Results for 'Madhyamik Buddhism, Quantum Mechanics'

918 found
Order:
  1. Journey towards Sunyata from Quantum Mechanics.Debajyoti Gangopadhyay - 2009 - In Ramaranjan Mukherjee Mukherjee & Buddhadev Bhattacharya (eds.), Dimensions of Buddhism and Jainism ,Professor Suniti Kumar Pathak felicitation , Vol II. pp. pp 281-289.
    In this article we have tried basically to lay out an outline of possible overlap between the metaphysical standpoints of the Madhyamik Buddhism with the so called Copenhagen interpretation of quantum mechanics. We argued here that , both Madhyamik Buddhism as well as Copenhagen develop some common grounds of skepticism or cautionary notes against the classical intuitive Realist ideology committed to ontological priority of individual . So , though the presiding contexts of Madhyamik Buddhism and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Book Review: The World in the Wave Function - The Metaphysics of Quantum Physics by A. Ney. [REVIEW]Daihyun Chung - 2023 - CHEOLHAK, Korean Philosophical Association 156:211-224.
    (English translation from the text in Korean) -/- The assertion that both humanity and the external world share a fundamental unity has gained increasing recognition, particularly in light of the growing discourse surrounding quantum physics. This perspective draws parallels with conceptual frameworks found in Western idealism, Eastern Buddhism, and the philosophy of Zhuangzi. In examining the current state of scientific inquiry, one cannot overlook the profound impact of quantum mechanics on the field of physics, alongside the rising (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. Quantum Mechanics, Fields, Black Holes, and Ontological Plurality.Gustavo E. Romero - 2024 - Philosophies 9 (4):97-121.
    The ontology behind quantum mechanics has been the subject of endless debate since the theory was formulated some 100 years ago. It has been suggested, at one time or another, that the objects described by the theory may be individual particles, waves, fields, ensembles of particles, observers, and minds, among many other possibilities. I maintain that these disagreements are due in part to a lack of precision in the use of the theory’s various semantic designators. In particular, there (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  7. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  8. (1 other version)Quantum mechanics and consciousness: Thoughts on a causal correspondence theory.Ian J. Thompson - 2017 - In S. Gosh, B. D. Mundhra, K. Vasudeva Rao & Varun Agarwal (eds.), Quantum Physics & Consciousness - Thoughts of Founding Fathers of Quantum Physics and other Renowned Scholars. Bhaktivedanta Institute. pp. 173-185.
    Which way does causation proceed? The pattern in the material world seems to be upward: particles to molecules to organisms to brains to mental processes. In contrast, the principles of quantum mechanics allow us to see a pattern of downward causation. These new ideas describe sets of multiple levels in which each level influences the levels below it through generation and selection. Top-down causation makes exciting sense of the world: we can find analogies in psychology, in the formation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Quantum mechanics unscrambled.Jean-Michel Delhotel - 2014
    Is quantum mechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantum mechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Quantum Mechanics, Metaphysics, and Bohm's Implicate Order.George Williams - 2019 - Mind and Matter 2 (17):155-186.
    The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Quantum-Mechanical Self-Measurement.Bradley Monton - 1998 - In Dennis Dieks & Pieter Vermaas (eds.), The Modal Interpretation of Quantum Mechanics. Kluwer Academic Publishers. pp. 307-318.
    The idea of self-measurement by a quantum-mechanical automaton is presented, and the conclusions that are typically reached about what we can come to know from doing self-measurements are shown to be mistaken. Specifically, it is shown that, while we are capable of _predicting_ and _measuring_ the values of two incompatible observables, we are incapable of _knowing_ both these values simultaneously. This is an example of the interesting limitations quantum mechanics places on knowledge.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Philosophical Foundations of Quantum Mechanics.Alireza Mansouri - 2016 - Tehran: Nashre Ney.
    The revolution brought about by quantum mechanics in the early 20th century was nothing short of remarkable. It shattered the foundational principles of classical physics, giving rise to a plethora of controversial and intriguing conceptual questions. Questions that still perplex and confound the scientific community today. Is the quantum mechanical description of physical reality complete? Are the objects of nature truly inseparable? And most importantly, do objects not have a specific position before measurement, and are there non-causal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of (...) mechanics is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  17.  57
    A Fundamental Duality in the Exact Sciences: The Application to Quantum Mechanics.David Ellerman - 2024 - Foundations 4 (2):175-204.
    There is a fundamental subsets–partitions duality that runs through the exact sciences. In more concrete terms, it is the duality between elements of a subset and the distinctions of a partition. In more abstract terms, it is the reverse-the-arrows of category theory that provides a major architectonic of mathematics. The paper first develops the duality between the Boolean logic of subsets and the logic of partitions. Then, probability theory and information theory (as based on logical entropy) are shown to start (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Quantum Mechanics: Observer and von Neumann Chain.Michele Caponigro - manuscript
    In this brief paper, we argue about the conceptual relationship between the role of observer in quantum mechanics and the von Neumann Chain. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  19. Quantum Mechanics and the Philosophy of Alfred North Whitehead.Michael Epperson - 2004 - New York: Fordham University Press.
    In Process and Reality and other works, Alfred North Whitehead struggled to come to terms with the impact the new science of quantum mechanics would have on metaphysics. -/- This ambitious book is the first extended analysis of the intricate relationships between relativity theory, quantum mechanics, and Whitehead's cosmology. Michael Epperson illuminates the intersection of science and philosophy in Whitehead's work-and details Whitehead's attempts to fashion an ontology coherent with quantum anomalies. -/- Including a nonspecialist (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  20. An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. Consciousness Studies and Quantum Mechanics.Varanasi Ramabrahmam - 2017 - Http://Scsiscs.Org/Conference/Scienceandscientist/2017/ 5:165-171.
    The limitations and unsuitability of the twentieth century intellectual marvel, the quantum mechanics for the task of unraveling working of human consciousness is critically analyzed. The inbuilt traits of the probabilistic, approximate and imprecise nature of quantum mechanical approach are brought out. -/- The limitations and the unsuitability of using such knowledge for the understanding of precise, correct, finite and definite happenings of activities relating to human consciousness and mind, which are not quantum in nature, are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Interpreting Quantum Mechanics and Predictability in Terms of Facts About the Universe.Andrew Knight - manuscript
    A potentially new interpretation of quantum mechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantum superposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Quantity in Quantum Mechanics and the Quantity of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (47):1-10.
    The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Energy Non-conservation in Quantum Mechanics.Sean M. Carroll & Jackie Lodman - 2021 - Foundations of Physics 51 (4):1-15.
    We study the conservation of energy, or lack thereof, when measurements are performed in quantum mechanics. The expectation value of the Hamiltonian of a system changes when wave functions collapse in accordance with the standard textbook treatment of quantum measurement, but one might imagine that the change in energy is compensated by the measuring apparatus or environment. We show that this is not true; the change in the energy of a state after measurement can be arbitrarily large, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. Individuation and Identity in quantum mechanics.Debajyoti Gangopadhyay - 2022 - In Nalanda Dialogue Series , Volume 2. Nalanda , India: Navanalanda Mahavihara. pp. 151-165.
    Developments of quantum mechanics during the first three decades of the last century led most fundamentally to different orders of difficulties in the spatio-temporal modes of description. And, as a consequence, ambiguities in the meaning of quantum mechanical are in sight for the first time. So the question (from logico-philosophical grounds) we were left as back as late 20s of the last century – a question methodologically prior to all other questions - How to talk about (...) particles [in a Language] which are not instantiation of spatio-temporal is or ONE of their particular kind? Though not popular among the physicists, philosophers often use the phrase failure of principles of Individuation or ontological priorities of individual to describe this situation. -/- Within the intended scope of this volume, we need not give the technical details of this failure here. We are basically narrating here a non-technical story outline of the way quantum mechanical language messes with standard logic and set theory embedded with the concept of unambiguous is, and the possible consequences. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Fundamentality and Levels in Everettian Quantum Mechanics.Alastair Wilson - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer.
    Distinctions in fundamentality between different levels of description are central to the viability of contemporary decoherence-based Everettian quantum mechanics (EQM). This approach to quantum theory characteristically combines a determinate fundamental reality (one universal wave function) with an indeterminate emergent reality (multiple decoherent worlds). In this chapter I explore how the Everettian appeal to fundamentality and emergence can be understood within existing metaphysical frameworks, identify grounding and concept fundamentality as promising theoretical tools, and use them to characterize a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Quantum Mechanics as Quantum Information, Mostly.Christopher A. Fuchs - 2003 - Journal of Modern Optics 50:987-1023.
    In this paper, I try to cause some good-natured trouble. The issue is, when will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations? The suspicion is expressed that no end will be in sight until a means is found to reduce quantum theory to two or three statements of crisp physical (rather than abstract, axiomatic) significance. In this regard, no tool appears better calibrated for a direct assault than quantum information theory. Far (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  29. Quantum mechanics reality and separability.Franco Selleri & G. Tarozzi - 1981 - la Rivista Del Nuovo Cimento 4 (2):1-53.
    TABLE OF CONTENTS: Introduction; de Broglie's paradox.; Quantum theory of distant particles; The EPR paradox; Einstein locality and Bell's inequality; Recent research on Bell's inequality; General consequences of Einstein locality; Nonloeality and relativity; Time-symmetric theories; The Bohm-Aharonov hypothesis; Experiments on Einstein locality; Reduction of the wave packet; Measurements, reality and consciousness; Conclusions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30.  83
    The Prototime Interpretation of Quantum Mechanics.Susan Schneider & Mark Bailey - manuscript
    We propose the Prototime Interpretation of quantum mechanics, which claims that quantum entanglement occurs in a "prototemporal" realm which underlies spacetime. Our paper is tentative and exploratory. The argument form is inference to the best explanation. We claim that the Prototime Interpretation (PI) is worthy of further consideration as a superior explanation for perplexing quantum phenomena such as delayed choice, superposition, the wave-particle duality and nonlocality. In Section One, we introduce the Prototime Interpretation. Section Two identifies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement is available. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. What Quantum Mechanics Doesn't Show.Justin P. McBrayer & Dugald Owen - 2016 - Teaching Philosophy 39 (2):163-176.
    Students often invoke quantum mechanics in class or papers to make philosophical points. This tendency has been encouraged by pop culture influences like the film What the Bleep do We Know? There is little merit to most of these putative implications. However, it is difficult for philosophy teachers unfamiliar with quantum mechanics to handle these supposed implications in a clear and careful way. This paper is a philosophy of science version of MythBusters. We offer a brief (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Reasonable Inferences From Quantum Mechanics: A Response to “Quantum Misuse in Psychic Literature”.Bernardo Kastrup - 2019 - Journal of Near-Death Studies 37 (3):185-200.
    This invited article is a response to the paper “Quantum Misuse in Psychic Literature,” by Jack A. Mroczkowski and Alexis P. Malozemoff, published in this issue of the Journal of Near-Death Studies. Whereas I sympathize with Mroczkowski’s and Malozemoff’s cause and goals, and I recognize the problem they attempted to tackle, I argue that their criticisms often overshot the mark and end up adding to the confusion. I address nine specific technical points that Mroczkowski and Malozemoff accused popular writers (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. The Ontological and Epistemological Necessity of Local Beables in Quantum Mechanics.Maryam Ansari & Alireza Mansouri - 2021 - Persian Journal for Analytic Philosophy 25 (38):33-56.
    Bell introduces local beables in contrast to quantum mechanical observables. The present article emphasizes the importance and necessity of introducing local beables in quantum mechanics from the ontological and epistemological points of view. We argue that suggesting beables in the ontology of quantum mechanics is necessary to give an adequate account of its testability.
    Download  
     
    Export citation  
     
    Bookmark  
  35. Barad, Bohr, and quantum mechanics.Jan Faye & Rasmus Jaksland - 2021 - Synthese 199:8231-8255.
    The last decade has seen an increasing number of references to quantum mechanics in the humanities and social sciences. This development has in particular been driven by Karen Barad’s agential realism: a theoretical framework that, based on Niels Bohr’s interpretation of quantum mechanics, aims to inform social theorizing. In dealing with notions such as agency, power, and embodiment as well as the relation between the material and the discursive level, the influence of agential realism in fields (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  36. Atomism in Quantum Mechanics and Information.Vasil Penchev - 2020 - Metaphysics eJournal (Elsevier: SSRN) 13 (12):1-11.
    The original conception of atomism suggests “atoms”, which cannot be divided more into composing parts. However, the name “atom” in physics is reserved for entities, which can be divided into electrons, protons, neutrons and other “elementary particles”, some of which are in turn compounded by other, “more elementary” ones. Instead of this, quantum mechanics is grounded on the actually indivisible quanta of action limited by the fundamental Planck constant. It resolves the problem of how both discrete and continuous (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Philosophical & Practical Implications of Quantum Mechanics.Sunil Thakur - manuscript
    Quantum mechanics makes some very significant observations about nature. Unfortunately, these observations remain a mystery because they do not fit into and/or cannot be explained through classical mechanics. However, we can still explore the philosophical and practical implications of these observations. This article aims to explain philosophical and practical implications of one of the most important observations of quantum mechanics – uncertainty or the arbitrariness in the behavior of particles.
    Download  
     
    Export citation  
     
    Bookmark  
  38. The quantum mechanical path integral: Toward a realistic interpretation.Mark Sharlow - 2007
    In this paper, I explore the feasibility of a realistic interpretation of the quantum mechanical path integral - that is, an interpretation according to which the particle actually follows the paths that contribute to the integral. I argue that an interpretation of this sort requires spacetime to have a branching structure similar to the structures of the branching spacetimes proposed by previous authors. I point out one possible way to construct branching spacetimes of the required sort, and I ask (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Quantum mechanics foundations.Bakytzhan Oralbekov - manuscript
    Gravity remains the most elusive field. Its relationship with the electromagnetic field is poorly understood. Relativity and quantum mechanics describe the aforementioned fields, respectively. Bosons and fermions are often credited with responsibility for the interactions of force and matter. It is shown here that fermions factually determine the gravitational structure of the universe, while bosons are responsible for the three established and described forces. Underlying the relationships of the gravitational and electromagnetic fields is a symmetrical probability distribution of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Quantum Mechanics May Need Consciousness.Andrew Knight - manuscript
    The assertion by Yu and Nikolic that the delayed choice quantum eraser experiment of Kim et al. empirically falsifies the consciousness-causes-collapse hypothesis of quantum mechanics is based on the unfounded and false assumption that the failure of a quantum wave function to collapse implies the appearance of a visible interference pattern.
    Download  
     
    Export citation  
     
    Bookmark  
  41. The principles of quantum mechanics.Paul Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  42. Quantum Mechanics and Relational Realism: Logical Causality and Wave Function Collapse.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization (in “orthodox” terms, each measurement outcome) is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept of “actualization (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. The quantum mechanical time reversal operator.Andrew Thomas Holster - unknown
    The analysis of the reversibility of quantum mechanics depends upon the choice of the time reversal operator for quantum mechanical states. The orthodox choice for the time reversal operator on QM states is known as the Wigner operator, T*, where * performs complex conjugation. The peculiarity is that this is not simply the unitary time reversal operation, but an anti-unitary operator, involving complex conjugation in addition to ordinary time reversal. The alternative choice is the Racah operator, which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  44. The Indeterminist Objectivity of Quantum Mechanics Versus the Determinist Subjectivity of Classical Physics.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (18):1-5.
    Indeterminism of quantum mechanics is considered as an immediate corollary from the theorems about absence of hidden variables in it, and first of all, the Kochen – Specker theorem. The base postulate of quantum mechanics formulated by Niels Bohr that it studies the system of an investigated microscopic quantum entity and the macroscopic apparatus described by the smooth equations of classical mechanics by the readings of the latter implies as a necessary condition of (...) mechanics the absence of hidden variables, and thus, quantum indeterminism. Consequently, the objectivity of quantum mechanics and even its possibility and ability to study its objects as they are by themselves imply quantum indeterminism. The so-called free-will theorems in quantum mechanics elucidate that the “valuable commodity” of free will is not a privilege of the experimenters and human beings, but it is shared by anything in the physical universe once the experimenter is granted to possess free will. The analogical idea, that e.g. an electron might possess free will to “decide” what to do, scandalized Einstein forced him to exclaim (in a letter to Max Born in 2016) that he would be а shoemaker or croupier rather than a physicist if this was true. Anyway, many experiments confirmed the absence of hidden variables and thus quantum indeterminism in virtue of the objectivity and completeness of quantum mechanics. Once quantum mechanics is complete and thus an objective science, one can ask what this would mean in relation to classical physics and its objectivity. In fact, it divides disjunctively what possesses free will from what does not. Properly, all physical objects belong to the latter area according to it, and their “behavior” is necessary and deterministic. All possible decisions, on the contrary, are concentrated in the experimenters (or human beings at all), i.e. in the former domain not intersecting the latter. One may say that the cost of the determinism and unambiguous laws of classical physics, is the indeterminism and free will of the experimenters and researchers (human beings) therefore necessarily being out of the scope and objectivity of classical physics. This is meant as the “deterministic subjectivity of classical physics” opposed to the “indeterminist objectivity of quantum mechanics”. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  45. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum (...) proposes that all quantum systems be interpreted as dissipative ones and that the theorem be thus derstood. The conclusion is that the continual representation, by force or (gravitational) field between parts interacting by means of it, of a system is equivalent to their mutual entanglement if representation is discrete. Gravity (force field) and entanglement are two different, correspondingly continual and discrete, images of a single common essence. General relativity can be interpreted as a superluminal generalization of special relativity. The postulate exists of an alleged obligatory difference between a model and reality in science and philosophy. It can also be deduced by interpreting a corollary of the heorem. On the other hand, quantum mechanics, on the basis of this theorem and of V on Neumann's (1932), introduces the option that a model be entirely identified as the modeled reality and, therefore, that absolutely reality be recognized: this is a non-standard hypothesis in the epistemology of science. Thus, the true reality begins to be understood mathematically, i.e. in a Pythagorean manner, for its identification with its mathematical model. A few linked problems are highlighted: the role of the axiom of choice forcorrectly interpreting the theorem; whether the theorem can be considered an axiom; whether the theorem can be considered equivalent to the negation of the axiom. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46.  53
    Refuting the refutations of the Wigner-Neumann interpretation in quantum mechanics.Spyridon Kakos - 2024 - Harmonia Philosophica Papers.
    One of the most controversial interpretations in quantum mechanics is the Wigner-Neumann interpretation, according to which the superstitions collapse only when a conscious observer observes the quantum system. In general, there is much opposition against this specific interpretation and the reasons are more philosophical than purely scientific. By refuting a specific refutation of the Wigner-Neumann interpretation postulated by Anderson and Carpenter, this paper shows how cancelling the Wigner interpretation is simply not possible at least with our current (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Reverse Quantum Mechanics: Ontological Path.Michele Caponigro - manuscript
    This paper is essentially a quantum philosophical challenge: starting from simple assumptions, we argue about an ontological approach to quantum mechanics. In this paper, we will focus only on the assumptions. While these assumptions seems to solve the ontological aspect of theory many others epistemological problems arise. For these reasons, in order to prove these assumptions, we need to find a consistent mathematical context (i.e. time reverse problem, quantum entanglement, implications on quantum fields, Schr¨odinger cat (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Derivation of the Quantum Mechanical Momentum Operator in the Position Representation.Ryan Reece - manuscript
    I pedagogically show that the momentum operator in quantum mechanics, in the position representation, commonly known to be a derivative with respect to a spatial x-coordinate, can be derived by identifying momentum as the generator of space translations.
    Download  
     
    Export citation  
     
    Bookmark  
  49. Metaphysical indeterminacy in Everettian quantum mechanics.David Glick & Baptiste Le Bihan - 2024 - European Journal for Philosophy of Science 14 (3):1-22.
    The question of whether Everettian quantum mechanics (EQM) justifies the existence of metaphysical indeterminacy has recently come to the fore. Metaphysical indeterminacy has been argued to emerge from three sources: coherent superpositions, the indefinite number of branches in the quantum multiverse and the nature of these branches. This paper reviews the evidence and concludes that those arguments don’t rely on EQM alone and rest on metaphysical auxiliary assumptions that transcend the physics of EQM. We show how EQM (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Quantum Mechanical EPRBA covariance and classical probability.Han Geurdes - manuscript
    Contrary to Bell’s theorem it is demonstrated that with the use of classical probability theory the quantum correlation can be approximated. Hence, one may not conclude from experiment that all local hidden variable theories are ruled out by a violation of inequality result.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 918