’ of the opposing system is not in the reference system’s fragment. Relativistic no-signaling is preserved within each fragment, which will turn out to be sufficient for the general case. Several issues in the foundations of quantummechanics are canvassed, including Schrodinger’s cat, the Born rule, modifications to Minkowski space that accommodate both the A-series and the B-series, and entropy. (shrink)
PHILOSOPHY OF SCIENCE, vol. 52, number 1, pp.44-63. R.M. Nugayev, Kazan State |University, USSR. -/- THE HISTORY OF QUANTUM THEORY AS A DECISIVE ARGUMENT FAVORING EINSTEIN OVER LJRENTZ. -/- Abstract. Einstein’s papers on relativity, quantum theory and statistical mechanics were all part of a single research programme ; the aim was to unify mechanics and electrodynamics. It was this broader program – which eventually split into relativistic physics and quantummmechanics – that superseded Lorentz’s theory. The argument (...) of this paper is partly historical and partly methodological. A notion of “crossbred objects” – theoretical objects with contradictory properties which are part of the domain of application of two different research programs – is developed that explains the dynamics of revolutionary theory change. (shrink)
I examine the epistemological debate on scientific realism in the context of quantum physics, focusing on the empirical underdetermin- ation of different formulations and interpretations of QM. I will argue that much of the interpretational, metaphysical work on QM tran- scends the kinds of realist commitments that are well-motivated in the light of the history of science. I sketch a way of demarcating empirically well-confirmed aspects of QM from speculative quantum metaphysics in a way that coheres with anti-realist (...) evidence from the history of science. The minimal realist attitude sketched withholds realist com- mitment to what quantum state |Ψ⟩ represents. I argue that such commitment is not required for fulfilling the ultimate realist motiva- tion: accounting for the empirical success of quantummechanics in a way that is in tune with a broader understanding of how theoretical science progresses and latches onto reality. (shrink)
This thesis inquires what it means to interpret non-relativistic quantummechanics (QM), and the philosophical limits of this interpretation. In pursuit of a scientific-realist stance, a metametaphysical method is expanded and applied to evaluate rival interpretations of QM, based on the conceptual distinction between ontology and metaphysics, for objective theory choice in metaphysical discussions relating to QM. Three cases are examined, in which this metametaphysical method succeeds in indicating what are the wrong alternatives to interpret QM in metaphysical (...) terms. The first two cases failed in doing so due to different kinds of underdetermination. In the third case, unlike underdetermination, where there are many choices to be made, a “null-determination” is proposed where there may be no metaphysical choices in the available metaphysical literature. Considering what has been discussed, an agnostic philosophic position is adopted concerning the possibility of interpreting QM from a scientific-realistic point of view. (shrink)
Saunders' recent arguments in favour of the weak discernibility of (certain) quantum particles seem to be grounded in the 'generalist' view that science only provides general descriptions of the worlIn this paper, I introduce the ‘generalist’ perspective and consider its possible justification and philosophical basis; and then look at the notion of weak discernibility. I expand on the criticisms formulated by Hawley (2006) and Dieks and Veerstegh (2008) and explain what I take to be the basic problem: that the (...) properties invoked by Saunders cannot be pointed to as ‘individuators’ of otherwise indiscernible (and thus numerically identical) entities because their ontological status remains underdetermined by the evidence and the established interpretation of the theory. In addition to to this, I suggest that Saunders does not deal adequately with bosons, and cannot do so exactly because he subscribes to PII and the generalist picture. The last part of the paper contains a critical examination of the claim (or at least implicit assumption) that the generalist picture should be regarded as obviously compelling by the modern-day empiricist. (shrink)
The persistent interpretation problem for quantummechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on (...) material processes. I’ll argue that the first assumption appears to lead us toward Everett’s many worlds interpretation, which suggests a red flag. I’ll also argue that the second assumption is suspect due to the persistent explanatory gap for consciousness. Later, I explore ways that Bohm’s later work holds some promise in providing a better fit with our world, both phenomenologically and empirically. Also, I’ll address the possible problem of realism. (shrink)
Is quantummechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantummechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as (...) a ‘lossy’ by-product of a quantum-mechanical variant of the Hamilton-Jacobi equation. As it turns out, the effectiveness of quantum theory qua predictive algorithm makes up for the computational impracticability of that master equation. (shrink)
In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantummechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that (...) some form of realism about the wave function is also necessary, one needs to endorse also the idea that the wave function refers to some kind of power. In the second part, I discuss some difficulties raised by the recent proposal that in Bohmian mechanics this power is holistically possessed by all the particles in the universe. (shrink)
This paper investigates the possibiity of developing a fully micro realistic version of elementary quantummechanics. I argue that it is highly desirable to develop such a version of quantummechanics, and that the failure of all current versions and interpretations of quantummechanics to constitute micro realistic theories is at the root of many of the interpretative problems associated with quantummechanics, in particular the problem of measurement. I put forward a (...) propensity micro realistic version of quantummechanics, and suggest how it might be possible to discriminate, on expermental grounds, between this theory and other versions of quantummechanics. (shrink)
McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantummechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space structure, (...) but has to be added to it as an independent postulate. This is due to what we call the factorisation-symmetry and basis-symmetry of Hilbert space. (shrink)
Determinism is established in quantummechanics by tracing the probabilities in the Born rules back to the absolute (overall) phase constants of the wave functions and recognizing these phase constants as pseudorandom numbers. The reduction process (collapse) is independent of measurement. It occurs when two wavepackets overlap in ordinary space and satisfy a certain criterion, which depends on the phase constants of both wavepackets. Reduction means contraction of the wavepackets to the place of overlap. The measurement apparatus fans (...) out the incoming wavepacket into spatially separated eigenpackets of the chosen observable. When one of these eigenpackets together with a wavepacket located in the apparatus satisfy the criterion, the reduction associates the place of contraction with an eigenvalue of the observable. The theory is nonlocal and contextual. Keywords:. (shrink)
In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantummechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantummechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in agreement (...) many physicists, Galilei invariance is preserved. In addition, I discuss how the wave function behaves more similarly to a gauge potential than to a field. Finally I show how this favors a nomological rather than an ontological view of the wave function. (shrink)
A potentially new interpretation of quantummechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantum superposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
Definitions I presented in a previous article as part of a semantic approach in epistemology assumed that the concept of derivability from standard logic held across all mathematical and scientific disciplines. The present article argues that this assumption is not true for quantummechanics (QM) by showing that concepts of validity applicable to proofs in mathematics and in classical mechanics are inapplicable to proofs in QM. Because semantic epistemology must include this important theory, revision is necessary. The (...) one I propose also extends semantic epistemology beyond the ‘hard’ sciences. The article ends by presenting and then refuting some responses QM theorists might make to my arguments. (shrink)
We study the conservation of energy, or lack thereof, when measurements are performed in quantummechanics. The expectation value of the Hamiltonian of a system changes when wave functions collapse in accordance with the standard textbook treatment of quantum measurement, but one might imagine that the change in energy is compensated by the measuring apparatus or environment. We show that this is not true; the change in the energy of a state after measurement can be arbitrarily large, (...) independent of the physical measurement process. In Everettian quantum theory, while the expectation value of the Hamiltonian is conserved for the wave function of the universe, it is not constant within individual worlds. It should therefore be possible to experimentally measure violations of conservation of energy, and we suggest an experimental protocol for doing so. (shrink)
In this paper, possible objections to the propensity microrealistic version of quantummechanics proposed in Part I are answered. This version of quantummechanics is compared with the statistical, particle microrealistic viewpoint, and a crucial experiment is proposed designed to distinguish between these to microrealistic versions of quantummechanics.
Recent years saw the rise of an interest in the roles and significance of thought experiments in different areas of human thinking. Heisenberg's gamma ray microscope is no doubt one of the most famous examples of a thought experiment in physics. Nevertheless, this particular thought experiment has not received much detailed attention in the philosophical literature on thought experiments up to date, maybe because of its often claimed inadequacies. In this paper, I try to do two things: to provide an (...) interesting interpretation of the roles played by Heisenberg's gamma ray microscope in interpreting quantummechanics – partly based on Thomas Kuhn’s views on the function of thought experiments – and to contribute to the ongoing discussions on the roles and significance of thought experiments in physics. (shrink)
Students often invoke quantummechanics in class or papers to make philosophical points. This tendency has been encouraged by pop culture influences like the film What the Bleep do We Know? There is little merit to most of these putative implications. However, it is difficult for philosophy teachers unfamiliar with quantummechanics to handle these supposed implications in a clear and careful way. This paper is a philosophy of science version of MythBusters. We offer a brief (...) primer on the nature of quantummechanics, enumerate nine of the most common implications associated with quantummechanics, and finally clarify each implication with the facts. Our goal is to explain what quantummechanics doesn’t show. (shrink)
Which way does causation proceed? The pattern in the material world seems to be upward: particles to molecules to organisms to brains to mental processes. In contrast, the principles of quantummechanics allow us to see a pattern of downward causation. These new ideas describe sets of multiple levels in which each level influences the levels below it through generation and selection. Top-down causation makes exciting sense of the world: we can find analogies in psychology, in the formation (...) of our minds, in locating the source of consciousness, and even in the possible logic of belief in God. (shrink)
Contrary to Bell’s theorem it is demonstrated that with the use of classical probability theory the quantum correlation can be approximated. Hence, one may not conclude from experiment that all local hidden variable theories are ruled out by a violation of inequality result.
The idea of self-measurement by a quantum-mechanical automaton is presented, and the conclusions that are typically reached about what we can come to know from doing self-measurements are shown to be mistaken. Specifically, it is shown that, while we are capable of _predicting_ and _measuring_ the values of two incompatible observables, we are incapable of _knowing_ both these values simultaneously. This is an example of the interesting limitations quantummechanics places on knowledge.
We show that determinism is false assuming a realistic interpretation of quantummechanics and considering the sensitive dynamics of macroscopical physical systems.
The assertion by Yu and Nikolic that the delayed choice quantum eraser experiment of Kim et al. empirically falsifies the consciousness-causes-collapse hypothesis of quantummechanics is based on the unfounded and false assumption that the failure of a quantum wave function to collapse implies the appearance of a visible interference pattern.
The spin-statistics connection is derived in a simple manner under the postulates that the original and the exchange wave functions are simply added, and that the azimuthal phase angle, which defines the orientation of the spin part of each single-particle spin-component eigenfunction in the plane normal to the spin-quantization axis, is exchanged along with the other parameters. The spin factor (−1)2s belongs to the exchange wave function when this function is constructed so as to get the spinor ambiguity under control. (...) This is achieved by effecting the exchange of the azimuthal angle by means of rotations and admitting only rotations in one sense. The procedure works in Galilean as well as in Lorentz-invariant quantummechanics. Relativistic quantum field theory is not required. (shrink)
We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
Despite the widespread assumptions on the compatibility between non-relativistic quantummechanics and special relativity, there still remains a considerable amount of unresolved problems to which few authors explicitly pay attention. Most of them involve the aim of coherently achieving a relativistic description of quantum collapses and quantum entanglements. These processes seem to challenge our present picture of the physical world in terms of space-time structures.
This paper is essentially a quantum philosophical challenge: starting from simple assumptions, we argue about an ontological approach to quantummechanics. In this paper, we will focus only on the assumptions. While these assumptions seems to solve the ontological aspect of theory many others epistemological problems arise. For these reasons, in order to prove these assumptions, we need to find a consistent mathematical context (i.e. time reverse problem, quantum entanglement, implications on quantum fields, Schr¨odinger cat (...) states, the role of observer, the role of mind ). (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.